Plan d'étude d'une fonction numérique d'une variable réelle

Christian CYRILLE

15 octobre 2019

"En mathématiques, nous sommes d'avantage des serviteurs que des maîtres." Hermite

Une fonction numérique peut s'étudier en 10 points sauf dans les cas suivants où l'on peut dessiner sans étude la courbe C_f dans un repère $\mathcal{R} = (O; \overrightarrow{i}, \overrightarrow{j})$:

- **1** La fonction affine $x \to ax + b$ où $a \in \mathbb{R}$ et $b \in \mathbb{R}$: la courbe représentative est une droite d'équation y = ax + b
- **2** La fonction partie entière $x \to [x] = \text{le plus grand entier relatif précédant } x$ qui est une fonction en escalier définie sur \mathbb{R} , continue sur chaque segment ouvert]n; n+1[où $n \in \mathbb{Z}$ et continue à droite en tout $n \in \mathbb{Z}$
- **13 La fonction homographique** $x \to \frac{ax+b}{cx+d}$ où $c \neq 0$ et $ad-bc \neq 0$: la courbe représentative est une hyperbole d'équation $y = \frac{ax+b}{cx+d}$ ayant pour asymptotes les droites d'équation $x = -\frac{d}{c}$ et $y = \frac{a}{c}$ et pour centre de symétrie le point d'intersection de ces 2 asymptotes : $\Omega(-\frac{d}{c}; \frac{a}{c})$
- 4 La fonction trinôme $x \to ax^2 + bx + c$ où $a \neq 0$: sa courbe représentative est une parabole de sommet $\Omega(-\frac{b}{2a}; -\frac{\Delta}{4a})$ où $\Delta = b^2 - 4ac$ et d'axe de symétrie la droite $D: x = -\frac{b}{2a}$
- **5** les **4 fonctions circulaires** $x \to \sin(x), x \to \cos(x), x \to tan(x)$ et $x \to cotan(x)$
- 6 la fonction f = -g: si l'on connaît C_q alors C_f est l'image de C_q par la symétrie d'axe l'axe des abscisses.
- 7 la fonction f = |g|: si l'on connaît C_g alors C_f coïncide avec C_g pour tout x tel que $g(x) \ge 0$ et C_f coïncide avec C_{-g} pour tout x tel que $g(x) \le 0$.

1 Ensemble de définition

Déterminer l'ensemble de définition de f s'il n'est pas donné directement par l'énoncé.

2 Simplification éventuelle de f(x)

Simplifier si cela est possible f(x).

Attention, il ne faut jamais simplifier avant d'avoir cherché l'ensemble de définition.

Exemple, pour
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 on a $\mathcal{D}_f = \mathbb{R} - \{1\}$ et $\forall x \in \mathcal{D}_f$ $f(x) = x + 1$

3 Parité, imparité, périodicité

Une fonction f est **paire** dans un repère $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ lorsque les 2 conditions suivantes sont réalisées :

- **1** D_f est centré en 0 c'est-à-dire D_f admet O comme centre de symétrie c'est-à-dire $\forall x \in D_f$, on a $-x \in D_f$
- $\mathbf{2} \quad \forall x \in D_f, \text{ on a } f(-x) = f(x)$

Lorsque f est **paire dans un repère** $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ alors \mathcal{C}_f admet l'axe des ordonnées, la droite d'équation y = 0 comme axe de symétrie.

Une fonction f est **impaire dans un repère** $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ lorsque les 2 conditions suivantes sont réalisées :

- **1** D_f est centré en 0 c'est-à-dire D_f admet O comme centre de symétrie c'est-à-dire $\forall x \in D_f$, on a $-x \in D_f$
- 2 $\forall x \in D_f$, on a f(-x) = -f(x)

Lorsque f est **impaire** dans un repère $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ alors \mathcal{C}_f admet le point O comme centre de symétrie. Une fonction f est **périodique de période** $\mathbf{T} > \mathbf{0}$ dans un repère $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ lorsque les 2 conditions suivantes sont réalisées :

- 1 $\forall x \in D_f$, on a $x + T \in D_f$
- 2 $\forall x \in D_f$, on a f(x+T) = f(x)

Lorsque f est **périodique de période** T dans un repère $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ alors \mathcal{C}_f est globalement invariante par la translation horizontale de vecteur $t\overrightarrow{i}$.

3.1 Axe de symétrie

La droite D: x = a dans le repère \mathcal{R} est un axe de symétrie de \mathcal{C}_f

1

Dans le repère $\mathcal{R}' = (\Omega(a,0)_{\mathcal{R}}; \overrightarrow{i}, \overrightarrow{j})$ la courbe a pour équation Y = g(X) où g est paire dans \mathcal{R}' .

On utilise pour cela les formules de changement de coordonnées : M(x,y) dans $\mathcal{R}=(O;\overrightarrow{i},\overrightarrow{j})$ a pour coordonnées ((X,Y) dans $\mathcal{R}'=(\Omega;\overrightarrow{i},\overrightarrow{j})$ avec X=x-a et Y=y

1

Pour tout h tel que $a + h \in D_f$ on a $a - h \in D_f$ et f(a + h) = f(a - h)

1

Pour tout x tel que $x \in D_f$ on a $2a - x \in D_f$ et f(2a - x) = f(x)

3.2 Centre de symétrie

Le point $\Omega(a;b)_{\mathcal{R}}$ est un centre de symétrie de \mathcal{C}_f

\$

Dans le repère $\mathcal{R}' = (\Omega; \overrightarrow{i}, \overrightarrow{j})$ la courbe a pour équation Y = g(X) où g est impaire dans \mathcal{R}' .

On utilise pour cela les formules de changement de coordonnées :

$$M(x,y)$$
 dans $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$ a pour coordonnées $((X,Y)$ dans $\mathcal{R}' = (\Omega; \overrightarrow{i}, \overrightarrow{j})$ avec $X = x - a$ et $Y = y - b$

1

Pour tout h tel que $a + h \in D_f$ on a $a - h \in D_f$ et f(a + h) + f(a - h) = 2b

1

Pour tout x tel que $x \in D_f$ on a $2a - x \in D_f$ et f(2a - x) = 2b - f(x)

4 Dérivabilité; continuité

- 1 On étudie d'abord la dérivabilité puis la continuité de f sur les intervalles formant l'ensemble d'étude.
- $\mathbf{2}$ On fera une étude spécifique aux points charnières lors que f est une fonction définie par morceaux.
- 3 On pourra utiliser le résultat suivant : si une fonction f est dérivable en x_0 alors elle est continue en x_0

5 Etude des variations

5.1 Méthode 1

On étudie le signe du nombre dérivé f'(x) (lorsqu'il n'est pas évident) en résolvant séparément par équivalence logique :

- 1 l'équation f'(x) = 0
- 2 l'inéquation f'(x) > 0

Sur tout intervalle I où f'(x) > 0, f est strictement croissante.

Sur tout intervalle I où f'(x) < 0, f est strictement décroissante.

5.2 Méthode 2

Pour déterminer les variations de f, au lieu de déterminer le signe du nombre dérivé, on peut aussi utiliser les théorèmes suivants :

- **1** La somme q + h de 2 fonctions q et h croissantes sur un intervalle I est croissante sur I
- **2** La somme g + h de 2 fonctions g et h décroissantes sur un intervalle I est décroissante sur I
- 3 La composée $h \circ g$ d'une fonction croissante g sur I et d'une fonction croissante h sur J avec $J \subset f < I >$ est croissante sur I
- La composée $h \circ g$ d'une fonction décroissante g sur I et d'une fonction décroissante h sur J avec $J \subset f < I >$ est croissante sur I
- La composée $h \circ g$ d'une fonction croissante g sur I et d'une fonction décroissante h sur J avec $J \subset f < I >$ est décroissante sur I
- **6** La composée $h \circ g$ d'une fonction décroissante g sur I et d'une fonction croissante h sur J avec $J \subset f < I >$ est décroissante sur I

6 Etude des limites

On étudie les limites de f aux bornes de l'ensemble d'étude.

7 Tableau de variations

On dresse alors le tableau des variations de f. Il ne doit pas y avoir de contradiction entre les limites et les variations de f.

8 Tableau des valeurs et points remarquables

On dresse un tableau de valeurs de f(x) en précisant :

- le point d'intersection M(0,f(0)) de C_f et de l'axe des ordonnées lorsque $0 \in D_f$
- les points éventuels d'intersection de la courbe C_f et de l'axe des abscisses. Ces points ont pour abscisses les solutions éventuelles de l'équation f(x) = 0

9 Etude des branches infinies

A l'aide des limites , on étudie les branches infinies de C_f (asymptotes, branches paraboliques, directions asymptotiques, ...)

Il faut en particulier préciser :

- les points éventuels d'intersection de la courbe et de ses asymptotes
- la position relative de la courbe et des asymptotes.

10 Représentation graphique

- On dessine alors \mathcal{C}_f en respectant le type de repère et les unités de longueur imposés par l'énoncé.
- Les pentes des tangentes aux points remarquables doivent être dessinées.
- La courbe doit être légendée.
- Il ne faut pas oublier les symétries et périodicités éventuelles.

11 Retour sur les branches infinies

11.1 Définition

On dit que la courbe représentative C_f de la fonction numérique d'une variable réelle f présente une branche infinie lorsque l'on est dans l'un des 4 cas suivants :

- 1 $x \text{ tend vers } +\infty$
- 2 $x \text{ tend vers } -\infty$
- 3 f(x) tend vers $+\infty$
- 4 f(x) tend vers $-\infty$

Attention!!! Deux de ces quatre conditions peuvent apparaître simultanément.

11.2 Droites asymptotes

- 1 parallèles à l'axe des ordonnées Lorsque l'on est en présence d'un des 4 cas suivants :
 - **a.** quand x tend vers x_0^+ on a f(x) qui tend vers $+\infty$
 - **b.** quand x tend vers x_0^+ on a f(x) qui tend vers $-\infty$
 - **c.** quand x tend vers x_0^- on a f(x) qui tend vers $+\infty$
 - **d.** quand x tend vers x_0^- on a f(x) qui tend vers $-\infty$

Alors la droite (D) d'équation $x = x_0$ est une asymptote verticale à C_f au voisinage de x_0^+ dans les deux premiers cas (resp. x_0^- dans les deux derniers cas)

- 2 parallèles à l'axe des abscisses Lorsque l'on est en présence d'un des 4 cas suivants :
 - **a.** quand x tend vers $+\infty$ on a f(x) qui tend vers y_0^+
 - **b.** quand x tend vers $+\infty$ on a f(x) qui tend vers y_0^-
 - **c.** quand x tend vers $-\infty$ on a f(x) qui tend vers y_0^+
 - **d.** quand x tend vers $-\infty$ on a f(x) qui tend vers y_0^-

Alors la droite (D) d'équation $y=y_0$ est une asymptote horizontale à C_f au voisinage de $+\infty$ dans les deux premiers cas (resp. $-\infty$ dans les deux derniers cas)

- 3 obliques Lorsque l'on est en présence d'un des 2 cas suivants :
 - **a.** $f(x) = ax + b + \epsilon(x)$ avec $\lim_{x \to +\infty} \epsilon(x) = 0$
 - **b.** $f(x) = ax + b + \epsilon(x)$ avec $\lim_{x \to -\infty} \epsilon(x) = 0$

Alors la droite (D) d'équation y = ax + b est une asymptote oblique à C_f au voisinage de $+\infty$ dans le premier cas (resp. $-\infty$ dans le deuxième cas)

11.3 Courbes asymptotes et Positions relatives

Lorsque l'on est en présence d'un des 2 cas suivants :

- $f(x) = g(x) + \epsilon(x)$ avec $\lim_{x \to +\infty} \epsilon(x) = 0$
- $f(x) = g(x) + \epsilon(x)$ avec $\lim_{x \to -\infty} \epsilon(x) = 0$

Alors la courbe C_g d'équation y = g(x) est une courbe-asymptote à C_f au voisinage de $+\infty$ dans le premier cas (resp. $-\infty$ dans le deuxième cas)

11.3.1 Positions relatives d'une courbe et de son asymptote

Pour déterminer les positions relatives de la courbe C_f d'équation y = f(x) par rapport à son asymptote C_g d'équation y = g(x), il suffit d'étudier le signe de la différence f(x) - g(x)

- Les x éventuels annulant f(x) g(x) sont les abscisses des points d'intersection des courbes C_f et C_g
- Les x éventuels tels que f(x) g(x) > 0 sont les abscisses des points tels que la courbe C_f est au-dessus de la courbe C_q
- Les x éventuels tels que f(x) g(x) < 0 sont les abscisses des points tels que la courbe C_f est en-dessous de la courbe C_g

11.3.2 Exemple: les fonctions hyperboliques sh et ch

- Soit $sh(x) = \frac{e^x e^{-x}}{2}$; $ch(x) = \frac{e^x + e^{-x}}{2}$; $f(x) = \frac{e^x}{2}$; $g(x) = \frac{e^{-x}}{2}$; $k(x) = -\frac{e^{-x}}{2}$
- **2** $D_{sh} = \mathbb{R} \text{ donc } \forall x \in D_{sh} \text{ on a } -x \in D_{sh}. \text{ Alors } sh(-x) = \frac{e^{-x} e^x}{2} = -sh(x) \text{ donc } sh \text{ est impaire } sh(-x) = \frac{e^{-x} e^x}{2} = -sh(x)$
- Comme la courbe de sh admet O comme centre de symétrie, il suffit d'étudier sh sur \mathbb{R}^+ . sh est la différence de f et de g qui sont toutes deux dérivables sur \mathbb{R} donc sh est dérivable sur \mathbb{R} donc sur \mathbb{R}^+ .

 $\forall x \in \mathbb{R}^+ \ sh'(x) = ch(x) > 0 \ \text{donc } sh \ \text{est strictement croissante sur } \mathbb{R}^+$ on a $\lim_{x \mapsto +\infty} sh(x) = +\infty \ \text{car } \lim_{x \mapsto +\infty} e^x = +\infty \ \text{et } \lim_{x \mapsto +\infty} e^{-x} = 0$

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de sh:

x	$-\infty$		0		$+\infty$
f'(x)		+	1	+	
f(x)	$-\infty$	7	0	7	$+\infty$

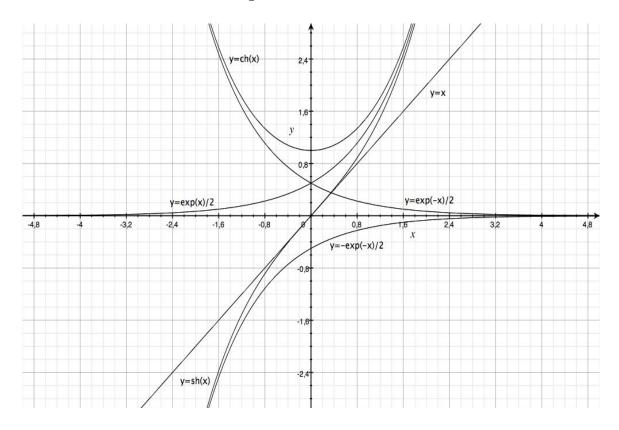
- 4 Comme $\lim_{x \to +\infty} sh(x) f(x) = \lim_{x \to +\infty} -\frac{e^{-x}}{2} = 0$ alors la courbe représentative C_{sh} de sh admet comme asymptote au voisinage de $+\infty$ la courbe C_f
- **5** Comme $\forall x \in \mathbb{R}$ l'on a $sh(x) f(x) = -\frac{e^{-x}}{2} < 0$ alors C_{sh} est en dessous de C_f
- 6 Comme $\lim_{x \to -\infty} sh(x) k(x) = \lim_{x \to -\infty} \frac{e^x}{2} = 0$ alors la courbe représentative C_{sh} de sh admet comme asymptote au voisinage de $-\infty$ la courbe C_k
- 7 $D_{ch} = \mathbb{R} \text{ donc } \forall x \in D_{ch} \text{ on a } -x \in D_{ch}. \text{ Alors } ch(-x) = \frac{e^{-x} + e^x}{2} = ch(x) \text{ donc } ch \text{ est pairs}$
- 8 Comme la courbe de ch admet l'axe des ordonnées comme axe de symétrie, il suffit d'étudier ch sur \mathbb{R}^+ . ch est la somme de f et de g qui sont toutes deux dérivables sur \mathbb{R} donc ch est dérivable sur \mathbb{R} donc sur \mathbb{R}^+ .

 $\forall x \in \mathbb{R}^+ \ ch'(x) = sh(x) \geq 0 \ . \ ch'(x) \ \text{ne s'annule qu'en 0 alors } ch \ \text{est strictement croissante sur } \mathbb{R}^+$ on a $\lim_{x \mapsto +\infty} ch(x) = +\infty \ \text{car } \lim_{x \mapsto +\infty} e^x = +\infty \ \text{et } \lim_{x \mapsto +\infty} e^{-x} = 0$

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de ch:

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f(x)	$+\infty$	7	1	7	$+\infty$

- 9 Comme $\lim_{x \to +\infty} ch(x) f(x) = \lim_{x \to +\infty} \frac{e^{-x}}{2} = 0$ alors la courbe représentative C_{ch} de ch admet comme asymptote au voisinage de $+\infty$ la courbe C_f
- 10 Comme $\forall x \in \mathbb{R}$ l'on a $ch(x) f(x) = \frac{e^{-x}}{2} > 0$ alors C_{ch} est au dessus de C_f
- Comme $\lim_{x \to -\infty} ch(x) g(x) = \lim_{x \to -\infty} \frac{e^x}{2} = 0$ alors la courbe représentative C_{sh} de sh admet comme asymptote au voisinage de $-\infty$ la courbe C_g
- 12 Comme $\forall x \in \mathbb{R}$ l'on a $ch(x) g(x) = \frac{e^x}{2} > 0$ alors C_{ch} est au dessus de C_g



11.4 Branches paraboliques et directions asymptotiques

On calcule $\lim_{x \to +\infty} \frac{f(x)}{x}$	Alors \mathcal{C}_f admet	
ou cette limite vaut 0	une branche parabolique de direction (Ox)	Exemple $f(x) = \sqrt{x}$
ou cette limite vaut ∞	une branche parabolique de direction (Oy)	Exemple $f(x) = x^2$
ou cette limite vaut $a \neq 0$ On calcule $\lim_{x \to +\infty} f(x) - ax$		alors
	ou elle vaut b	D: y = ax + b est une asymptote oblique
	ou elle vaut ∞	D: y = ax est une direction asymptotique

Résolution des équations f(x) = m; f(x) = mx12

Fonction numérique non injective et non surjective 12.1

"Je doute, j'hésite, je me trompe, je médite, je change de direction ... donc j'apprends." Proverbe khirkize -17éme siècle

Préambule :

Soient E et F des ensembles. On dit qu'une relation f de E vers F est une application de E vers F lorsque tout élément de E a une image et une seule par f dans F. On appelle f < E > le sous-ensemble de F, ayant pour éléments les images des éléments de E par f. On dit qu'une application f de E vers F est injective lorsque deux éléments quelconques distincts de E ont deux images distinctes dans F. On dit qu'une application f de E vers F est surjective lorsque tout élément de F a au moins un antécédent par f dans E. On dit qu'une application f de E vers F est bijective lorsque f est injective et surjective.

Soit f la fonction numérique d'une variable réelle définie par :

$$f(x) = \frac{x^2 + x - 1}{x^2 + x + 1}$$

On appellera (C_f) sa courbe représentative dans un repère orthonormé.

- 1 Démontrer que f est bien une application de \mathbb{R} dans \mathbb{R}
- 2 Etudier et représenter graphiquement f dans un repère orthonormé. (unité graphique : 3 cm). Préciser les points d'intersection de (C_f) avec les axes du repère ainsi que son asymptote.
- 3 Démontrer que (C_f) a un axe de symétrie que l'on précisera.
- 4 a. Résoudre graphiquement, en discutant selon m, l'équation suivante (E): f(x) = m d'inconnue réelle x et où m est un paramètre réel
 - **b.** Retrouver les mêmes résultats par une méthode algébrique.
- 5 **a.** L'application f est-elle injective?
 - **b.** Déterminer l'ensemble-image de \mathbb{R} par f noté $f < \mathbb{R} > .$
 - **c.** L'application f est-elle surjective? Justifier .
 - **d.** L'application f est-elle bijective? Justifier.

12.2 Corrigé

Soit f la fonction numérique d'une variable réelle définie par $f(x) = \frac{x^2 + x - 1}{x^2 + x + 1}$

On appellera (C_f) sa courbe représentative dans un repère orthonormé $\mathcal{R} = (O; \vec{i}, \vec{j})$.

- **1** $D_f = \mathbb{R}$ car $\forall x \in \mathbb{R}$ l'on a $x^2 + x 1$ qui existe ainsi que $x^2 + x + 1$ et en plus, $x^2 + x + 1 \neq 0$ car son discriminant $\Delta = -3 < 0$. Comme $D_f = \mathbb{R}$ tout réel x a donc une et une seule image f(x) donc f est bien une application de \mathbb{R} dans \mathbb{R}
- **a.** $D_f = \mathbb{R}$
 - **b.** On ne peut simplifier f(x)
 - **c.** $D_f = \mathbb{R}$ est bien centré en 0 mais $f(-x) = \frac{x^2 x 1}{x^2 x + 1} \neq f(x)$ et $f(-x) \neq -f(x)$ donc f est ni paire, ni impaire dans $\mathcal{R} = (O; \vec{i}, \vec{j})$. On étudiera f sur $E_f = \mathbb{R}$.
 - d. f étant une fonction fraction rationnelle est donc dérivable donc continue sur son ensemble de définition : \mathbb{R} . $\forall x \in \mathbb{R}$ l'on a :

nition:
$$\mathbb{R}$$
. $\forall x \in \mathbb{R}$ I'on a:

$$f'(x) = \frac{(2x+1)(x^2+x+1) - (x^2+x-1)(2x+1)}{(x^2-x+1)^2}$$

$$= \frac{2x^3+2x^2+2x+x^2+x+1 - [2x^3+x^2+2x^2+x-2x-1]}{(x^2-x+1)^2} = \frac{4x+2}{(x^2-x+1)^2}.$$
Comme $(x^2-x+1)^2 > 0$ alors le signe de $f'(x)$ est celui du binôme $4x+2$

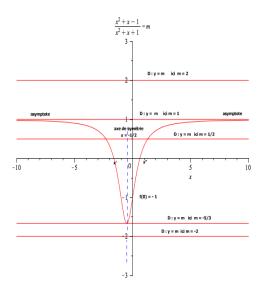
• Comme f est une fonction fraction rationnelle, $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{r^2} = 1$

- $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1$
- donc C_f admet au voisinage de $-\infty$ et de $+\infty$ la droite (D) d'équation y=1

f.

	x	$-\infty$		$-\frac{1}{2}$		$+\infty$
Ì	f'(x)		_	0	+	
	f(x)	1	¥	$-\frac{5}{3}$	7	1

- **g.** i. $C_f \cap (Oy) = \{M(0; f(0))\} = \{M(0; -1)\}$
 - ii. $f(x) = 0 \iff x^2 + x 1 = 0 \iff x = x' = \frac{-1 \sqrt{5}}{2} \text{ ou } x = x" = \frac{-1 + \sqrt{5}}{2}$ $\operatorname{donc} C_f \cap (Ox) = \{ M_1(\frac{-1 \sqrt{5}}{2}; 0); M_2(\frac{-1 + \sqrt{5}}{2}; 0) \}$

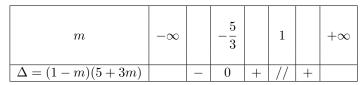


- **3** Prouvons (C_f) admet D': $x = -\frac{1}{2}$ comme axe de symétrie. Pour cela posons $a = -\frac{1}{2}$ alors 2a x = -1 x
 - **a.** Pour tout $x \in D_f = \mathbb{R}$ l'on a bien $-1 x \in \mathbb{R}$ donc $2a x = -1 x \in \mathbb{R}$
 - **b.** $f(2a-x) = f(-1-x) = \frac{(-1-x)^2 1 x 1}{(-1-x)^2 1 x + 1} = \frac{1+2x+x^2-1-x-1}{1+2x+x^2-1-x+1} = \frac{x^2+x-1}{x^2+x+1} = f(x)$
 - **c.** Donc (C_f) admet D': $x = -\frac{1}{2}$ comme axe de symétrie.
- **a.** Résolution graphique de (E): f(x) = m: $f(x) = m \iff x$ est l'abscisse éventuelle des points d'intersection de C_f et de la droite $D_m : y = m$
 - ou bien $m < -\frac{5}{3}$ alors pas de point d'intersection de C_f et de D_m donc pas de solution pour (E)
 - ou bien $m = -\frac{5}{3}$ alors un seul point d'intersection $M(-\frac{1}{2}; \frac{2}{3})$ de C_f et de D_m donc une seule solution $x = -\frac{1}{2}$ pour (E)
 - ou bien $-\frac{5}{3} < m < 1$ alors deux points d'intersection de C_f et de D_m donc deux solutions x' et x" pour (E)
 - ou bien $1 \leq m$ alors pas de point d'intersection de C_f et de D_m donc pas de solution pour (E)

b. Résolution algébrique de
$$(E)$$
 : $f(x) = m$:
$$f(x) = m \Longleftrightarrow \frac{x^2 + x - 1}{x^2 + x + 1} = m \Longleftrightarrow x^2 + x - 1 = m(x^2 + x + 1) \Longleftrightarrow (1 - m)x^2 + (1 - m)x - 1 - m = 0$$

- ou bien m = 1 alors (E): $0x^2 + 0x 2 = 0$ pas de solution
- ou bien $m \neq 1$ donc (E) est bien de degré 2 $\Delta = (1-m)^2 4(1-m)((-1-m) = (1-m)[(1-m) + 4(1+m)] = (1-m)(5+3m)$

 Δ est un trinôme de variable m de racines 1 et $\frac{-5}{3}$, d'après le théorème du signe du trinôme on peut donc dire que :



i. si $m = \frac{-5}{3}$ alors $\Delta = 0$ donc (E) a une seule solution $x = \frac{-1}{2}$

ii. si $\frac{-5}{3} < m < 1$ alors $\Delta > 0$ donc (E) a deux solutions x' et x''

iii. si $m < \frac{-5}{3}$ ou m > 1 alors $\Delta < 0$ donc (E) n'a pas de solutions.

- **a.** L'application f n'est pas injective car $\frac{-1-\sqrt{5}}{2}\neq\frac{-1+\sqrt{5}}{2}$ et $f(\frac{-1-\sqrt{5}}{2})=0$ et $f(\frac{-1+\sqrt{5}}{2})=0$.
 - **b.** D'après l'étude des variations de f alors l'ensemble-image $f < \mathbb{R} > = [-\frac{5}{3}; 1[$.
 - c. L'application f n'est pas surjective car $f < \mathbb{R} > \neq \mathbb{R}$. En effet, il suffit de choisir un $y \notin [-\frac{5}{3}; 1[$. cet y n'a pas d'antécédent par f dans l'ensemble de départ \mathbb{R} .
 - **d.** L'application f n'est donc pas bijective car f n'est pas injective. On pourrait dire aussi que l'application f n'est donc pas bijective car f n'est pas surjective.

12.3 Résolution équations f(x) = m et f(x) = mx

1 Soit la famille de fonctions numériques d'une variable réelle (f_m) où m est un paramètre réel et f_m est définie par

$$f_m(x) = \frac{m \ x^3}{(1-x)^2}$$

On note C_m la courbe représentative de f_m dans un repère orthonormé $\mathcal{R} = (O; \vec{\imath}, \vec{\jmath})$. Démontrer que $\forall m \in \mathbb{R}$ C_m admet au moins un point fixe dont on donnera les coordonnées.

2 Soit la fonction f_1 .

a. Déterminer des réels A, B, C et D tels que $f_1(x) = Ax + B + \frac{C}{1-x} + \frac{D}{(1-1)^2}$. Cei s'appelle la décomposition en éléments simples de la fraction rationnelle $\frac{x^3}{(1-x)^2}$

b. Etudier la fonction f_1 et représenter f_1 dans le repère $\mathcal{R} = (O; \vec{\imath}, \vec{\jmath})$.

3 Soit la fonction f_{-1} . Construisez sans étudier f_{-1} sa courbe représentative \mathcal{C}_{-1} dans un repère orthonormé

4 Construisez aussi sans étudier h la courbe C_h dans un repère orthonormé lorsque

$$h(x) = \frac{|x|^3}{(1-x)^2}$$

5 Résoudre graphiquement l'équation suivante d'inconnue réelle x et de paramètre $m \in \mathbb{R}$.:

$$x^3 - mx^2 + 2mx - m = 0$$

6 Déterminer graphiquement, le nombre et le signe des solutions de l'équation d'inconnue x:

$$x^{3}(1-m) + 2mx^{2} - mx = 0$$

7 Retrouvez les résultats de la question précédente par une méthode algébrique.

12.3.1 Corrigé

• mx^3 existe pour tout réel x

• $(1-x)^2$ existe pour tout réel x

• $(1-x)^2 = 0 \iff 1-x = 0 \iff x = 1$

Par conséquent, l'ensemble de définition de f_m est $\mathbb{R} - \{1\}$.

Il est évident que si x = 0 alors $f_m(0) = \frac{m \ 0^3}{(1-x)^2} = 0$.

Donc $\forall m \in \mathbb{R}$ C_m admet au moins un point fixe $O\begin{pmatrix} 0\\0 \end{pmatrix}$.

a.
$$\forall x \neq 1$$
 $f_1(x) = Ax + B + \frac{C}{1-x} + \frac{D}{(1-x)^2} \iff \frac{x^3}{(1-x)^2} = \frac{(Ax+B)(x-1)^2 + C(1-x) + D}{(1-x)^2}$
 $\iff x^3 = (Ax+B)(1-x)^2 + C(1-x) + D \iff x^3 = (Ax+B)(1-2x+x^2) + C(1-x) + D$
 $\iff x^3 = Ax^3 + x^2(B-2A) + x(A-2B+C) + B + C + D \iff \begin{cases} A = 1 \\ B-2A = 0 \\ A-2B-C = 0 \\ B+C+D = 0 \end{cases}$

par identification des coefficients des monômes respectifs.

Donc
$$\forall x \neq 1$$
 $f_1(x) = Ax + B + \frac{C}{1-x} + \frac{D}{(1-x)^2} \iff \begin{cases} A = 1 \\ B = 2 \\ C = -3 \\ D = 1 \end{cases}$

Par conséquent,

$$\forall x \neq 1$$
 $\frac{x^3}{(1-x)^2} = x + 2 - \frac{3}{1-x} + \frac{1}{(1-x)^2}$

- **b.** f_1 est une fonction rationnelle car c'est le quotient de deux fonctions polynômes donc f_1 est dérivable (donc continue) sur son ensemble de définition $\mathcal{D}_{f_1} = \mathbb{R} \{1\}$
 - $\forall x \neq 1$ $f'(x) = \frac{3x^2(1-x)^2 x^3}{(1-x)^4} = \frac{x^2(1-x)(3(1-x)+2x)}{(1-x)^4} = \frac{x^2(1-x)(3-x)}{(1-x)^4}$ Comme $\forall x \neq 1$ $(1-x)^4 > 0$ alors le signe de f'(x) est celui de $x^2(1-x)(3-x)$

x	$-\infty$		0		1		3		$+\infty$
x^2		+	0	+		+		+	
(1-x)(3-x)		+		+	0	_	0	+	
$(1-x)^4$		+		+	0	+		+	
f'(x)		+	0	+		_	0	+	
					$+\infty +\infty$				$+\infty$
				7					
			0			×		7	
f(x)		7							
	$-\infty$				l II		27		
					'i		$\overline{4}$		

$$\rightarrow$$
 i. $\lim_{x \to 1^{-}} f_1(x) = +\infty \text{ car } \lim_{x \to 1^{-}} x^3 = 1 \text{ et } \lim_{x \to 1^{-}} (1-x)^2 = 0^+$

ii.
$$\lim_{x \to 1^+} f_1(x) = +\infty$$
 car $\lim_{x \to 1^+} x^3 = 1$ et $\lim_{x \to 1^+} (1-x)^2 = 0^+$

iii. La courbe de f_1 admet pour asymptote verticale la droite d'équation x=1

$$\rightarrow i. \lim_{x \mapsto +\infty} f_1(x) = \lim_{x \mapsto +\infty} \frac{x^3}{x^2} = \lim_{x \mapsto +\infty} x = +\infty$$

ii.

iii.
$$\lim_{x \to -\infty} f_1(x) = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$$

iv. Etudions ces deux branches infinies :

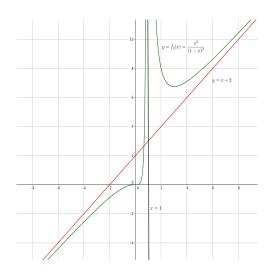
A.
$$\lim x \mapsto +\infty \frac{f(x)}{x} = \lim x \mapsto +\infty \frac{x^3}{x(1-x)^2} = \lim x \mapsto +\infty \frac{x^3}{x^3} = 1$$

B.
$$\lim x \mapsto +\infty f(x) - x = \lim x \mapsto +\infty \frac{x^3}{(1-x)^2} - x = \lim x \mapsto +\infty \frac{x^3 - x(1-x)^2}{(1-x)^2}$$

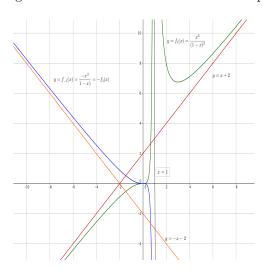
= $\lim x \mapsto +\infty \frac{2x^2}{x^2} = 2$

C. idem au voisinage de $-\infty$

D. Par conséquent, au voisinage de $-\infty$ et au voisinage de $+\infty$ la courbe de f admet comme asymtote oblique la droite d'équation y=x+2

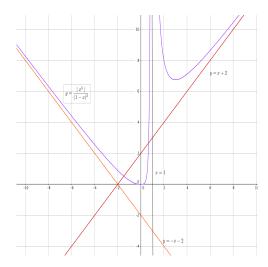


• $f_{-1}(x) = \frac{-x^3}{(1-x)^2} = -f_1(x)$ donc sa courbe représentative \mathcal{C}_{-1} en vert est l'image de la courbe rouge \mathcal{C}_1 par la symétrie orthogonale d'axe l'axe des abscisses dans le repère orthonormé



$$\bullet \ h(x) = \frac{|x|^3}{(1-x)^2} = \begin{cases} \frac{x^3}{(1-x)^2} = f_1(x) \text{ si } x \ge 0\\ \frac{-x^3}{(1-x)^2} = f_{-1}(x) \text{ si } x \le 0 \end{cases}$$

• Par conséquent, C - h coïncide avec la courbe verte C_{-1} sur $] - \infty; 0]$ et avec la courbe rouge C_1 sur $[0; +\infty[$



5 Soit (E) l'équation d'inconnue x:

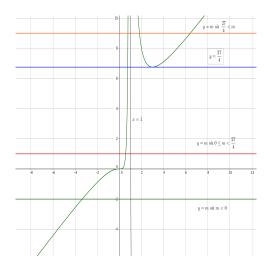
$$x^3 - mx^2 + 2mx - m = 0$$

- L'ensemble de définition de cette équation est $\mathcal{D} = \mathbb{R}$
- $\forall x \in \mathbb{R}$ $x^3 mx^2 + 2mx m = 0 \iff x^3 = m(x^2 2x + 1) \iff x^3 = m(1 x)^2$
 - \rightarrow ou bien x=1mais alors $(E) \iff 1=0$ donc x=1 ne peut être solution de cette équation.

$$\rightarrow$$
 ou bien $x \neq 1$
alors $(E) \iff \frac{x^3}{(1-x)^2} = m \iff f(x) = m$

 \iff x est l'abscisse des points éventuels d'intersection de \mathcal{C}_{f_1} et de la droite d'équation y=m Par conséquent,

- si m < 0 il y a une seule solution x' < 0
- si m = 0 il y a une seule solution x' = 0
- si $0 < m < \frac{27}{4}$ il y a une seule solution 0 < x' < 1
- si $m = \frac{27}{4}$ il y a deux solutions 0 < x' < 1 et x'' = 3
- si $\frac{27}{4} < m$ il y a trois solutions 0 < x' < 1; 1 < x'' < 3 et 3 < x'''



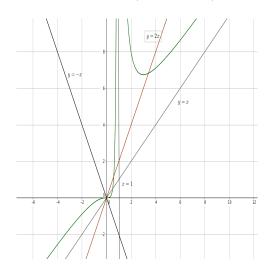
6 Soit (F) l'équation d'inconnue x:

$$x^3(1-m) + 2mx^2 - mx = 0$$

- L'ensemble de définition de cette équation est $\mathcal{D} = \mathbb{R}$
- $\forall x \in \mathbb{R}$ $x^3(1-m) + 2mx^2 mx = 0 \iff x^3 = mx^3 2mx^2 + mx \iff x^3 = mx(x^2 2x + 1) \iff x^3 = mx(1-x)^2$
 - \rightarrow ou bien x=1 mais alors $(F) \iff 1=0$ donc x=1 ne peut être solution de cette équation.
 - \rightarrow ou bien $x \neq 1$ alors $(F) \iff \frac{x^3}{(1-x)^2} = mx \iff f(x) = mx$

 \iff x est l'abscisse des points éventuels d'intersection de \mathcal{C}_{f_1} et de la droite d'équation y = mx Par conséquent,

- si m < 0 il y a une seule solution x = 0
- si m = 0 il y a une seule solution x = 0
- si 0 < m < 1 il y a trois solutions x' < 0; x = 0 et 0 < x'' < 1
- si m = 1 il y a deux solutions x = 0 et 0 < x' < 1
- si 1 < m il y a trois solutions x = 0; 0 < x' < 1; 1 < x"



- 7 On peut retrouver les résultats de la question précédente par une méthode algébrique : $x^3(1-m)+2mx^2-mx=0 \iff x[x^2(1-m)+2mx-m]=0 \iff x=0$ ou $x^2(1-m)+2mx-m=0$ Etudions l'équation $(G): x^2(1-m)+2mx-m=0$.
 - **a.** ou bien m = 1 alors $x^2(1-m) + 2mx m = 0 \iff 2x 1 = 0 \iff x = \frac{1}{2}$
 - **b.** ou bien $m \neq 1$ alors l'équation est de degré 2. $\Delta = (2m)^2 4(1-m)(-m) = 4\ m^2 -\ 4m^2 + 4\ m = 4m$
 - \bullet ou bien m<0 alors $\Delta<0$ donc (G) n'a pas de solution.
 - ou bien m=0 alors $\Delta=0$ et $x=\frac{-2m}{2(1-m)}=\frac{0}{2}=0$
 - ou bien m>0 alors $\Delta>0$ et (G) a deux solutions x' et x". Le produit de ces deux solutions P=x'x" = $\frac{c}{a}=\frac{-m}{1-m}=\frac{m}{m-1}$ est du signe de m-1 car m>0.
 - \rightarrow si m < 1 alors P < 0 donc x' et x" sont de signes contraires.
 - \rightarrow si m > 1 alors P > 0 donc x' et x" ont le même signe : celui de leur somme $S = \frac{-b}{a} = \frac{2m}{m-1}$ qui est du signe de m-1 car m>0 donc S>0 d'où 0 < x' < x"..
 - On retrouve bien les résultats précédents : Par conséquent,
 - \rightarrow si m < 0 il y a une seule solution x = 0
 - \rightarrow si m=0 il y a une seule solution x=0
 - $\rightarrow \text{ si } 0 < m < 1 \text{ il y a trois solutions } x' < 0; x = 0 \text{ et } 0 < x'' < 1$
 - \rightarrow si m = 1 il y a deux solutions x = 0 et 0 < x' < 1
 - \rightarrow si 1 < m il y a trois solutions x = 0; 0 < x' < 1; 1 < x"

13 Autres Exercices

13.1

Etudier et représenter la fonction numérique f définie par $f(x) = x^x$.

13.2

Soit f une fonction numérique d'une variable réelle définie par

$$f(x) = \begin{cases} 0 \text{ si } x = 0\\ -\frac{1}{x^2} \text{ si } x \neq 0 \end{cases}$$

1 Démontrer que f est continue sur \mathbb{R}^*

2 Démontrer que f est continue en 0. Conclusion?

3 Démontrer que f est paire.

4 Démontrer que f est dérivable sur \mathbb{R}^* .

5 Démontrer que f est dérivable en 0. Conclusion?

6 Représenter graphiquement la fonction f.

13.3

Soit f une fonction numérique d'une variable réelle définie par

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{sh(x)}{ch(x)} = th(x)$$

1 Etudier la fonction f. Représenter graphiquement la fonction f dans un repère.

2 Démontrer f est bijective et admet une bijection réciproque g définie sur J =]-1;1[

3 Démontrer que $\forall x \in \mathbb{R}$ $f'(x) = 1 - [f(x)]^2$.

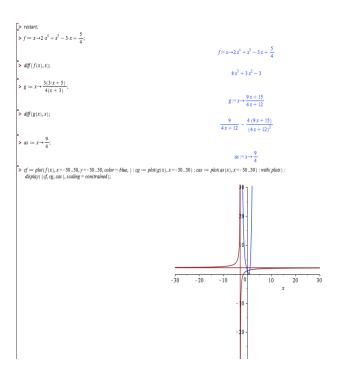
4 En déduire que g est dérivable sur J et déterminer g'(y) pour tout $y \in J$.

13.4

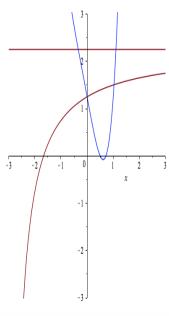
Soient les fonctions suivantes f et g définies respectivement par $f(x) = 2x^4 + x^3 - 3x + \frac{5}{4}$ et $g(x) = \frac{3(3x+5)}{4(x+3)}$. Soit le repère orthonormé $\mathcal{R} = (O; \vec{i}, \vec{j})$.

- 1 Etudier la fonction f et représenter graphiquement la courbe C_f de f dans le repère \mathcal{R}
- **2** Etudier la fonction g et représenter graphiquement la courbe \mathcal{C}_g de f dans le même repère \mathcal{R}
- ${f 3}$ Démontrer que les deux courbes coupent l'axe des ordonnées au même point A dont on déterminera les coordonnées.
- 4 Démontrer que les tangentes en A aux deux courbes sont perpendiculaires.

13.4.1 Corrigé



 \Rightarrow f' = plot(f(x), x=-3..3, y=-3..3, color = blue,) : cg := plot(g(x), x=-3..3, y=-3..3) : cas := plot(as(x), x=-3..3) : with (plots) : display! (cf. cg. cas), scaling = constrained!;



13.5

"Étudier sans réfléchir est une occupation vaine ; réfléchir sans étudier est dangereux." Confucius (555 - 479 avJC) - Chine

- **1** Montrer que pour tout $x \in \mathbb{R}^*$ on a : $\frac{e^x 1}{x} > 0$
- 2 On considère la fonction f définie sur \mathbb{R} par

$$\begin{cases} f(x) = \ln(\frac{e^x - 1}{x}) \text{ si } x \neq 0\\ f(0) = 0 \end{cases}$$

Montrer que f est continue sur \mathbb{R}

- 3 Montrer que f est de classe C^1 sur \mathbb{R}^* et préciser f'(x) pour tout x de \mathbb{R}^*
- 4 On admet la Formule dite de Taylor-Young :

Si g est de classe C^n sur un intervalle de bornes a et a+h et admet une dérivée d'ordre n+1 en a alors $g(a+h)=g(a)+\frac{h}{1!}g'(a)+\cdots+\frac{h^n}{n!}g^{(n)}(a)+\frac{h^{n+1}}{(n+1)!}[g^{(n+1)}(a)+\varepsilon(h)]$ avec $\lim_{h\to 0}\varepsilon(h)=0$.

- **a.** Montrer alors que, pour tout x non nul, $e^x = 1 + x + \frac{x^2}{2} + \frac{x^2}{2} \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$.
- **b.** Montrer que $\lim_{x \to 0} f'(x) = \frac{1}{2}$.
- **c.** En déduire que f est de classe C^1 sur $\mathbb R$ et donner f'(0)
- **5 a.** Etudier les variations de la fonction g définie par : $\forall x \in \mathbb{R}$ $g(x) = xe^x e^x + 1$
 - **b.** En déduire le signe de g(x) puis dresser le tableau de variations de f (limites comprises).
 - \mathbf{c} . Dessiner l'allure de la courbe représentative de f
- 6 On considère la suite (u_n) définie par la donnée de son premier terme $u_0 > 0$ et par la relation valable pour tout entier naturel $n : u_{n+1} = f(u_n)$. Montrer que $\forall n \in \mathbb{N}, u_n > 0$
- **a.** Vérifier que $\forall x \in \mathbb{R}$, f(x) x = f(-x)
 - **b.** En déduire le signe de f(x) x sur \mathbb{R}^{+*}
 - **c.** Montrer que la suite (u_n) est décroissante
- 8 En déduire que la suite (u_n) converge et donner sa limite
- 9 Ecrire un programme Pascal permettant de déterminer et d'afficher le plus petit entier naturel n pour lequel $u_n \le 10^{-3}$ dans le cas où $u_0 = 1$

13.6

1 Soit la fonction numérique f d'une variable réelle définie sur $[2; +\infty[$ par

$$f(x) = \frac{2x^2 - 3x - 9}{x - 2}$$

On note (C) sa courbe représentative dans ls repère orthonormal $\mathcal{R} = (O; i, j)$

- **a.** Déterminer les réels a, b, c tels que $\forall x \in]2; +\infty[$ $f(x) = ax + b + \frac{c}{x-2}$
- **b.** Justifier les limites de f en 2 et en $+\infty$. Déterminer les asymptotes à (C) ainsi que la position de (C) par rapport à ses asymptotes.
- **c.** Tracer alors (C) et ses asymptotes.
- 2 Soit la fonction numérique g d'une variable réelle définie sur $\mathbb R$ par

$$g(x) = \frac{3 + x + \sqrt{x^2 - 10x + 81}}{4}$$

On note (C') sa courbe représentative dans ls repère orthonormal $\mathcal{R} = (O; i, j)$

- a. Justifier les limites de g en $-\infty$ et en $+\infty$. Déterminer les asymptotes à (C') ainsi que la position de (C') par rapport à ses asymptotes.
- **b.** Déterminer g'(x). Justifier avec soin son signe. En déduire le tableau de variations de g.
- c. Tracer alors (C) et ses asymptotes dans le même repère que (C)
- Justifier pourquoi f admet une fonction réciproque f^{-1} puis déterminer l'expression de $f^{-1}(x)$. Que peut-on en déduire pour les courbes (C) et (C')?

13.7 15 PARTIE B

13.7

Soit un plan P muni d'un repère cartésien orthonormal $R = (0; \overrightarrow{e_1}, \overrightarrow{e_2})$.

14 Partie A

1 Soit la fonction f définie par

$$\begin{cases} f(x) = -x \ln(x) \text{ si } x > 0 \\ f(0) = 0 \end{cases}$$

- a. Etudier la fonction f. Tracer ensuite la courbe représentative Γ de f
- **b.** Etudier selon x la position relative de Γ et de la droite (D): y = x
- 2 Soit la fonction g définie par

$$\begin{cases} g(x) = -x \ln(|x|) \text{ si } x > 0\\ g(0) = 0 \end{cases}$$

- a. En utilisant le 1°), tracer ensuite la courbe représentative C_g de g
- **b.** Soit l'application T de P dans P qui à tout point M(x,y) associe le point M'(x',y') avec

$$\left\{ \begin{array}{l} x' = ex \\ y' = -ex + ey \end{array} \right.$$

Déterminer $T < C_q >$.

3 Soit la suite (u_n) définie par

$$\begin{cases} u_{n+1} = g(u_n) \text{ si } n \in \mathbb{N} \\ u_0 \in]0; \frac{1}{e}[\end{cases}$$

Démontrer que la suite (u_n) est convergente et déterminer sa limite.

15 Partie B

1 Soit $n \in \mathbb{N}^*$. Soit la suite f_n définie par

$$\begin{cases} f_n(x) = -x(\ln(\frac{1}{x})^n \ si \ x \in]0;1] \\ f_n(0) = 0 \end{cases}$$

- a. Etudier la dérivabilité puis la continuité de f_n sur [0;1]
- **b.** Démontrer que f_n admet un maximum a_n sur]0;1] que l'on calculera.
- **c.** On pose $b_n = f_n(a_n)$. Calculer b_n en fonction de n.
- **a.** Démontrer que la suite (a_n) est convergente et déterminer sa limite.
 - **b.** Montrer que $\forall x \in [0; e^{-n}]$ on a $f_n(x) \ge \frac{b_n}{a_n} x$
- 3 Soit $n \in \mathbb{N}^*$. Soient les intégrales $I_n = \int_0^1 f_n(x) dx$ et $J_n = \int_0^{e^{-n}} f_n(x) dx$
 - **a.** Démontrer que $\forall n \in \mathbb{N} \ I_n \geq J_n$
 - **b.** Démontrer que $\forall n \in \mathbb{N} \ J_n \ge \frac{1}{2} n^n e^{-2n}$
 - **c.** En déduire que la suite (I_n) est divergente.

15.1 Exercice 15 PARTIE B

Exercice 15.1

Soit $n \in \mathbb{N}^*$. Soit la fonction f_n définie sur $]0; +\infty[$ par $f_n(x) = \frac{e^{nx}}{x}$

- 1 Calculer les limites de f_n aux bornes de son intervalle de définition.
- Calculer $f'_n(x)$ et déterminer les variations de f_n .
- 3 Démontrer que pour tout entier naturel non nul n, la fonction f_n admet un minimum. exprimer en focntion de n la valeur y_n de ce minimum et la valeur x_n pour laquelle il est atteint.
- Etudier le comportement des suites (x_n) et (y_n) .

15.1.1 Corrigé

a. Déterminons $\lim_{x \to +\infty} f_n(x)$.

Comme n < 0 alors quand $x \mapsto +\infty$ $nx \mapsto +\infty$ $e^{nx} \mapsto +\infty$ on tombe alors sur une forme indéterminée du type " $\frac{+\infty}{+\infty}$ ".

Mais $\frac{e^{nx}}{x} = \frac{e^{nx}}{nx} \frac{nx}{x}$. Or $\lim_{x \mapsto +\infty} \frac{e^{nx}}{nx} = +\infty$ et $\lim_{x \mapsto +\infty} \frac{nx}{x} = n$ donc $\lim_{x \mapsto +\infty} f_n(x) = +\infty$

Mais
$$\frac{e^{nx}}{x} = \frac{e^{nx}}{nx} \frac{nx}{x}$$
. Or $\lim_{x \to +\infty} \frac{e^{nx}}{nx} = +\infty$ et $\lim_{x \to +\infty} \frac{nx}{x} = n$ donc $\lim_{x \to +\infty} f_n(x) = +\infty$

b. Déterminons $\lim_{x \to 0^+} f_n(x)$.

Quand
$$x \mapsto 0^+$$
 $nx \mapsto 0^+$ $e^{nx} \mapsto 1$ $\frac{1}{x} \mapsto +\infty$. Donc $\lim_{x \mapsto 0^+} f_n(x) = +\infty$

- 2 Calculer $f'_n(x)$ et déterminer les variations de f_n .
- 3 Démontrer que pour tout entier naturel non nul n, la fonction f_n admet un minimum. exprimer en focntion de n la valeur y_n de ce minimum et la valeur x_n pour laquelle il est atteint.
- 4 Etudier le comportement des suites (x_n) et (y_n) .

15.2 Exercice 15 PARTIE B

15.2 Exercice

Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = \left(1 - \frac{1}{x}\right)(\ln(x) - 2).$

- 1 Déterminer les limites de f en 0^+ et en $+\infty$
- 2 Justifier la dérivabilité de f sur $]0; +\infty[$ puis déterminer f'(x)
- 3 Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = \ln(x) + x 3$
 - \mathbf{a} . Etudier les variations de g
 - **b.** Montrer que l'équation g(x)=0 admet une solution unique α dans l'intervalle [2; 3]. Montrer que $2,20<\alpha<2,21$
 - **c.** En déduire le signe de g(x) sur $]0; +\infty[$
- 4 Etudier les variations de f
- **5** Résoudre l'équation f(x) = 0 dans $]0; +\infty[$
- 6 En déduire le signe de f(x)
- 7 Construire la courbe représentative de f
- 8 Soit F une primitive de f sur $]0; +\infty[$ qui s'annule en x=1
 - a. Sans calculer F(x) déterminer les variations de f sur $]0; +\infty[$
 - **b.** soit $u(x) = x \ln(x) x$. Justifier la dérivabilité de u sur $]0; +\infty[$ puis déterminer u'(x). Conclusion?
 - **c.** Montrer que pour tout x > 0 l'on a : $f(x) = \ln(x) \frac{\ln(x)}{x} + \frac{2}{x} 2$
 - **d.** En déduire l'expression de F(x)

15.3 Corrigé

15.4 Sujet 15 PARTIE B

15.4 Sujet

15.4.1 Partie A

Soit la fonction g définie sur \mathbb{R} par $g(x) = x\sqrt{x^2 + 1} - 1$.

- 1 Déterminer les limites de g en $+\infty$ et en $-\infty$.
- **2** Démontrer que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution que l'on notera α .
- **3** Déterminer le signe de g sur \mathbb{R} .

15.4.2 Partie B

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3}{3} - \sqrt{x^2 + 1}$. On note \mathcal{C} la courbe représentative de f dans un repère orthonormé.

- 1 Déterminer les limites de f en $+\infty$ et en $-\infty$.
- **2** Démontrer que $f'(x) = \frac{x \ g(x)}{\sqrt{x^2 + 1}}$
- 3 Dresser le tableau de variations de f en justifiant.
- 4 Soit la fonction h_1 définie pour tout réel x par $h_1(x) = \frac{x^3}{3} x$ et soit C_{h_1} sa courbe représentative dans le même repère que C.
 - **a.** Déterminer $\lim_{x \to +\infty} (f(x) h_1(x))$
 - b. Interpréter graphiquement ce résultat.
 - c. Trouver une fonction h_2 permettant d'avoir une interprétation graphique similaire en $-\infty$.

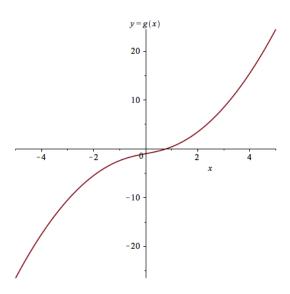
15.5 Corrigé

15.5.1 Partie A

Soit $g(x) = x\sqrt{x^2 + 1} - 1$. Comme $\forall x \in \mathbb{R}$ $x^2 + 1 \ge 0$ car $x^2 \ge 0$ et donc $x^2 + 1 \ge 1$ alors g(x) est bien défini sur $\mathbb{R} =]-\infty; +\infty[$

- Quand $x \mapsto +\infty$ on a $x^2 \mapsto +\infty$ donc $\sqrt{x^2 + 1} \mapsto +\infty$ donc $x\sqrt{x^2 + 1} \mapsto +\infty$ donc $x\sqrt{x^2 + 1} 1 \mapsto +\infty$. Par conséquent $\lim_{x \mapsto +\infty} g(x) = +\infty$
 - Quand $x \mapsto -\infty$ on a $x^2 \mapsto +\infty$ donc $\sqrt{x^2+1} \mapsto +\infty$ donc $x\sqrt{x^2+1} \mapsto -\infty$ donc $x\sqrt{x^2+1} 1 \mapsto -\infty$. Par conséquent $\lim_{x \mapsto +\infty} g(x) = -\infty$
- La fonction $x \mapsto x$, la fonction $x \mapsto \sqrt{x^2 + 1}$ sont toutes deux dérivables sur \mathbb{R} donc la fonction $x \mapsto x\sqrt{x^2 + 1}$ est dérivable sur \mathbb{R} . De plus la fonction $x \mapsto 1$ est dérivable sur \mathbb{R} alors g est dérivable donc continue sur \mathbb{R} .
 - $\forall x \in \mathbb{R}$ $g'(x) = \sqrt{x^2 + 1} + x \frac{2x}{2\sqrt{x^2 + 1}} = \sqrt{x^2 + 1} + x \frac{x}{\sqrt{x^2 + 1}} = \frac{x^2 + 1 + x^2}{\sqrt{x^2 + 1}}$ On a donc $g'(x) = \frac{2x^2 + 1}{\sqrt{x^2 + 1}} > 0$ puisque $2x^2 + 1 > 0$ et $\sqrt{x^2 + 1} > 0$
 - q est donc strictement croissante sur \mathbb{R}
 - g est continue sur \mathbb{R}
 - Or 0 appartient à l'intervalle image \mathbb{R} donc l'équation g(x) = 0 admet une unique solution α dans \mathbb{R}
- 3 Comme g est strictement croissante sur $\mathbb R$ et que $g(x)=0 \iff x=\alpha$ alors
 - g(x) < 0 lorsque $x < \alpha$
 - g(x) = 0 lorsque $x = \alpha$
 - g(x) > 0 lorsque $x > \alpha$

15.5 Corrigé 15 PARTIE B



15.5.2 Partie B

Soit $f(x) = \frac{x^3}{3} - \sqrt{x^2 + 1}$.

- 1 Quand $x \mapsto -\infty$ on a $x^2 \mapsto +\infty$ donc $\sqrt{x^2 + 1} \mapsto +\infty$. Or $\frac{x^3}{3} \mapsto -\infty$ donc $\frac{x^3}{3} - \sqrt{x^2 + 1} \mapsto -\infty$.
- Quand $x \mapsto +\infty$ on a $x^2 \mapsto +\infty$ donc $\sqrt{x^2+1} \mapsto +\infty$. Or $\frac{x^3}{3} \mapsto +\infty$ donc on obtient une forme indéterminée du type " $+\infty \infty$ ".

Levons cette indétermination.
$$\frac{x^3}{3} - \sqrt{x^2 + 1} = \frac{x^3}{3} - \sqrt{x^2(1 + \frac{1}{x^2})} = \frac{x^3}{3} - \sqrt{x^2}\sqrt{1 + \frac{1}{x^2}} = \frac{x^3}{3} - |x|\sqrt{1 + \frac{1}{x^2}} = \frac{x^3}{3} - x\sqrt{1 + \frac{1}{x^2}} \text{ en prenant } x > 0$$

Par conséquent $f(x)=x^3\big[\frac{1}{3}-\frac{1}{x^2}\sqrt{1+\frac{1}{x^2}}~\big]\mapsto +\infty$ quand $x\mapsto +\infty$ car

Quand $x \mapsto +\infty$ on a $\frac{1}{x^2} \mapsto 0$, $\sqrt{1+\frac{1}{x^2}} \mapsto 1$ et $\left[\frac{1}{3}-\frac{1}{x^2}\sqrt{1+\frac{1}{x^2}}\right] \mapsto \frac{1}{3}$

3 La fonction $x \mapsto \frac{x^3}{3}$ et la fonction $x \mapsto \sqrt{x^2 + 1}$ sont toutes deux dérivables sur \mathbb{R} donc f est dérivable donc continue sur \mathbb{R} .

$$\forall x \in \mathbb{R} \quad f'(x) = x^2 - \frac{2x}{2\sqrt{x^2 + 1}} = x^2 - \frac{x}{\sqrt{x^2 + 1}} = \frac{x^2\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} = \frac{x(x\sqrt{x^2 + 1} - 1)}{\sqrt{x^2 + 1}}$$

Donc $f'(x) = \frac{x g(x)}{\sqrt{x^2 + 1}}$ du signe de x g(x) car $\sqrt{x^2 + 1} > 0$

x	$-\infty$		0		α		$+\infty$
x		_	0	+		+	
g(x)		_		_	0	+	
$\frac{g(x)}{xg(x)}$		+	0	_	0	+	
f'(x)		+	0	_	0	+	
			-1				$+\infty$
		7		X		7	
f(x)	$-\infty$				$f(\alpha)$		

- 4 Soit $h_1(x) = \frac{x^3}{3} x$
 - **a.** $f(x) h_1(x) = \frac{x^3}{3} \sqrt{x^2 + 1} (\frac{x^3}{3} x) = \frac{x^3}{3} \sqrt{x^2 + 1} \frac{x^3}{3} + x = x \sqrt{x^2 + 1}$. Normalement quand $x \mapsto +\infty$ on obtient une forme indéterminée du type " $+\infty \infty$ ". levons cette

indétermination :

Indetermination:
$$f(x) - h_1(x) = \frac{(x - \sqrt{x^2 + 1})(x + \sqrt{x^2 + 1})}{x + \sqrt{x^2 + 1}} = \frac{x^2 - (x^2 + 1)}{x + \sqrt{x^2 + 1}} = \frac{-1}{x + \sqrt{x^2 + 1}}$$
Quand $x \mapsto +\infty$ on a $\sqrt{x^2 + 1} \mapsto +\infty$ donc $x + \sqrt{x^2 + 1} \mapsto +\infty$

donc $f(x) - h_1(x) \mapsto 0$.

b. Par conséquent, au voisinage de $+\infty$ la courbe représentative de f admet pour asymptote la courbe de la fonction h_1 .

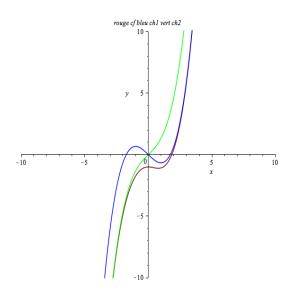
5 Soit
$$h_2(x) = \frac{x^3}{3} + x$$

a.
$$f(x) - h_2(x) = \frac{x^3}{3} - \sqrt{x^2 + 1} - (\frac{x^3}{3} + x) = \frac{x^3}{3} - \sqrt{x^2 + 1} - \frac{x^3}{3} - x = -x - \sqrt{x^2 + 1}$$
. Normalement quand $x \mapsto -\infty$ on obtient une forme indéterminée du type " $+\infty - \infty$ ". levons cette

$$f(x) - h_2(x) = \frac{(-x - \sqrt{x^2 + 1})(-x + \sqrt{x^2 + 1})}{-x + \sqrt{x^2 + 1}} = \frac{x^2 - (x^2 + 1)}{-x + \sqrt{x^2 + 1}} = \frac{-1}{-x + \sqrt{x^2 + 1}}$$
Quand $x \mapsto +\infty$ on a $\sqrt{x^2 + 1} \mapsto +\infty$ donc $-x + \sqrt{x^2 + 1} \mapsto +\infty$

donc $f(x) - h_2(x) \mapsto 0$.

b. Par conséquent, au voisinage de $-\infty$ la courbe représentative de f admet pour asymptote la courbe de la fonction h_2 .



15.5 Corrigé 15 PARTIE B

THAT'S ALL FOLKS!!!