Partie Entière d'un nombre réel

Professeur: Christian CYRILLE

12 mai 2017

On admet que tout réel x est compris entre 2 entiers relatifs consécutifs n et n+1 c'est-à-dire que $\forall x \in \mathbb{R} \ \exists$ un unique $n \in \mathbb{Z}$ tel que $n \le x < n+1$. Cet entier n qui est le plus grand entier relatif précédant x s'appelle la partie entière de x. On le note Ent(x) ou [x] en Mathématiques. On a donc $[x] \le x < [x] + 1$

1. — si $-4 \le x < -3$ alors [x] = -4— si $-3 \le x < -2$ alors [x] = -3— si $-2 \le x < -1$ alors [x] = -2— si $-1 \le x < 0$ alors [x] = -1— si $0 \le x < 1$ alors [x] = 0— si $1 \le x < 2$ alors [x] = 1— si $2 \le x < 3$ alors [x] = 2— si $3 \le x < 4$ alors [x] = 3— si x = 4 alors [x] = 4

Voici donc dans un repère $(O; \overrightarrow{u}, \overrightarrow{v})$ la courbe représentative de la fonction partie entière de \mathbb{R} dans \mathbb{Z} qui , à tout réel x associe [x]. Pour le graphique, on prendra $x \in [-4; 4]$

- 2. $\forall x \in \mathbb{R} \text{ alors } [x] \le x < [x] + 1 \text{ donc } \forall k \in \mathbb{Z} [x] + k \le x + k < [x] + 1 + k$. Or [x] + k et [x] + k + 1 sont deux entiers consécutifs donc [x + k] = [x] + k
- 3. $\forall x \in \mathbb{R} \text{ comme } [x] \leq x < [x] + 1 \text{ alors } [x] [x] \leq x [x] < [x] + 1 [x]$ donc $\boxed{0 \leq x [x] < 1}$. Lorsque x est un réel positif alors x [x] s'appelle aussi la partie décimale de x
- 4. Soit $k \in \mathbb{Z}^*$ alors l'application $epi : \mathbb{R} \mapsto [0; 1[$ qui à tout réel x associe epi(x) = x [x] est périodique de période k car :
 - L'ensemble de définition de epi qui est \mathbb{R} est tel que $\forall x \in D_{epi}$ on $x + k \in D_{epi}$
 - $\forall x \in D_{epi} \ epi(x+k) = (x+k) [x+k] = x+k ([x]+k) = x [x] = epi(x)$

La plus petite période k strictement positive est 1 donc "la" période de $x \mapsto [x]$ est 1.

La courbe représentative de epi ressemble à un champ d'épis dans un autre repère pour $x \in [-4;4]$

- 5. Si $[x] \le x < [x]+1$ alors $-[x] \ge -x > -[x]-1$ donc $-[x]-1 < -x \le -[x]$ Donc pour exprimer [-x] en fonction de [x], il faudra distinguer 2 cas :
 - (a) ou bien x est un entier relatif k alors -x est l'entier -k aussi donc [-x] = [-k] = -k = -[x] donc [-x] = -[x]

- (b) ou bien x n'est pas entier alors [x] < x < [x] + 1alors -[x] > -x > -[x] - 1 donc -[x] - 1 < -x < -[x]. Et comme -[x] - 1 et -[x] sont des entiers consécutifs alors [-x] = -[x] - 1
- 6. Nous allons dessiner avec précision les courbes des fonctions suivantes dans des repères différents :
 - (a) f définie sur [-4; 4] par f(x) = [|x|]L'ensemble de définition D_f est centré en 0 et $\forall x \in D_f$ f(-x) = f(x)donc f est paire donc on étudie f sur [0;4] et on complète la courbe en utilisant la symétrie orthogonale d'axe l'axe des ordonnées.
 - (b) g définie sur [-2; 2] par g(x) = [2x]

$$- \sin -2 \le x < \frac{-3}{2} \text{ alors } -4 \le 2x < -3 \text{ donc } [2x] = -4$$

$$- \sin \frac{-3}{2} \le x < -1 \text{ alors } -3 \le 2x < -2 \text{ donc } [2x] = -3$$

$$- \sin -1 \le x < \frac{-1}{2} \text{ alors } -2 \le 2x < -1 \text{ donc } [2x] = -2$$

$$- \sin \frac{-1}{2} \le x < 0 \text{ alors } -1 \le 2x < 0 \text{ donc } [2x] = -1$$

$$- \sin 0 \le x < \frac{1}{2} \text{ alors } 0 \le 2x < 1 \text{ donc } [2x] = 0$$

$$- \sin \frac{1}{2} \le x < 1 \text{ alors } 1 \le 2x < 2 \text{ donc } [2x] = 1$$

$$- \sin 1 \le x < \frac{3}{2} \text{ alors } 2 \le 2x < 3 \text{ donc } [2x] = 2$$

$$- \sin \frac{3}{2} \le x < 2 \text{ alors } 3 \le 2x < 4 \text{ donc } [2x] = 3$$

$$- \sin x = 2 \text{ alors } 2x = 4 \text{ donc } [2x] = 4$$

(c) h définie sur [-1;1] par h(x) = [3x]

- si
$$-1 \le x < \frac{-2}{3}$$
 alors $-3 \le 3x < -2$ donc $[3x] = -3$
- si $\frac{-2}{3} \le x < \frac{-1}{3}$ alors $-2 \le 3x < -1$ donc $[3x] = -2$
- si $\frac{-1}{3} \le x < 0$ alors $-1 \le 3x < 0$ donc $[3x] = -1$
- si $0 \le x < \frac{1}{3}$ alors $0 \le 3x < 1$ donc $[3x] = 0$

$$- \text{ si } \frac{1}{3} \le x < \frac{2}{3} \text{ alors } 1 \le 3x < 2 \text{ donc } [3x] = 1$$

$$- \text{ si } \frac{2}{3} \le x < 1 \text{ alors } 2 \le 3x < 3 \text{ donc } [3x] = 2$$

$$- \text{ si } x = 1 \text{ alors } 3x = 3 \text{ alors } [3x] = 3$$

- si
$$\frac{2}{3} \le x < 1$$
 alors $2 \le 3x < 3$ donc $[3x] = 3$

(d)
$$i$$
 définie sur $[-4;4]$ par $i(x) = \left[\frac{x}{2}\right]$

- si
$$-4 \le x < -2$$
 alors $-2 \le \frac{x}{2} < -1$ donc $\left[\frac{x}{2}\right] = -2$
- si $-2 \le x < 0$ alors $-1 \le \frac{x}{2} < 0$ donc $\left[\frac{x}{2}\right] = -1$

- si
$$0 \le x < 2$$
 alors $0 \le \frac{x}{2} < 1$ donc $\left[\frac{x}{2}\right] = 0$

— si
$$2 \le x < 4$$
 alors $1 \le \frac{x}{2} < 2$ donc $[\frac{x}{2}] = 1$

— si
$$x = 4$$
 alors $\frac{x}{2} = 2$ donc $[\frac{x}{2}] = 2$

(e)
$$j$$
 définie sur $[-6; 6]$ par $j(x) = \left[\frac{x}{3}\right]$

$$\begin{array}{l} --\sin -6 \leq x < -3 \text{ alors } -2 \leq \frac{x}{3} < -1 \text{ donc } \left[\frac{x}{3}\right] = -2 \\ --\sin -3 \leq x < 0 \text{ alors } -1 \leq \frac{x}{3} < 0 \text{ donc } \left[\frac{x}{3}\right] = -1 \\ --\sin 0 \leq x < 3 \text{ alors } 0 \leq \frac{x}{3} < 1 \text{ donc } \left[\frac{x}{3}\right] = 0 \\ --\sin 3 \leq x < 6 \text{ alors } 1 \leq \frac{x}{2} < 2 \text{ donc } \left[\frac{x}{3}\right] = 1 \end{array}$$

- si
$$3 \le x < 6$$
 alors $1 \le \frac{\pi}{2} < 2$ donc $\lfloor \frac{\pi}{3} \rfloor =$
- si $x = 6$ alors $\frac{x}{3} = 2$ donc $\lfloor \frac{x}{2} \rfloor = 2$

(f)
$$k$$
 définie sur $[-2; 2]$ par $k(x) = [x^2]$

L'ensemble de définition D_f est centré en 0 et $\forall x \in D_f$ f(-x) = f(x)donc f est paire donc on étudie f sur [0;2] et on complète la courbe en utilisant la symétrie orthogonale d'axe l'axe des ordonnées.

— si
$$0 \le x < 1$$
 alors $0 \le x^2 < 1$ donc $[x^2] = 0$

— si
$$1 \le x < \sqrt{2}$$
 alors $1 \le x^2 < 2$ donc $[x^2] = 1$

— si
$$\sqrt{2} \le x < \sqrt{3}$$
 alors $2 \le x^2 < 3$ donc $[x^2] = 2$

- si
$$\sqrt{2} \le x < \sqrt{3}$$
 alors $2 \le x^2 < 3$ donc $[x^2] = 2$
- si $\sqrt{3} \le x < 2$ alors $3 \le x^2 < 4$ donc $[x^2] = 3$
- si $x = 2$ alors $x^2 = 4$ donc $[x^2] = 4$

— si
$$x = 2$$
 alors $x^2 = 4$ donc $[x^2] = 4$

(g)
$$l$$
 définie sur $[0; 9]$ par $l(x) = [\sqrt{x}]$

— si
$$0 \le x < 1$$
 alors $0 \le \sqrt{x} < 1$ donc $[\sqrt{x}] = 0$

- si
$$1 \le x < 4$$
 alors $1 \le \sqrt{x} < 2$ donc $\left[\sqrt{x}\right] = 1$

— si
$$4 \le x < 9$$
 alors $2 \le \sqrt{x} < 3$ donc $\left[\sqrt{x}\right] = 2$

— si
$$x = 9$$
 alors $\sqrt{x} = 3$ donc $[\sqrt{x}] = 3$

7. On voudrait déterminer puis dessiner avec précision dans un repère orthonormé l'ensemble des points M de coordonnées (x; y) tels que $[x]^2 + [y]^2 =$

On sait que la somme de 2 réels de même signe est nulle si et seulement si chacun de ces réels est nul.

Donc
$$[x]^2+[y]^2=0 \Leftrightarrow [x]^2=[y]^2=0 \Leftrightarrow [x]=0$$
 et $[y]=0 \Leftrightarrow 0 \leq x < 1$ et $0 \leq y < 1$

8. (a) — si
$$x = 0$$
 alors $\frac{1}{x^2 + 1} = 1$ donc $\delta(x) = \left[\frac{1}{x^2 + 1}\right] = 1$
— si $x \neq 0$ alors $x^2 > 0$ donc $x^2 + 1 > 1$ donc $0 < \frac{1}{x^2 + 1} < 1$ donc

$$\delta(x) = \left[\frac{1}{x^2 + 1}\right] = 0$$

(b) — si
$$x = 0$$
 alors $\frac{x}{x^2 + 1} = 0$ donc $\omega(x) = \left[\frac{x}{x^2 + 1}\right] = 0$

(b) — si
$$x = 0$$
 alors $\frac{x}{x^2 + 1} = 0$ donc $\omega(x) = \left[\frac{x}{x^2 + 1}\right] = 0$
— si $x > 0$ alors $x^2 - x + 1 > 0$ car $\Delta = -3 < 0$ donc $x^2 + 1 > x$ donc $0 < \frac{x}{x^2 + 1} < 1$ donc $\omega(x) = \left[\frac{x}{x^2 + 1}\right] = 0$

$$-\sin x < 0 \text{ alors } x^2 + x + 1 > 0 \text{ car } \Delta = -3 < 0 \text{ donc } x^2 + 1 > -x \text{ donc}$$

$$0 < \frac{-x}{x^2 + 1} < 1 \text{ donc } 0 > \frac{x}{x^2 + 1} > -1 \text{ donc } \omega(x) = \left[\frac{x}{x^2 + 1}\right] = -1$$

(c) — si
$$x = 0$$
 alors $s(x) = \omega(0) - \omega(0) = 0$

 $\begin{array}{l} -- \text{ si } x > 0 \text{ alors } s(x) = \omega(x) - \omega(-x) = 0 - (-1) = 1 \\ -- \text{ si } x < 0 \text{ alors } s(x) = \omega(x) - \omega(-x) = -1 - 0 = -1 \\ \text{donc } \forall x \in \mathbb{R} \text{ on a } xs(x) = |x| \text{ car} \\ -- \text{ si } x = 0 \text{ alors } xs(x) = 0 \\ -- \text{ si } x > 0 \text{ alors } xs(x) = 1x = x \\ -- \text{ si } x < 0 \text{ alors } s(x) = -1x = -x \end{array}$