Lois de probabilités discrètes finies

Christian CYRILLE 8 juillet 2017

1 La loi binomiale $\mathcal{B}(n;p)$

1.1 Une dynastie de Mathématiciens Suisses

Jacob Bernoulli (1654 - 1705)

Son frère, Jean Bernoulli (1667-1748)

Son neveu, Daniel Bernoulli (1700 – 1782)

1.2 Schéma de Bernoulli

\triangle \triangle \triangle

On appelle schéma de Bernoulli un ensemble formé de n épreuves **répétées,identiques et indépendantes** telles que qu'au cours de chaque épreuve, on n'ait que 2 possibilités :

- soit un succès S avec une probabilité $p \in [0;1]$
- soit un échec \overline{S} avec une probabilité q = 1 p

Cette situation a été étudiée par Jacob Bernoulli (1654 - 1705) un des membres de la famille suisse Bernoulli qui a fourni de nombreux mathématiciens.

1.3 Exemples

1.3.1 Exemple 1

On jette n fois une pièce de monnaie. Si on considère comme succès S= "obtenir pile" alors $p=\frac{1}{2}$

1.3.2 Exemple 2

On jette n fois un dé. Si on considère comme succès S= "obtenir un numéro strictement supérieur à 4" alors $p=\frac{2}{6}=\frac{1}{3}$

1.3.3 Exemple 3

Un coureur franchit n haies dans une course. On suppose qu'il ne se fatigue pas pendant la course. On peut considérer comme succès S ="passer une haie sans la jeter"

1.4 Loi binomiale $\mathcal{B}(n; p)$

$$0$$
 0 0

Soit un shéma de Bernouilli.

La variable aléatoire X=" nombre de succès obtenus au cours des n épreuves" prend des valeurs comprises entre 0 et n.

- k succès et (n-k) échecs arrivent avec une probabilité de $p^k(1-p)^{n-k}$ à cause de l'indépendance des épreuves.
- on place k succès S en n épreuves ceci de $\binom{n}{k}$ façons.

alors comme ces n épreuves sont disjointes deux à deux,

$$\forall k \in [| \ 0; n \ |] \quad P([X = k]) = \binom{n}{k} p^k (1 - p)^{n - k}$$

En utilisant la formule du binôme de Newton, on prouve aisément que : $\sum_{k=0}^n P([X=k]) = \sum_{k=0}^n \binom{n}{k} \, p^k (1-p)^{n-k} = [p+(1-p)]^n = 1^n = 1.$ On dit alors que X suit la loi binomiale $\mathcal{B}(n;p)$

1.5 Espérance et Variance

 \heartsuit \heartsuit \heartsuit Si X suit la loi $\mathcal{B}(n;p)$ alors E(X)=np et Var(X)=np(1-p)=npq

1.5.1 Démonstration de E(X) = np

$$\begin{split} E(X) &= \sum_{k=0}^n k P([X=k]) = \sum_{k=0}^n k \binom{n}{k} \, p^k (1-p)^{n-k} = \sum_{k=1}^n k \binom{n}{k} \, p^k (1-p)^{n-k} \\ &= \sum_{k=1}^n k \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = np \sum_{k=1}^n \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} p^{k-1} (1-p)^{[(n-1)-(k-1)]} \\ &= np \sum_{j=0}^{n-1} \binom{n-1}{j} \, p^j (1-p)^{(n-1)-j} = np [p+(1-p)]^{n-1} = np 1^{n-1} = np \end{split}$$

1.5.2 Démonstration Var(X) = npq

Pour le calcul de var(X) on utilise l'astuce $k^2 = k(k-1) + k$.

•
$$E(X^2) = \sum_{k=0}^{n} k^2 P([X=k]) = \sum_{k=0}^{n} [k(k-1)+k] \binom{n}{k} p^k (1-p)^{n-k}$$

 $= \sum_{k=0}^{n} k(k-1) \binom{n}{k} p^k (1-p)^{n-k} + \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$

- La deuxième somme est E(X)
- Simplifions la première somme : $\sum_{k=0}^{n} k(k-1) \binom{n}{k} p^k (1-p)^{n-k} = \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^k (1-p)^{n-k}$ $= \sum_{k=2}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = n(n-1) p^2 \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)![(n-2)-(k-2)]!} p^{k-2} (1-p)^{[(n-2)-(k-2)]}$ $= n(n-1) p^2 \sum_{i=0}^{n-2} \frac{(n-2)!}{j![(n-2)-j]!} p^j (1-p)^{[(n-2)-j]} = n(n-1) p^2 [p+(1-p)]^{n-2} = n(n-1) p^2$
- D'où $E(X^2) = n(n-1)p^2 + np$
- Par conséquent, d'après la formule de Huyghens Koënig, on a : $Var(X) = E(X^2) [E(X)]^2 = n(n-1)p^2 + np n^2p^2$ = $n^2p^2 - np^2 + np - n^2p^2 = np - np^2 = np(1-p) = npq$

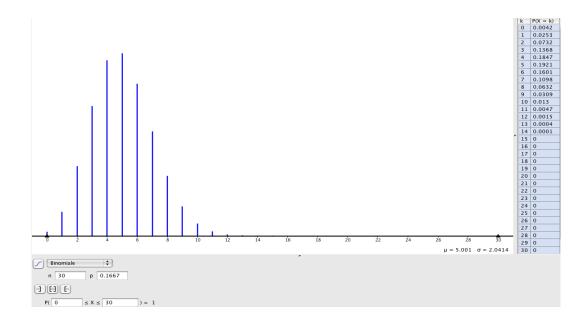
1.5.3 Remarque

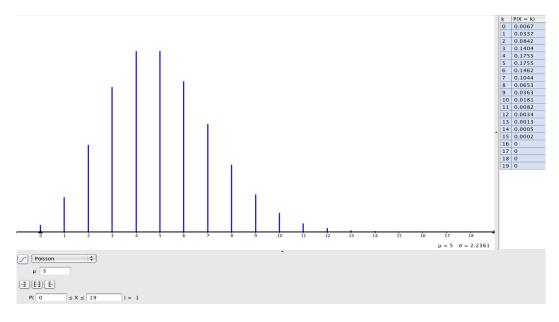
Il est bon de savoir redémontrer avec précision ces deux propriétés car elles permettent de maîtriser les factorielles ainsi que les changements d'indices dans les sommes partielles.

1.6 Convergence de la $\mathcal{B}(n;p)$ vers la $\mathcal{P}(\lambda=np)$

- \triangle \triangle \triangle
 - Si X suit la loi $\mathcal{B}(n; p)$
 - En théorie, lorsque $n\mapsto +\infty$ et $p\mapsto 0$
 - En pratique, lorsque n est suffisamment grand (n > 30) et que np est suffisamment petit (np < 5)

alors X converge en loi vers la loi de Poisson $\mathcal{P}(np)$

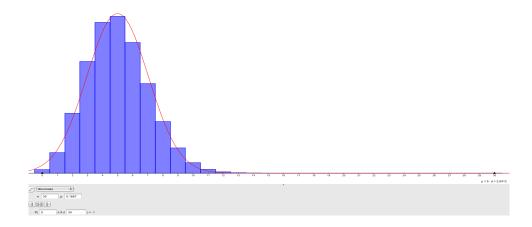


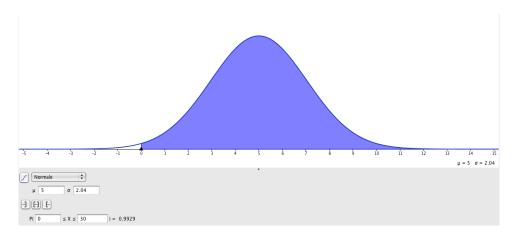


1.7 Convergence de la $\mathcal{B}(n;p)$ vers la $\mathcal{N}(np;\sqrt{npq})$

- 0 0 0
 - Si X suit la loi $\mathcal{B}(n; p)$
 - En théorie, lorsque $n \mapsto +\infty$ et p voisin de 0,5
- En pratique, lorsque n est suffisamment grand (n > 30) et $np \ge 5$ et $nq \ge 5$ alors
 - X converge en loi vers converge en loi vers la loi normale $\mathcal{N}(np;\sqrt{npq})$
 - $Z = \frac{X np}{\sqrt{npq}}$ converge en loi vers la loi normale centrée réduite $\mathcal{N}(0;1)$
 - $P([X = x]) \approx \frac{1}{\sqrt{npq} F(\frac{x np}{\sqrt{npq}})}$
 - En fait, avec une correction de continuité $P([X = x]) = P(x \frac{1}{2} \le X \le x + \frac{1}{2}) \approx$

En fait, avec the correction de continuite
$$F([X = x]) = F(x - \frac{1}{2} \le X \le x + \frac{1}{2}) = F(\frac{x + \frac{1}{2} - np}{\sqrt{npq}}) - F(\frac{x - \frac{1}{2} - np}{\sqrt{npq}})$$
 où F est la fonction de répartition de la loi normale





2 La loi de Bernoulli $\mathcal{B}(1;p)$

C'est le cas particulier de la loi $\mathcal{B}(1; p)$. Ici n = 1.

 X_i suit la loi de Bernoulli veut dire que X_i ne peut prendre que 2 valeurs :

- soit 1 avec une probabilité *p*
- soit 0 avec une probabilité q = 1 p

Dire qu'une variable aléatoire X suit une loi $\mathcal{B}(n;p)$ équivaut à dire que

 $X = X_1 + X_2 + X_3 + \cdots + X_n$ où toutes les X_i sont indépendantes et suivent chacune une loi de Bernouilli $\mathcal{B}(1;p)$

Alors:

- 1. à partir de la loi $\mathcal{B}(n;p)$ on a directement : E(X)=np=1p=p et Var(X)=npq=1pq=p(1-p)
- 2. Mais on peut retrouver ces deux résultats autrement :

(a)

Valeurs de X_j	0	1	Total
$p_i = P([X_j = x_i])$	1-p	p	1
$p_i x_i$	0	p	$E(X_j) = p$
x_i^2	0	1	
$p_i x_i^2$	0	p	$E(X_j^2) = p$

Par conséquent $Var(X_j) = E(X_j^2) - [E(X_j)]^2 = p - p^2 = p(1-p) = pq$

(b)
$$E(X) = E(\sum_{j=j1}^{n} X_{i}j = \sum_{j=1}^{n} E(X_{j}) = \sum_{j=1}^{n} p = np$$
 en utilisant la linéarité de l'espérance.

(c)
$$Var(X) = Var(\sum_{j=1}^{n} X_j) = \sum_{j=1}^{n} Var(X_j) = \sum_{j=1}^{n} pq = npq$$
 en utilisant le fait que les X_j sont indépendantes.

3 Loi Constante C

3.1 Définition

 \heartsuit \heartsuit \heartsuit On dit qu'une variable aléatoire réelle discrète X est constante ou certaine lorsque $\exists C \in \mathbb{R}$ $\forall \omega \in \Omega$ $X(\omega) = C$

3.2 Propriétés

$$\triangle$$
 \triangle \triangle

1.
$$E(X) = C$$

2.
$$Var(X) = 0$$

Démonstration évidente.

La loi uniforme discrète $\mathcal{U}(n)$

Définition 4.1

 \heartsuit \heartsuit \heartsuit On dit qu'une variable aléatoire réelle X est uniforme discrète lorsque : $X < \Omega >= \{x_1, x_2, \cdots, x_n\}$ et $\forall k \in [\mid 1; n \mid]$ $P([X = k] = \frac{1}{n}$

$$X < \Omega >= \{x_1, x_2, \cdots, x_n\}$$

et
$$\forall k \in [|1; n]$$

$$P([X=k] = \frac{1}{n}$$

4.2 Propriétés

 \circlearrowleft \circlearrowleft \circlearrowleft Dans le cas particulier où $X < \Omega >= [\mid 1; n \mid]$ 1. $E(X) = \frac{n+1}{2}$ 2. $Var(X) = \frac{n^2-1}{12}$

$$1. E(X) = \frac{n+1}{2}$$

2.
$$Var(X) = \frac{n^2 - 1}{12}$$

4.2.1 Démonstration

•
$$E(X) = \sum_{i=1}^{n} x_i P([X = x_i]) = \sum_{i=1}^{n} x_i \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

•
$$E(X^2) = \sum_{i=1}^n x_i^2 P([X = x_i]) = \sum_{i=1}^n x_i^2 \frac{1}{n} = \frac{1}{n} \sum_{i=1}^n i^2 = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}$$

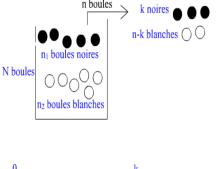
•
$$E(X) = \sum_{i=1}^{n} x_i^{n} ([X = x_i]) = \sum_{i=1}^{n} x_i^{n} \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i^{n} = \frac{(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6} = \frac{2n^2 + 3n + 1}{6} = \frac{n^2 + 2n + 1}{4} = \frac{4n^2 + 6n + 2 - 3n^2 - 6n - 3}{12} = \frac{n^2 - 1}{12}$$

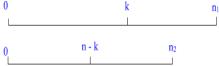
Loi hypergéométrique ou loi des tirages sans remise 5

Définition 5.1

 \triangle \triangle Soit un schéma d'urnes particulier : Une urne contient n_1 boules noires et n_2 boules blanches avec $N = n_1 + n_2$.

Soient n et k des entiers naturels . On tire sans remise et au hasard n boules de l'urne dont knoires et n - k blanches.





Soit la variable aléatoire X = "nombre de boules noires tirées parmi les n boules tirées".

- Si n > N alors P([X = k]) = 0
- Si k > n alors P([X = k]) = 0

• Si
$$k > n$$
 alors $P(|X = k|) = 0$
• Si $n \le N$ et $0 \le k \le n$ alors
$$P(|X = k|) = \frac{\binom{n_1}{k} \binom{N - n_1}{n - k}}{\binom{N}{n}} = \frac{\binom{n_1}{k} \binom{n_2}{n - k}}{\binom{N}{n}}$$
Comme $0 \le k \le n_1$ et $0 \le n - k \le n_2$ donc $n - n_2$

Comme $0 \le k \le n_1$ et $0 \le n - k \le n_2$ donc $n - n_2 \le k \le n$

donc $X < \Omega >= [|max(0; n - n_2); min(n; n_1)|]$

En notant $p = \frac{n_1}{N}$ = la proportion de boules noires dans l'urne

on dira qu'une variable aléatoire X suit une loi hypergéométrique $\mathcal{H}(N,n,p)$ de paramètres N, n et p où N > 0; n > 0 et 0 lorsque

$$X < \omega > \subset [\mid 0; n \mid] \text{ et } \forall k \in X < \Omega > P([X = k]) = \frac{\binom{Np}{k} \binom{N(1-p)}{n-k}}{\binom{N}{n}}$$

Propriétés 5.2

P_1 : Formule de Vandermonde

$$\heartsuit \quad \heartsuit \quad \nabla \quad \sum_{k=0}^{n} P([X=k]) = 1 \operatorname{donc} \binom{N_1 + N_2}{n} = \sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k}$$

On peut l'expliquer autrement :

= le nombre de parties à n éléments dans un ensemble à N éléments = le nombre de parties à n éléments ayant 0 boules blanches + le nombre de parties à n éléments ayant 1 boule blanche $+\cdots+$ le nombre de parties à n éléments ayant n boules blanches

 $=\sum_{k=0}^{\infty}$ nombre de parties à n éléments ayant k boules blanches

$$=\sum_{k=0}^{n} {N_1 \choose k} {N_2 \choose n-k}$$

5.2.2 P_2 : Corollaire de Vandermonde

5.2.3 P_3 : Autre Corollaire de Vandermonde

5.2.4 Espérance et variance de la $\mathcal{H}(N, n, p)$

 \heartsuit \heartsuit Si X suit la loi hypergéométrique $\mathcal{H}(N,n,p)$ alors

- E(X) = np• $Var(X) = Np(1-p)\frac{N-n}{N-1}$
- D'après la petite formule de Pascal, on a : $\binom{n_1}{k} = \frac{n_1}{k} \binom{n_1-1}{k-1} \operatorname{donc} k \binom{n_1}{k} = n_1 \binom{n_1-1}{k-1}$
- De même $n \binom{N}{n} = N \binom{N-1}{n-1}$

•
$$E(X) = \sum_{k=0}^{n} k P([X=k]) = \sum_{k=1}^{n} k \frac{\binom{n_1}{k} \binom{n_2}{n-k}}{\binom{N}{n}} = \sum_{k=1}^{n} n_1 \frac{\binom{n_1-1}{k-1} \binom{n_2}{n-k}}{\frac{N}{n} \binom{N-1}{n-1}}$$

 $= \frac{n n_1}{N} \frac{1}{\binom{N-1}{n-1}} \sum_{k=1}^{n} \binom{n_1-1}{k-1} \binom{n_2}{n-k}.$

- Or la Formule de Vandermonde affirme que $\binom{n_1+n_2}{n}=\sum\limits_{k=0}^n\binom{n_1}{k}\binom{n_2}{n-k}$ donc $\binom{n_1-1+n_2}{n-1}=\sum\limits_{j=0}^{n-1}\binom{n_1-1}{j}$ en posant k=j+1.
- On en déduit que $E(X) = \frac{n \, n_1}{N} \frac{1}{\binom{N-1}{n-1}} \binom{n_1 + n_2 1}{n-1} = \frac{n \, n_1}{N} \frac{1}{\binom{N-1}{n-1}} \binom{N-1}{n-1} = \frac{n \, n_1}{N} = n \, \frac{n_1}{N} = n \, p$. CQFD.

Exercices

Exercice 1 : Lecture de la table de la loi binomiale

Dans chacun des cas suivants déterminer les résultats demandés à l'aide de la table de la loi binomiale.

On vérifiera les résultats obtenus ensuite par les formules.

- 1. On jette 5 pièces de monnaie. Calculer la probabilité d'obtenir 3 face et 2 pile.
- 2. On jette 10 fois une pièce de monnaie. Calculer la probabilité d'obtenir autant de faces que de pile.
- 3. Quelle est la probabilité d'obtenir 4 piles en 7 coups de pile ou face? Quelle est la probabilité d'obtenir 4 faces?
- 4. Calculer l'espérance mathématique et la variance d'une variable suivant la loi binomiale $\mathcal{B}(10; 0, 2)$

6.1.1 Corrigé

- 1. On jette 5 pièces de monnaie. On est en présence d'un schéma de Bernoulli :
 - 5 épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S obtenir pile avec une probabilité $p=\frac{1}{2}$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire X: "nombre de succès" suit la loi binomiale $\mathcal{B}(5,\frac{1}{2})$

Donc la probabilité d'obtenir 3 face et 2 pile est :

$$P([X=2]) = {5 \choose 2} (\frac{1}{2})^2 (\frac{1}{2})^{5-3} = 10(\frac{1}{2})^5 = \frac{10}{32} \approx 0,312.$$

- 2. On jette 10 fois une pièce de monnaie. On est en présence d'un schéma de Bernoulli :
 - 10 épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S obtenir pile avec une probabilité $p = \frac{1}{2}$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire X: "nombre de succès" suit la loi binomiale $\mathcal{B}(10,\frac{1}{2})$

Donc la probabilité d'obtenir autant de pile que de face est :
$$P([X=5]) = \binom{10}{5} (\frac{1}{2})^5 (\frac{1}{2})^5 = 252 (\frac{1}{2})^{10} = \frac{252}{1024} \approx 0,246.$$

- 3. On jette 7 fois une pièce de monnaie. On est en présence d'un schéma de Bernoulli :
 - 7 épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès *S* obtenir pile avec une probabilité $p = \frac{1}{2}$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire X: "nombre de succès" suit la loi binomiale $\mathcal{B}(7,\frac{1}{2})$

11

- la probabilité d'obtenir 4 piles est $P([X = 4]) = {7 \choose 4} (\frac{1}{2})^4 (\frac{1}{2})^3 = 35(\frac{1}{2})^7 = \frac{35}{128} \approx 0,273.$
- la probabilité d'obtenir 4 faces est $P([X=3]) = {7 \choose 3} (\frac{1}{2})^3 (\frac{1}{2})^4 = 35(\frac{1}{2})^7 = \frac{35}{128} \approx 0,273.$
- 4. L'espérance mathématique d'une variable suivant la loi binomiale $\mathcal{B}(10;0,2)$ est $E(X)=np=10\times 0, 2=2$
 - La variance d'une variable suivant la loi binomiale $\mathcal{B}(10;0,2)$ est $Var(X) = npq = 10 \times 0, 2 \times 0, 8 = 1,6$

6.2 Exercice 2

Une variable aléatoire X suit la loi binomiale $\mathcal{B}(n;p)$. Son espérance est 12 et sa variance 2, 4. Déterminer n et p.

6.2.1 Corrigé

Comme E(X) = np et Var(X) = np(1-p) on doit donc résoudre le système

$$\left\{ \begin{array}{l} np=12 \\ np(1-p)=2,4 \end{array} \right. \iff \left\{ \begin{array}{l} np=12 \\ 12(1-p)=2,4 \end{array} \right. \iff \left\{ \begin{array}{l} np=12 \\ 1-p=0,2 \end{array} \right. \iff \left\{ \begin{array}{l} np=12 \\ p=0,8 \end{array} \right. \iff \left\{ \begin{array}{l} n=15 \\ p=0,8 \end{array} \right.$$

6.3 Exercice 3

Dans une fête foraine, Jean participe à une épreuve de tir. Il a 4 chances sur 10 de toucher la cible.

On suppose que les tirs sont des épreuves indépendantes l'une de l'autre.

- 1. Il tire 3 fois de suite. Quelle est la probabilité qu'il a de toucher la cible au moins une fois à l'issue de ces 3 tirs?
- 2. On suppose qu'il tire n fois.
 - (a) Calculer en fonction de n la probabilité qu'il touche la cible au moins une fois.
 - (b) Combien de fois lui faut-il tirer s'il veut toucher la cible au moins une fois avec une probabilité supérieure ou égale à 0,95?

6.3.1 Corrigé

- 1. Il tire 3 fois de suite. On est en présence d'un schéma de Bernoulli :
 - 3 épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S toucher la cible avec une probabilité $p = \frac{4}{10} = 0.4$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire X: "nombre de succès" suit la loi binomiale $\mathcal{B}(3;0,4)$ Donc la probabilité qu'il a de toucher la cible au moins une fois à l'issue de ces 3 tirs est :

$$1 - P([X = 0]) = 1 - {3 \choose 0} (0,4)^{0} (0,6)^{3} = 1 - (0,6)^{3} \approx 0,784$$

- 2. On suppose qu'il tire *n* fois. On est en présence d'un schéma de Bernoulli :
 - *n* épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès *S* toucher la cible avec une probabilité $p = \frac{4}{10} = 0.4$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire X: "nombre de succès" suit la loi binomiale $\mathcal{B}(n;0,4)$
 - (a) La probabilité qu'il touche la cible au moins une fois est :

$$1 - P([X = 0]) = 1 - \binom{n}{0} (0,4)^0 (0,6)^n = 1 - (0,6)^n$$

(b)
$$1 - (0,6)^n \ge 0.95 \iff 0.05 \ge (0,6)^n \iff ln(0,05) \ge ln(0,6)^n) \iff ln(0,05) \ge nln(0,6) \iff \frac{ln(0,05)}{ln(0,6)} \le n \iff 5,864 \le n.$$

Par conséquent, il lui faut tirer au moins 6 fois s'il veut toucher la cible au moins une fois avec une probabilité supérieure ou égale à 0,95.

6.4 Exercice 4

Une urne contient une boule rouge, deux boules blanches et trois boules noires.

1. On extrait simultanément trois boules de cette urne. On suppose tous les tirages équiprobables. Soit *X* la variable aléatoire "Nombre de boules blanches parmi les trois extraites". Déterminer la loi de probabilité de *X*, son espérance mathématique et son écart-type.

2. On extrait successivement trois boules de cette urne en remettant après chaque tirage la boule extraite dans l'urne. Soit *Y* la variable aléatoire "Nombre de tirages où apparaît une boule blanche". Déterminer la loi de probabilité de *Y* et son espérance mathématique.

6.4.1 Corrigé

- 1. On extrait simultanément trois boules de cette urne.
 - ullet L'univers Ω est l'ensemble des 3-combinaisons prises parmi les 6 boules.
 - $Card(\Omega) = \binom{6}{3} = 20$
 - Les événements élémentaires sont équiprobables car on suppose tous les tirages équiprobables.
 - La loi de probabilité ici est donc la loi de probabilité uniforme. La probabilité d'un événement A et $P(A) = \frac{Card(A)}{Card(\Omega)}$

Soit *X* la variable aléatoire "Nombre de boules blanches parmi les trois extraites".

- Alors l'univers image est $X < \Omega >= \{0;1;2\}$
- La loi de probabilité de X est entièrement déterminée par la connaissance des $P([X = x_i])$ que l'on peut présenter dans un tableau :

x_i	0	1	2	Total
p_i	$\frac{\binom{2}{0}\binom{4}{3}}{20} = \frac{4}{20}$	$\frac{\binom{2}{1}\binom{4}{2}}{20} = \frac{12}{20}$	$\frac{\binom{2}{2}\binom{4}{1}}{20} = \frac{4}{20}$	1
$p_i x_i$	0	12 20	$\frac{8}{20}$	$E(X) = \frac{12}{20} = 1$
x_i^2	0	1	4	
$p_i x_i^2$	0	$\frac{12}{20}$	$\frac{16}{20}$	$E(X^2) = \frac{28}{20}$

- son espérance mathématique est donc E(X) = 1
- On peut alors en déduire d'après la formule de Huyghens-Koenig la valeur de la variance $Var(X) = E(X^2) [E(X)]^2 = \frac{28}{20} 1 = \frac{8}{20} = 0,4$ puis la valeur de l'écart-type $\sigma(X) = \sqrt{Var(X)} \approx 0,63$
- 2. On extrait successivement trois boules de cette urne en remettant après chaque tirage la boule extraite dans l'urne. On est en présence d'un schéma de Bernoulli :
 - 3 épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S une boule blanche avec une probabilité $p = \frac{12}{20} = 0,6$
 - soit un échec \overline{S} avec une probabilité q = 1 p
 - Alors la variable aléatoire Y: "nombre de succès ou nombre de tirages où apparaît une boule blanche" suit la loi binomiale $\mathcal{B}(3;0,6)$ d'espérance $np = 3 \times 0, 6 = 1, 8$

6.5 **Exercice 5 : Bac Antilles C**

Un paquet de 16 cartes est constitué du Valet, de la Dame, du Roi et de l'As de chaque couleur c'est-à-dire trèfle, carreau, cœur et pique.

- 1. On tire simultanément 3 cartes. On suppose tous les tirages équiprobables.
 - (a) Quelle est la probabilité pour que les 3 cartes tirées soient de la même couleur?
 - (b) Quelle est la probabilité pour qu'exactement 2 des cartes tirées soient de la même couleur?
- 2. On tire maintenant une seule carte du paquet et on la remet dans le paquet après ce tirage. On suppose tous les tirages équiprobables. On effectue 3 tirages. Quelle est la probabilité d'obtenir 2 cœurs exactement?

6.5.1 Corrigé

1. On tire simultanément 3 cartes. Donc l'univers Ω est l'ensemble des combinaisons de 3 cartes prises parmi les 16. Alors $Card(\Omega) = \binom{16}{3} = 560$. On suppose tous les tirages équiprobables donc on utilisera la loi de probabilité uniforme Pr(evtA) =la somme des probabilités élémentaires inclus dans $A = \frac{Nombre de cas favorables à A}{Nombre de cas favorables à A}$

(a) La probabilité pour que les 3 cartes tirées soient de la même couleur est :

$$\frac{4\binom{4}{3}}{\binom{16}{3}} = \frac{4\times4}{560} = \frac{16}{560} = \frac{1}{35} \text{ car}$$

- ou bien on tire les 3 cartes parmi les 4 trèfles ceci de $\binom{4}{3} = 4$ façons
- ou bien on tire les 3 cartes parmi les 4 carreaux ceci de $\binom{4}{3} = 4$ façons
- ou bien on tire les 3 cartes parmi les 4 coeurs ceci de $\binom{4}{3} = 4$ façons
- ou bien on tire les 3 cartes parmi les 4 piques ceci de $\binom{4}{3} = 4$ façons
- (b) La probabilité pour qu'exactement 2 des cartes tirées soient de la même couleur est $\frac{4\times 6\times 12}{560} = \frac{288}{560} = \frac{18}{35} \text{ car}$ on choisit la couleur ceci de 4 façons

 - dans cette couleur on choisit 2 cartes ceci de $\binom{4}{2} = 6$ façons
 - ensuite dans les 12 cartes restantes on choisit 1 carte ceci de $\binom{12}{1}$ = 12 façons
- 2. On tire maintenant une seule carte du paquet et on la remet dans le paquet après ce tirage. On suppose tous les tirages équiprobables. On effectue 3 tirages. On est donc en présence d'un schéma de Bernoulli : 3 épreuves répétées, identiques et indépendantes. Au cours de chaque épreuve, on a

16

• soit un succès S:"tirer un coeur" avec une probabilité $p = \frac{4}{16} = \frac{1}{4}$,

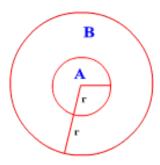
• soit un échec \bar{S} : "ne pas tirer un coeur" avec une probabilité $q=1-p=\frac{12}{16}=\frac{3}{4}$ La variable aléatoire X = "nombre de succès" suit la loi binomiale $\mathcal{B}(3;\frac{1}{4})$ Alors la probabilité d'obtenir 2 cœurs exactement est $Pr([X=2]=\binom{3}{2}\times(\frac{1}{4})^2\times\frac{3}{4}=3\times\frac{1}{16}\times\frac{3}{4}=\frac{9}{64}$

Exercice 6 6.6

Une cible a la forme d'un disque de centre O et de rayon 2R. Elle est partagée en 2 régions par le cercle de centre O et de rayon R. La région centrale est appelée A et son complémentaire est la couronne *B*.

- 1. Une flèche tombe sur la cible. La probabilité pour qu'elle touche une région donnée est proportionnelle à l'aire de cette région. On appelle "succès" l'événement "la flèche tombe dans la région A" et "échec" l'événement : "la flèche tombe dans la couronne B" Démontrer que la probabilité du succès est de $\frac{1}{4}$ et celle de l'échec de $\frac{3}{4}$
- 2. 5 flèches tombent sur la cible indépendamment les unes des autres. X est la variable aléatoire qui représente le nombre de succès.
 - (a) Quelle est la loi de probabilité de *X*.
 - (b) Calculer E(X) et $\sigma(X)$.
- 3. n flèches tombent sur la cible indépendamment les unes des autres.
 - (a) Calculer la probabilité u_n pour qu'au moins une flèche soit tombée sur la région A.
 - (b) Déterminer le plus petit entier n tel que $u_n > 0,9$

6.6.1 Corrigé



- 1. Une flèche tombe sur la cible.
 - $\Omega = \{A; B\}$ et $Card(\Omega) = 2$
 - Les 2 événements élémentaires ne sont pas équiprobables car la probabilité pour qu'elle touche une région donnée est proportionnelle à l'aire de cette région
 - Déterminons les probabilités de chaque événement élémentaire.
 - Determinons les probabilités de chaque evenement elementaire. $P(A) = k\pi R^2$ $P(B) = k[\pi(2R)^2 \pi R^2] = k[4\pi R^2 \pi R^2] = 3k\pi R^2$ $\text{Or } 1 = P(A) + P(B) = 4k\pi R^2 \text{ donc } k = \frac{1}{4\pi R^2}$. On appelle "succès" l'événement "la flèche tombe dans la région A" et "échec" l'événement : "la flèche tombe dans la couronne B" Donc la probabilité du succès est $P(A) = \frac{1}{4\pi R^2}\pi R^2 = \frac{1}{4}$ et celle de l'échec est $P(B) = \frac{3}{4\pi R^2}\pi R^2 = \frac{3}{4}$

$$\frac{1}{4\pi R^2}\pi R^2 = \frac{1}{4}$$
 et celle de l'échec est $P(B) = \frac{3}{4\pi R^2}\pi R^2 = \frac{3}{4}$

- 2. 5 flèches tombent sur la cible indépendamment les unes des autres. On est en présence d'un schéma de Bernoulli:
 - 5 épreuves répétées identiques et indépendantes

- qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S:"tomber sur la zone A" avec une probabilité $p = \frac{1}{4}$
 - soit un échec \overline{S} : "tomber sur la zone B" avec une probabilité q=1-p
- (a) Alors la variable aléatoire X : "nombre de succès " suit la loi binomiale $\mathcal{B}(5;\frac{1}{4})$.

(b)
$$E(X) = np = 5 \times \frac{1}{4} = \frac{5}{4} \text{ et } \sigma(X) = \sqrt{Var(X)} = \sqrt{npq} = \sqrt{\frac{15}{16}}.$$

- 3. *n* flèches tombent sur la cible indépendamment les unes des autres. On est en présence d'un schéma de Bernoulli :
 - *n* épreuves répétées identiques et indépendantes
 - qu'au cours de chaque épreuve, on n'ait que 2 possibilités :
 - soit un succès S :"tomber sur la zone A" avec une probabilité $p=\frac{1}{4}$
 - soit un échec \overline{S} : "tomber sur la zone B" avec une probabilité q=1-p

Alors la variable aléatoire X: "nombre de succès "suit la loi binomiale $\mathcal{B}(n;\frac{1}{4})$.

- (a) $u_n=p("$ 'au moins une flèche soit tombée sur la région $A")=1-P([X=0])=1-\binom{n}{0}(\frac{1}{4})^0(\frac{3}{4})^n=1-(\frac{1}{4})^n$
- (b) $u_n > 0.9 \iff 1 (\frac{1}{4})^n > 0.9 \iff 0.1 > (\frac{1}{4})^n \iff ln(0,1) > ln((\frac{1}{4})^n)$ car ln est strictement croissante

strictment crossante
$$\iff ln(0,1) > n \quad ln(\frac{1}{4}) \iff \frac{ln(0,1)}{ln(0,75)} < n \text{ car } ln(0,75) < 0 \text{ puisque } 0 < 0,75 < 1$$
$$\iff 8,003 < n$$

La valeur minimale de n est donc n = 9

6.7 Exercice 7

Le sexe des castors est indiscernable sans examen radiologique. Dans une forêt, on admet qu'il y a globalement autant de castors mâles que de castors femelles. Un zoo reçoit un lot de 6 castors, capturés au hasard dans cette forêt. Bien entendu, on suppose que dans cette forêt, il y a un très grand nombre de castors et que même en enlevant un castor, il reste toujours globalement toujours autant de mâles que de femelles.

- 1. Calculer les probabilités Pr(A), Pr(B), Pr(C) et Pr(D) des èvènements A, B, C et D suivants :
 - *A* :" il n'y a aucun mâle dans ce lot."
 - *B* :" il y a exactement un mâle dans ce lot"
 - *C* :" il y a exactement 2 mâles dans ce lot"
 - *D* :" il y autant de mâles que de femelles dans ce lot"
- 2. Calculer la somme 2Pr(A) + 2Pr(B) + 2Pr(C) + Pr(D). Pouvait-on prévoir ce résultat?
- 3. Combien de castors le zoo doit-il acquérir pour que la probabilité d'obtenir au moins un couple soit supérieure à $\frac{15}{16}$?

6.7.1 Corrigé

1. On est en présence d'un schéma de Bernouilli : 6 épreuves répétées, identiques et indépendantes.

Au cours d'une épreuve, on a :

- soit un succès S: choisir un mâle avec une probabilité $p=\frac{1}{2}$
- soit un échec $E = \overline{S}$: choisir une femelle avec une probabilité $q = 1 p = \frac{1}{2}$

(a) Soit
$$\Omega = \{S, E\}$$
 et $\mathcal{B} = \mathcal{P}(\Omega)$ avec $pr(S) = p = \frac{1}{2}$ et $Pr(E) = q = 1 - p = \frac{1}{2}$.

- (b) L'espace probabilisé correspondant au schéma de Bernoulli est le suivant $(\Omega' = \Omega^6, \mathcal{B}' = \mathcal{P}(\Omega'), P')$ où $P'((r_1, r_2, \cdots, r_6,)) = P(r_1) \times P(r_2) \times \cdots \times P(r_6)$.
- (c) la variable aléatoire X:"nombre de succès" suit la loi binomiale $B(6; \frac{1}{2})$

et
$$\forall k \in [|0;6|]$$
 $P([X=k]) = {6 \choose k} (\frac{1}{2})^k (\frac{1}{2})^{6-k}$

(d)
$$Pr(A) = Pr([X = 0]) = {6 \choose 0} (\frac{1}{2})^0 (\frac{1}{2})^{6-0} = (\frac{1}{2})^6 = \frac{1}{2^6} = \frac{1}{64} \approx 0,0156$$

(e)
$$Pr(B) = Pr([X = 1]) = {6 \choose 1} (\frac{1}{2})^1 (\frac{1}{2})^{6-1} = 6(\frac{1}{2})^6 = \frac{6}{2^6} = \frac{6}{64} \approx 0,09376$$

(f)
$$Pr(C) = Pr([X=2]) = {6 \choose 2} (\frac{1}{2})^2 (\frac{1}{2})^{6-2} = 15(\frac{1}{2})^6 = \frac{15}{2^6} = \frac{15}{64} \approx 0,234$$

(g)
$$Pr(D) = Pr([X = 3]) = {6 \choose 3} (\frac{1}{2})^3 (\frac{1}{2})^{6-3} = 20(\frac{1}{2})^6 = \frac{20}{2^6} = \frac{20}{64} \approx 0.312$$

- 2. La somme $2Pr(A) + 2Pr(B) + 2Pr(C) + Pr(D) = \frac{64}{64} = 1$. Ce qui est normal car :
 - (a) $X < \Omega >$ = {0,1,2,3,4,5,6}

(b)
$$1 = Pr(X < \Omega >) = Pr([X = 0]) + Pr([X = 1]) + Pr([X = 2]) + Pr([X = 3]) + Pr([X = 4]) + Pr([X = 5]) + Pr([X = 6])$$

(c) Or
$$Pr([X = 0] = Pr(X = 6])$$
; $Pr([X = 1] = Pr(X = 5])$; $Pr([X = 2] = Pr(X = 4])$ puisque ici $p = q = \frac{1}{2}$ et que $\binom{6}{k} = \binom{6}{6-k}$ donc $\forall k \in [|0;6|]$ $P([X = k]) = \binom{6}{k} (\frac{1}{2})^k (\frac{1}{2})^{6-k} = \binom{6}{k} (\frac{1}{2})^k = \binom{6}{6-k} (\frac{1}{2})^k = \binom{6}{k} (\frac{1}{2})^{6-k} (\frac{1}{2})^k = Pr([X = 6-k])$

Donc
$$1 = 2Pr([X = 0]) + 2Pr([X = 1]) + 2Pr([X = 2]) + Pr([X = 3]) = 2Pr(A) + 2Pr(B) + 2Pr(C) + Pr(D)$$

3. Soit n le nombre de castors que le zoo doit acquérir pour que la probabilité d'obtenir au moins un couple soit supérieure à $\frac{15}{16}$.

X suit la loi binomiale $\mathcal{B}(n; \frac{1}{2})$. Alors

(a) Pr("avoir au moins un couple") = 1 - Pr("avoir 0 couple") = 1 - P("O mâle ou 0 femelle) = 1 - 2<math>Pr(A)

(b) Donc
$$1 - 2Pr(A) > \frac{15}{16} \iff \frac{1}{16} > 2Pr(A) \iff \frac{1}{32} > Pr(A)$$

$$\iff \frac{1}{32} > \binom{n}{0} \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^{n-0} \iff \frac{1}{32} > \frac{1}{2^n} \iff 2^n > 32 \iff n > 5$$

6.8 Exercice 8 : oral HEC 2007

Loi binomiale et Formule de Vandermonde.

Soient deux variables aléatoires indépendantes X et Y suivant chacune la loi $\mathcal{B}(n;\frac{1}{2})$. Déterminer Pr([X=Y])