Corrigé Bac Antilles S 2017

Christian CYRILLE

Professeur Agrégé Chaire Supérieure CPGE Lycée Bellevue (1997-2015) Lycée Schoelcher (1973-2001)

4 juillet 2017

1 Exercice 1 - 3 points

On munit le plan complexe d'un repère orthonormé direct. On considère l'équation

$$(E): z^4 + 2z^3 - z - 2 = 0$$

ayant pour inconnue le nombre complexe z.

- 1. Donner une solution entière de (E).
- 2. Démontrer que pour tout nombre complexe z,

$$z^4 + 2z^3 - z - 2 = (z^2 + z - 2)(z^2 + z + 1)$$

- 3. Résoudre l'équation (E) dans l'ensemble des nombres complexes.
- 4. Les solutions de l'équation (E) sont les affixes de quatre points A, B, C, D du plan complexe telque ABCD est un quadrilatère non croisé.

Le quadrilatère ABCD est-il un losange? Justifier.

1.1 Corrigé

Culture générale:

L'équation (E): $z^4 + 2z^3 - z - 2 = 0$ est une équation de degré 4 d'inconnue complexe donc d'après le Théorème de D'Alembert-Gauus cette équation admettra 4 racines complexes distinctes ou confondues.

- 1. Une solution entière évidente de (E) est z=1 car $1^4+2(1^3)-1-2=1+2-3=0$.
- 2. Pour tout nombre complexe z,

$$(z^2 + z - 2)(z^2 + z + 1) = z^4 + z^3 + z^2 + z^3 + z^2 + z - 2z^2 - 2z - 2 = z^4 + 2z^3 - z - 2z^3 - z^2 - 2z^2 - 2z^3 - z^2 - 2z^3 - z^2 - 2z^3 - z^2 - 2z^3 - z^2 - 2z^3 - z^3 - z^3 - z^2 - 2z^3 - z^3 - z^$$

- 3. $\forall z \in C$ $z^4 + 2z^3 z 2 = 0 \iff (z^2 + z 2)(z^2 + z + 1) = 0 \iff z^2 + z 2 = 0 \text{ ou } z^2 + z + 1 = 0$. Résolvons d'abord $z^2 + z - 2 = 0$
 - Méthode $1: z^2 + z 2 = 0$ a une solution évidente z' = 1.

Or le produit des solutions x' et x" d'une équation du second degré $ax^2 + bx + c = 0$ lorsqu'elles existent est x'x" = $\frac{c}{a}$

Donc l'autre solution z" de $z^2+z-2=0$ est telle que z'z" = $\frac{-2}{1}$ donc 1z" = -2 donc z" = -2 — Méthode 2 : Pour résoudre on calcule son discriminant $\Delta=(1)^2-4(1)(-2)=1+8=9>0$ donc

 $z^{2} + z - 2 = 0$ a deux solutions $z' = \frac{-1 + \sqrt{9}}{2} = \frac{-1 + 3}{2} = \frac{2}{2} = 1$

et
$$z'=\frac{-1-\sqrt{9}}{2}=\frac{-1-3}{2}=\frac{-4}{2}=-2$$
Résolvons ensuite $z^2+z+1=0$

$$\Delta = (1)^2 - 4(1)(1) = 1 - 4 = -3 < 0 \text{ donc } z^2 + z + 1 = 0 \text{ a deux solutions } z' = \frac{-1 + i\sqrt{3}}{2} \text{ et } z' = \frac{-1 - i\sqrt{3}}{2}$$

1

Culture générale :

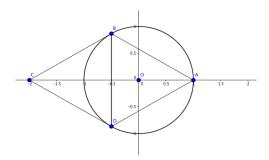
$$\frac{-1+i\sqrt{3}}{2} = \frac{-1}{2} + i\frac{\sqrt{3}}{2} = 1(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})) = e^{i\frac{2\pi}{3}} \text{ se note } j$$

$$z' = \frac{-1-i\sqrt{3}}{2} = \frac{-1}{2} - i\frac{\sqrt{3}}{2} = 1(\cos(\frac{4\pi}{3}) + i\sin(\frac{4\pi}{3}))e^{i\frac{2\pi}{3}} = j^2 = \bar{j}$$
Par conséquent,

$$z^4 + 2z^3 - z - 2 = 0 \iff z = 1 \text{ ou } z = -2 \text{ ou } z = \frac{-1 + i\sqrt{3}}{2} = j \text{ ou } z = \frac{-1 + i\sqrt{3}}{2} = j^2 = \bar{j}$$

4. Représentons ces 4 solutions par des points A, B, C, D.

$$A\begin{pmatrix}1\\0\end{pmatrix}$$
 et $B\begin{pmatrix}-\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{pmatrix}$ donc $\overrightarrow{AB}\begin{pmatrix}-\frac{3}{2}\\\frac{\sqrt{3}}{2}\end{pmatrix}$



$$D\begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} \text{ et } C\begin{pmatrix} -2 \\ 0 \end{pmatrix} \text{ donc } \overrightarrow{DC}\begin{pmatrix} -\frac{3}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$

Comme $\overrightarrow{AB} = \overrightarrow{DC}$ alors le quadrilatère ABCD est un parallèlogramme .

La diagonale (AC) est l'axe des abscisses et l'autre diagonale est la droite d'équation $x = -\frac{1}{2}$ qui est parallèle à l'axe des ordonnées.

ABCD est un parallèlogramme avec ses deux diagonales perpendiculaires donc c'est un losange.

2 Exercice 2 - 4 points

2.1 Corrigé

1. (a) Notons F la fonction de répartition de la loi $\mathcal{N}(25; \sigma_1)$.

Une pièce est conforme lorsque 22,8 < X < 27,2 . 27,2 et 22,8 sont à la même distance 2,2 de la moyenne $\mu = 25$.

Par conséquent
$$F(22,8) = Pr([X < 22,8] = Pr([X > 27,2] \approx 0,023$$

D'où $Pr([22,8 < X < 27,2] = 1 - 2F(22,8) \approx 1 - 2(0,023) = 0,954$

- (b) Comme l'on sait que pour la loi normale $\mathcal{N}(\mu, \sigma)$ on a $Pr([\mu 2\sigma < X < \mu + 2\sigma] \approx 0,954$ alors $2\sigma_1 = 27, 2 25$ donc $\sigma_1 = \frac{2,2}{2} = 1,1$
- $\begin{array}{l} \text{(c)} \ \ Pr_{[22,8 < X < 27,2]}([X < 24]) = \frac{Pr([22,8 < X < 27,2] \cap [X < 24])}{Pr([22,8 < X < 27,2])} = \frac{Pr([22,8 < X < 24] \cap [X < 24])}{0.954} \\ = \frac{0.1589}{0.954} = 0.167 \end{array}$
- 2. (a) En admettant que $Pr[22, 8 < Y < 27, 2] \approx 0,98$ et comme 0,98 > 0,945 alors forcément $\sigma_2 < \sigma_1$
 - (b) Pour la population de pièces, la probabilité théorique est p=0,98. Soit l'échantillon de n=500 pièces. Les 3 conditions $n\geq 30, np=500\times 0, 98=490\geq 5; n(1-p)=50\times 0, 02=10\geq 5$ sont réunies donc on peut détermine l'intervalle de fluctuation asymptotique de la fréquence f.

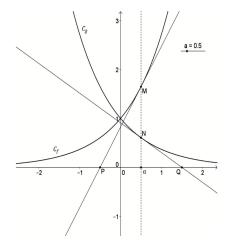
Au seuil
$$\alpha = 0.95$$
 alors $t_{\alpha} = 1,96$ et cet intervalle est $I = [p - t_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + t_{\alpha} \frac{\sqrt{p(1-p)}}{\sqrt{n}}]$ $I = [0,98-1,96 \frac{\sqrt{0,98(0,02)}}{\sqrt{500}}; 0,98+1,96 \frac{\sqrt{0,98(0,02)}}{\sqrt{500}}] = [0,967;0,992]$

Le nombre de pièces conformes dans l'échantillon est 500-15=485 donc la fréquence est $f=\frac{485}{500}\approx 0.97$

 $f \in I$ donc on peut accepter l'affirmation de l'équipe d'ingénieurs.

3 Exercice 3 - 3 points

3.1 Corrigé



	Α	В
1	Abscisse a	Longueur PQ
2	-3	2
3	-2.5	2
4	-2	2
5	-1.5	2
6	-1	2
7	-0.5	2
8	0	2
9	0.5	2
10	1	2
11	1.5	2
12	2	2
13	2.5	2
14		

- 1. f est dérivable sur \mathbb{R} et $\forall x \in R$ $f'(x) = e^x$
 - g est dérivable sur \mathbb{R} et $\forall x \in R$ $g'(x) = -e^{-x}$
 - La tangente à C_f en M d'abscisse a a pour pente ou coefficient directeur $m = f'(a) = exp(a) = e^a$
 - La tangente à C_g en N d'abscisse a a pour pente ou coefficient directeur $n=g'(a)=-exp(-a)=-e^{-a}$
 - Le produit des deux coefficients directeurs est $mn = e^a(-e^{-a}) = -e^ae^{-a} = -e^{a-a} = -e^0 = -1$
 - Par conséquent, ces deux tangentes sont perpendiculaires.
- 2. (a) D'après le tableur lié au logiciel on peut conjecturer que PQ=2.
 - (b) La tangente à C_f en M d'abscisse a a pour équation $y = e^a(x-a) + e^a$ donc coupe l'axe des abscisses en $P(x_P,0)$ tel que $0 = e^a(x_P-a) + e^a$ donc $e^a(x_P-a) = -e^a$ donc en divisant les deux membres par $e^a \neq 0$ car une exponentielle est toujours strictement positive on obtient $x_P a = -1$ d'où $x_P = a 1$ donc P(a 1,0)
 - La tangente à C_g en N d'abscisse a a pour équation $y = -e^{-a}(x-a) + e^{-a}$ donc coupe l'axe des abscisses en $Q(x_Q, 0)$ tel que $0 = -e^{-a}(x_Q a) + e^{-a}$ donc $e^{-a}(x_Q a) = e^{-a}$ donc en divisant les deux membres par $e^{-a} \neq 0$ car une exponentielle est toujours strictement positive On obtient $x_Q a = 1$ d'où $x_Q = a + 1$ donc Q(a + 1, 0)
 - On obtient $x_Q a = 1$ d'où $x_Q = a + 1$ donc Q(a + 1, 0)— Alors $PQ = \sqrt{(x_Q - x_P)^2 + (y_Q - y_P)^2} = \sqrt{(a + 1 - a + 1)^2 + (0 - 0)^2} = \sqrt{4} = 2$ CQFD.

Exercice 4 - 5 points 4

4.1 Corrigé

4.1.1 Partie A

1. — La fonction ln est dérivable sur $]0; +\infty[$

— La fonction $Id: x \mapsto x$ est dérivable sur \mathbb{R} donc sur $]0; +\infty[$

— La fonction $Id: x \mapsto x$ ne s'annule jamais sur $]0; +\infty[$

— Par conséquent, la fonction f qui est le quotient des fonctions ln et Id est dérivable sur $]0; +\infty[$

$$- \forall x > 0 \quad f'(x) = \frac{\frac{1}{x}x - 1(\ln(x))}{x^2} = \frac{1 - \ln(x)}{x^2} \text{ de signe celui de } 1 - \ln(x) \text{ car } x^2 > 0$$

$$- 1 - \ln(x) = 0 \iff 1 = \ln(x) \iff x = e$$

 $-1 - ln(x) > 0 \iff 1 > ln(x) \iff x < e$

d'où le tableau de variations suivant

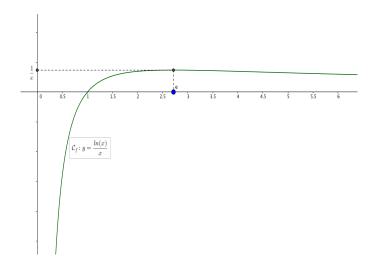
x	0		e		$+\infty$
f'(x)		+	0	_	
f(x)	$-\infty$	7	$\frac{1}{e}$	×	0

$$-\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$-\lim_{x\to 0^+} f(x) = -\infty \text{ car } \lim_{x\to 0^+} ln(x) = -\infty \text{ et } \lim_{x\to 0^+} \frac{1}{x} = +\infty$$

2.
$$f$$
 admet un maximum $f(e) = \frac{ln(e)}{e} = \frac{1}{e}$ en $x = e$

4.1.2 Partie B



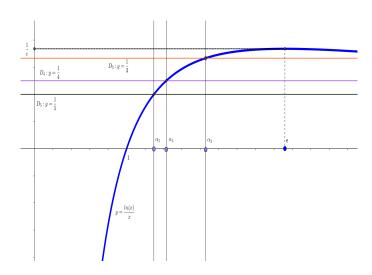
1. — f est continue sur]0;e[(car elle y est dérivable) et f est strictement croissante sur]0;e[

— l'intervalle image de]0; e[est $]-\infty; \frac{1}{e}[$

— donc tout y de l'intervalle] — ∞ ; $\frac{1}{e}$ [admet un unique antécédent x dans]0; e[pour f. c'est-à-dire que $\forall y \in]-\infty; \frac{1}{e}[$ l'équation y = f(x) admet une solution unique $x \in]0; e[$

— Or $e \approx 2,718$ et $n \geq 3$ donc $n \geq e$ d'où $\frac{1}{n} \leq \frac{1}{e}$ donc $\frac{1}{n} \in]-\infty; \frac{1}{e}[$

— Par conséquent, l'équation (E_n) : $\frac{\ln(x)}{x} = \frac{1}{n}$ admet une solution unique α_n dans]0; e[



- 2. (a) D'après le graphique, on remarque que $\alpha_5 < \alpha_4 < \alpha_3$. Nous allons donc conjecturer que la suite
 - (b) Soit $n \ge 3$ alors comme $\frac{\ln(x)}{x} = \frac{1}{n}$ admet une solution unique α_n dans]0; e[alors $f(\alpha_n) = \frac{\ln(\alpha_n)}{\alpha_n} = \frac{\ln(\alpha_n)}{$

De même,
$$f(\alpha_{n+1}) = \frac{ln(\alpha_{n+1})}{\alpha_{n+1}} = \frac{1}{n+1}$$

De même,
$$f(\alpha_{n+1}) = \frac{ln(\alpha_{n+1})}{\alpha_{n+1}} = \frac{1}{n+1}$$

Or $n < n+1$ donc $\frac{1}{n} > \frac{1}{n+1}$ d'où $f(\alpha_n) > f(\alpha_{n+1})$.

Or $\alpha_n \in]0; e[; \alpha_{n+1} \in]0; e[; f]$ est strictement croissante sur]0; e[et $f(\alpha_n) > f(\alpha_{n+1})$ donc $\alpha_n > \alpha_{n+1}$ La suite $(\alpha_n)_{n\geq 3}$ est donc strictement décroissante.

- (c) $\forall n \geq 3 \quad \alpha_n \in]0; e[$ donc la suite $(\alpha_n)_{n\geq 3}$ est minorée par 0. Comme de plus, elle est décroissante alors elle converge vers un nombre $L \geq 0$
- 3. f est continue sur $[e; +\infty[$ car elle y est dérivable.
 - f est strictement décroissante sur $]e; +\infty[$
 - l'intervalle image de $]e; +\infty[$ est $]0; \frac{1}{a}[$
 - donc tout y de l'intervalle $]0; \frac{1}{e}[$ admet un unique antécédent x dans $]e; +\infty[$ pour f.

c'est-à-dire que $\forall y \in]0; \frac{1}{e}[$ l'équation y = f(x) admet une solution unique $x \in]e; +\infty[$

- Or $e\approx 2,718$ et $n\geq 3$ donc $n\geq e$ d'où $\frac{1}{n}\leq \frac{1}{e}$ donc $\frac{1}{n}\in]0;\frac{1}{e}[$
- Par conséquent, l'équation (E_n) : $\frac{\ln(x)}{x} = \frac{1}{n}$ admet une solution unique β_n dans e; $+\infty$

(a) Soit
$$n \ge 3$$
 alors comme $\frac{ln(x)}{x} = \frac{1}{n}$ admet une solution unique β_n dans $]e; +\infty[$ alors $f(\beta_n) = \frac{ln(\beta_n)}{\beta_n} = \frac{1}{n}$. De même, $f(\beta_{n+1}) = \frac{ln(\beta_{n+1})}{\beta_{n+1}} = \frac{1}{n+1}$

Or n < n+1 donc $\frac{1}{n} > \frac{1}{n+1}$ d'où $f(\beta_n) > f(\beta_{n+1})$. Or $\beta_n \in]e; +\infty[; \beta_{n+1} \in]e; +\infty[;$

f est strictement décroissante sur $]e; +\infty[$ et $f(\beta_n) > f(\beta_{n+1})$ donc $\beta_n < \beta_{n+1}$ La suite $(\beta_n)_{n\geq 3}$ est donc strictement croissante.

- (b) Démontrons que $\forall n \geq 3$ $\beta_n \geq n \frac{\beta_3}{3}$.

 Comme la suite $(\beta_n)_{n \geq 3}$ est croissante alors $\beta_n \geq \beta_3$ donc $\ln(\beta_n) \geq \ln(\beta_3)$ car \ln est croissante.

 Or $\frac{\ln(\beta_n)}{\beta_n} = \frac{1}{n}$ et $\frac{\ln(\beta_3)}{\beta_3} = \frac{1}{3}$ donc $\frac{\beta_n}{n} = \ln(\beta_n)$ et $\frac{\beta_3}{3} = \ln(\beta_3)$ d'où $\frac{\beta_n}{n} \geq \frac{\beta_3}{3}$ donc $\beta_n \geq n \frac{\beta_3}{3}$. CQFD
- (c) Comme $\beta_n \ge n \frac{\beta_3}{3}$ et que $\lim_{n \to +\infty} n = +\infty$ alors par comparaison $\lim_{n \to +\infty} \beta_n = +\infty$

5 Exercice 5 - 5 points - enseignement obligatoire

On note $\mathbb R$ l'ensemble des nombres réels.

L'espace est muni d'un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$

On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1)

- 1. (a) Démontrer que les points A, B, C ne sont pas alignés.
 - (b) Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$
 - (c) En déduire la mesure de l'angle \widehat{BAC} arrondie au degré.
- 2. Soit \vec{n} le vecteur de coordonnées $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$
 - (a) Démontrer que \vec{n} est un vecteur normal au plan (ABC).
 - (b) Déterminer une équation cartésienne du plan (ABC).
- 3. Soit \mathcal{P}_1 le plan d'équation 3x+y-2z+3=0 et soit \mathcal{P}_2 le plan passant par O et paralllèle au plan d'équation x-2z+6=0
 - (a) Démontrer que le plan \mathcal{P}_2 a pour équation x = 2z.
 - (b) Démontrer que les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants.
 - (c) Soit la droite \mathcal{D} dont un système d'équations paramétriques est $\exists t \in \mathbb{R} \left\{ \begin{array}{l} x = 2t \\ y = -4t 3 \\ z = t \end{array} \right.$

Démontrer que $\mathcal D$ est l'intersection des plans $\mathcal P_1$ et $\mathcal P_2$

4. Démontrer que la droite \mathcal{D} coupe le plan (ABC) en un point I dont on déterminera les coordonnées.

5.1 Corrigé

1. (a)
$$A \begin{pmatrix} -1\\2\\0 \end{pmatrix}$$
 et $B \begin{pmatrix} 1\\2\\4 \end{pmatrix}$ donc $\overrightarrow{AB} \begin{pmatrix} 2\\0\\4 \end{pmatrix}$
 $B \begin{pmatrix} 1\\2\\4 \end{pmatrix}$ et $C \begin{pmatrix} -1\\1\\1 \end{pmatrix}$ et donc $\overrightarrow{BC} \begin{pmatrix} -2\\-1\\-3 \end{pmatrix}$

Les vecteurs \overrightarrow{AB} et \overrightarrow{BC} ne sont pas colinéaires car s'ils l'étaient on aurait $\overrightarrow{AB} = k\overrightarrow{BC}$ d'où $\begin{cases} 2 = -2k \\ 0 = -1k \\ 4 = -3k \end{cases}$

d'où $\left\{ \begin{array}{ll} k=-1\\ k=0\\ k=\frac{-4}{3} \end{array} \right.$ Impossible donc les points A,B,C ne sont pas alignés.

(b)
$$A \begin{pmatrix} -1\\2\\0 \end{pmatrix}$$
 et $B \begin{pmatrix} 1\\2\\4 \end{pmatrix}$ donc $\overrightarrow{AB} \begin{pmatrix} 2\\0\\4 \end{pmatrix}$
$$A \begin{pmatrix} -1\\2\\0 \end{pmatrix}$$
 et $C \begin{pmatrix} -1\\1\\1 \end{pmatrix}$ et donc $\overrightarrow{AC} \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$

Par conséquent, le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC} = 2 \times 0 + 0 \times -1 + 4 \times 1 = 4$

(c) Comme
$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$$

 $AB = \sqrt{2^2 + 0^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$
 $AC = \sqrt{0^2 + (-1)^2 + 1^2} = \sqrt{2}$

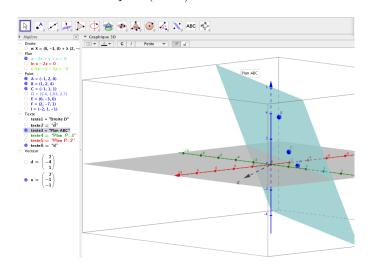
Par conséquent
$$cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC} = \frac{4}{2\sqrt{5}\sqrt{2}} = \frac{4}{2\sqrt{10}} cos(\widehat{BAC}) = \frac{2}{\sqrt{10}} = \frac{2\sqrt{10}}{10} = \frac{\sqrt{10}}{5}$$

Donc une mesure de l'angle \widehat{BAC} est $\arccos(\frac{\sqrt{10}}{5}) \approx 51^{\circ}$.

2. Soit \vec{n} le vecteur de coordonnées $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$

(a)
$$-\vec{n}.\overrightarrow{AB} = 2 \times 2 + (-1) \times 0 + (-1) \times 4 = 0$$

 $-\vec{n}.\overrightarrow{AC} = 2 \times 0 + (-1) \times (-1) + (-1) \times 1 = 0$
 $-\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan ABC donc \vec{n} est un vecteur normal au plan (ABC) .



- (b) Comme \vec{n} $\left(-1\right)$ donc une équation cartésienne du plan (ABC) est 2x-y-z+d=0Il reste à déterminer la valeur de d. appartient au plan ABC alors 2(-1) - 2 + 0 + d = 0 donc d = 4. (ABC) a pour équation cartésienne 2x - y - z + 4 = 0
- 3. Soit \mathcal{P}_1 le plan d'équation 3x + y 2z + 3 = 0 et soit \mathcal{P}_2 le plan passant par O et paralllèle au plan d'équation x - 2z + 6 = 0
 - (a) Le plan \mathcal{P}_2 est parallèle au au plan d'équation x-2z+6=0 donc il a même vecteur normal que ce plan, donc son vecteur normal a pour coordonnées $\vec{m} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$. Par conséquent, \mathcal{P}_2 a une équation cartésienne de la forme x - 2z + d = 0 mais comme \mathcal{P}_2 contient

 $O\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ alors 0-2(0)+d=0 donc d=0 Le plan \mathcal{P}_2 a donc pour équation x=2z.

- (b) Le plan \mathcal{P}_1 a pour vecteur normal $\vec{n} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ Le plan \mathcal{P}_2 a pour vecteur normal $\vec{m} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$

 - Ces deux vecteurs normaux ne sont pas colinéaires . en effet s'ils l'étaient on aurait $\begin{cases} 2=1k \\ -1=0k \\ -1=-2k \end{cases}$ ce qui est impossible.

Par conséquent, les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants selon une droite forcément.

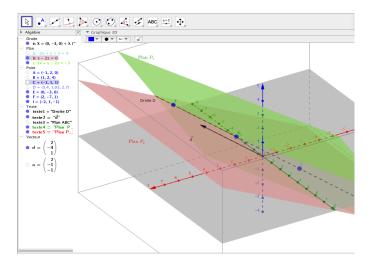
(c) Soit la droite \mathcal{D} dont un système d'équations paramétriques est $\exists t \in \mathbb{R} \left\{ \begin{array}{l} x=2t \\ y=-4t-3 \\ z=t \end{array} \right.$

$$\operatorname{Si} M \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{P}_1 \cap \mathcal{P}_2 \operatorname{alors} \left\{ \begin{array}{l} 3x + y - 2z + 3 = 0 \\ x = 2z \end{array} \right. \operatorname{donc} \left\{ \begin{array}{l} x = 2z \\ 3x + y - x + 3 = 0 \end{array} \right. \operatorname{d'où} \left\{ \begin{array}{l} x = 2z \\ y = -2x - 3 \end{array} \right.$$

donc
$$\exists t \in \mathbb{R} \left\{ \begin{array}{l} x = 2t \\ y = -4t - 3 \\ z = t \end{array} \right.$$

donc $M \in \mathcal{D}$ et cette droite $\mathcal{D} = \mathcal{P}_1 \cap \mathcal{P}_2$

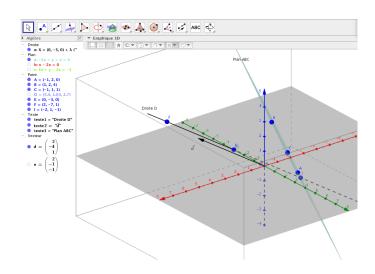
4. — D'après son système d'équations paramétriques, on peut dire qu'un vecteur directeur de \mathcal{D} est $\vec{d}\begin{pmatrix}2\\-4\\1\end{pmatrix}$. Or $\vec{n}.\vec{d}=2(2)+(-1)(-4)+(-1)(1)=7\neq 0$ donc ces deux vecteurs ne sont pas orthogonaux donc \mathcal{D} n'est pas parallèle au plan (ABC) donc va couper ce plan (ABC)en un point I



$$-\operatorname{Si} I \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in ABC \cap \mathcal{D} \text{ alors } \begin{cases} 2x - y - z + 4 = 0 \\ x = 2t \\ y = -4t - 3 \\ z = t \end{cases} \quad \operatorname{donc} 4t - (-4t - 3) - t + 4 = 0 \operatorname{donc} 7t + 7 = 0$$

$$\operatorname{donc} t = -1 \operatorname{donc} I \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$$

— donc la droite \mathcal{D} coupe le plan (ABC) en I.



Exercice 5 - enseignement de spécialité - 5 points 6

6.1Corrigé

- 1. Démontrons par récurrence la propriété suivante : $\forall n \in \mathbb{N} \quad u_n = 9 \times 2^n 6$
 - Initialisation:
 - $u_0 = 3$ et $9 \times 2^0 6 = 9(1) 6 = 9 6 = 3$ donc cette propriété est vraie pour n = 0
 - Hérédité:

Supposons que pour un certain entier naturel n l'on ait $u_n = 9 \times 2^n - 6$.

Comme $u_{n+1} = 2u_n + 6 = 2(9 \times 2^n - 6) + 6 = 9 \times 2^{n+1} - 12 + 6 = 9 \times 2^{n+1} - 6$

Conclusion:

La propriété est initialisée en n=0 et étant héréditaire est donc vraie pour tout $n \in \mathbb{N}$.

2. Soit $n \in \mathbb{N}^*$ alors

 $u_n = 9 \times 2^n - 6 = (6+3) \times 2^n - 6 = 6 \times 2^n + 3 \times 2^n - 6 = 6 \times 2^n + 3 \times 2 \times 2^{n-1} - 6 = 6(2^n + 2^{n-1} - 1)$ donc u_n est divisible par 6.

Attention! On est obligé de prendre $n \ge 1$ pour être sûr que 2^n et 2^{n-1} soient des entiers. en effet, si n = 0 alors n - 1 = -1 et $2^{n-1} = 2^{-1} = \frac{1}{2}$ ne serait pas entier.

3. $\forall n \geq 1 \quad v_n = \frac{u_n}{6} \text{ donc}$

-
$$u_0 = 3$$
 alors $u_1 = 2u_0 + 6 = 2(3) + 6 = 12$ donc $v_1 = \frac{12}{6} = 2$ est premier.

$$u_2 = 2u_1 + 6 = 2(12) + 6 = 24 + 6 = 30 \text{ donc } v_2 = \frac{u_2}{6} = \frac{30}{6} = 5 \text{ est premier}$$

-
$$u_3 = 2u_2 + 6 = 2(30) + 6 = 60 + 6 = 66$$
 donc $v_3 = \frac{u_3}{6} = \frac{66}{6} = 11$ est premier

$$-u_4 = 2u_3 + 6 = 2(66) + 6 = 132 + 6 = 138 \text{ donc } v_4 = \frac{u_4}{6} = \frac{138}{6} = 23 \text{ est premier}$$

-
$$u_5 = 2u_4 + 6 = 2(138) + 6 = 276 + 6 = 282$$
 donc $v_5 = \frac{u_5}{6} = \frac{282}{6} = 47$ est premier

$$-u_6=2u_5+6=2(282)+6=564+6=570 \text{ donc } v_6=\frac{u_6}{6}=\frac{570}{6}=95=5\times 19 \text{ n'est pas premier}$$
 Par conséquent, l'affirmation "Pour tout entier naturel non nul, v_n est un nombre premier " est fausse.

4. (a)
$$\forall n \ge 1$$
 $v_{n+1} - 2v_n = \frac{u_{n+1}}{6} - 2\frac{u_n}{6} = \frac{u_{n+1} - 2u_n}{6} = \frac{6}{6} = 1 \text{ car } u_{n+1} = 2u_n + 6u_n = 0$

- (b) Le Théorème de Bachet de Méziriac et d'Etienne Bezout énonce que si il existe des entiers u et v tels que au + bv = 1 alors les entiers a et b sont premiers entre eux. Ici on peut donc dire que v_{n+1} et v_n sont premiers entre eux car u=1 et v=-2
- (c) Si d divise u_n et u_{n+1} alors comme u_n est divisible par 6 alors $\frac{d}{6}$ divise $\frac{u_n}{6}$ et $\frac{u_{n+1}}{6}$ donc $\frac{d}{6}$ divise v_n et v_{n+1} . Mais v_{n+1} et v_n sont premiers entre eux donc $\frac{d}{6} = 1$ donc d = 6Par conséquent, le pgcd de u_n et u_{n+1} est 6
- 5. (a) $2^4 = 16 = 3 \times 5 + 1 \equiv 1 \pmod{5}$
 - (b) Supposons que n = 4k + 2 donc $u_n = 9 \times 2^n 6 = 9 \times 2^{4k+2} 6 = 9 \times (2^4)^k \times 2^2 6 = 36 \times (2^4)^k 6 = 9 \times (2^4)^k \times 2^2 6 = 36 \times (2^4)^k 6 = 9 \times (2^4)^k \times 2^2 6 = 36 \times (2^4)^k 6 = 9 \times (2^4)^k \times 2^2 6 = 36 \times (2^4)^k \times 2$ Or $2^4 \equiv 1 \pmod{5}$ donc $(2^4)^k \equiv 1^k \equiv 1 \pmod{5}$ donc $(2^4)^k = 5q + 1$. Par conséquent, $u_n = 36 \times (2^4)^k - 6 = 36(5q+1) - 6 = 36 \times 5q + 30 = 5(36q+6)$. u_n est donc divisible par 5.
 - (c) Certains u_n ne sont pas divisibles par 5 par exemple $u_1 = 12$ ou encore $u_3 = 66$.