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1 Préliminaires

1.1 Recherche de 2 nombres connaissant leur somme et
leur produit

{
p1 + p2 = S
p1p2 = P

⇐⇒  p1 + p2 = S
p1p2 = P
(X − p1)(X − p2) = 0

⇐⇒  p1 + p2 = S
p1p2 = P
X2 − (p1 + p2)X + p1p2 = 0

⇐⇒ X2 − SX + P = 0

1.2 Racines n-ièmes complexes
1.2.1 Racines n-ièmes complexes d’un nombre complexe non nul

Soit un nombre complexe Z ̸= 0.
Soit n un entier naturel différent de 0 et de 1. Soit l’équation zn = Z d’inconnue
complexe z.
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1. Comme Z ̸= 0 alors z ̸= 0. On résoud donc cette équation dans C∗. Alors
comme un nombre complexe non nul a une écriture trigonométrique, on
pose Z = ρeiθ et z = reiα

Donc zn = Z ⇐⇒ (reiα)n = ρeiθ ⇐⇒ rneinα = ρeiθ{
rn = ρ
∃k ∈ Z nα = θ + 2kπ{
r = n

√
ρ

∃k ∈ Z α =
θ

n
+

2kπ

n

Donc Sn = { n
√
ρ e

i

 θ

n
+

2kπ

n


/k ∈ Z}

2. Lorsque k décrit Z alors les mesures d’angle
2kπ

n
sont représentées

géométriquement sur le cercle trigonométrique par n points dis-
tincts sommets d’un polygone inscrit régulier correspondants
aux n valeurs suivantes k = 0, 1, 2, · · · , n− 1

Sn = { n
√
ρ e

i

 θ

n
+

2kπ

n


/k ∈ [|0 ; n− 1|]}

Donc le cardinal de l’ensemble Sn des solutions est n.
Ces solutions sont appelées les racines-nièmes complexes de Z.
Onappelleracine-nième de l’unité une racine-nième complexes de1.

1.2.2 Racines n-ièmes de l’unité

On note Un l’ensemble des racines nièmes complexes de l’unité. ici Z = 1 =
1ei0

1. Un = { n
√
1 e

i

 0

n
+

2kπ

n


/k ∈ [|0 ; n− 1|]} = {e

i
2kπ

n /k ∈ [|0;n− 1|]}.

2. On pose ω = cos(
2π

n
) +i sin(

2π

n
) = e

i
2kπ

n .

(a) les solutions de l’équation zn = 1 sont les ωk où k ∈ [|0;n− 1|]
(b) Comme ω ̸= 1 alors la somme des racines n-ièmes complexes de l’unité

est :
ω0 + ω1 + ω2 + · · ·+ ωn−1 = ω0 1− ωn

1− ω
= 0

puisque ωn = 1

1.2.3 Racines cubiques de l’unité

1. U3 = {e
i
2kπ

3 /k ∈ [|0 ; 2|]} = {e
i
0π

3 ; e
i
2π

3 ; e
i
4π

3 } En posant j = e
i
2π

3 =

−1 + i
√
3

2
alors U3 = {1; j; j2}

2. z3 = 27 ⇐⇒ z3 = 33 ⇐⇒ z3

33
= 1 ⇐⇒

(z
3

)3

= 1 ⇐⇒ z

3
∈ {1 ; j ; j2}

⇐⇒ z = 3 ou z = 3j ou z = 3j2
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3. On considère 3 points A,B et C d’affixes respectives a, b et c.
— ABC est un triangle équilatéral direct ⇐⇒ la rotation vectorielle

d’angle de mesure
π

3
transforme

−−→
AB en

−→
AC

⇐⇒ z−→
AC

= e
i
π

3 (z−−→
AB

) ⇐⇒ c− a = −j2(b− a)

⇐⇒ c+ a(−1− j2) + bj2 = 0 ⇐⇒ c+ aj + bj2 = 0 car 1+ j + j2 = 0
⇐⇒ b+cj+aj2 = 0 en multipliant les 2 membres par j et en utilisant
j3 = 1 ⇐⇒ a+ bj + cj2 = 0 en multipliant les 2 membres par j et en
utilisant j3 = 1

— ABC est un triangle équilatéral ⇐⇒ la rotation vectorielle d’angle de
mesure

π

3
transforme

−−→
AB en

−→
AC ou la rotation vectorielle d’angle de

mesure
π

3
transforme

−→
AC en

−−→
AB

⇐⇒ a+bj+cj2 = 0 ou a+bj2+cj) = 0 ⇐⇒ (a+bj+cj2)(a+bj2+cj) =
0
⇐⇒ a2 + ab(j + j2) + ac(j + j2) + b2 + bc(j2 + j) + c2j3 = 0 ⇐⇒
a2 + b2 + c2 − bc− ca− ab = 0

2 Résolution de l’équation Ax3+Bx2+Cx+D = 0
à coefficients complexes

2.1 Préliminaire
Soit le polynôme Ax3+Bx2+Cx+D = 0 où A,B,C,D sont des coefficients

complexes avec A ̸= 0.

1. Ax3 +Bx2 + Cx+D = 0 ⇐⇒ A(x3 +
B

A
x2 +

C

A
x+

D

A
) = 0

⇐⇒ x3+bx2+cx+d = 0 où b =
B

A
, c =

C

A
et d =

D

A
sont des coefficients

complexes.
2. On note P (x) = x3 + bx2 + cx+ d.

Alors P (x + h) = (x + h)3 + b(x + h)2 + c(x + h) + d = x3 + 3x2h +
3xh2 + h3 + bx2 + 2bxh+ bh2 + cx+ ch+ d = x3 + x2(3h+ b) + x(3h2 +
c+ 2bh) + h3 + bh2 + ch+ d

Il suffit de prendre h = − b

3
pour que P (x+ h) = x3 + px+ q

On se limitera dorénavant aux équations du 3me degré du type x3 + px+ q = 0
où (p, q) ∈ C2

2.2 Résolution de x3 + px+ q = 0 où (p, q) ∈ C2

1. — Le théorème de D’Alembert-Gauss permet d’affirmer l’existence de 3
solutions complexes x1, x2, x3 pour l’équation x3 + px+ q = 0

— (Formule de Viète) :
x1, x2, x3 sont les solutions de x3 + px + q = 0 ⇐⇒ x3 + px + q =
(x− x1)(x− x2)(x− x3)
⇐⇒ x3 + px+ q = x3 +x2(−x3 −x2 −x1)+x(x3x2 +x1x2 +x1x3)−
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x1x2x3

⇐⇒
3∑

i=1

xi = 0 et
∑

1≤i<j≤3

xixj = p et x1x2x3 = −q

2. x1, x2, x3 désignant toujours les solutions de x3 + px+ q = 0 ,
(a) (x1 + x2 + x3)

2 = x2
1 + x2

2 + x2
3 + 2x1x2 + 2x1x3 + 2x2x3 = x2

1 + x2
2 +

x2
3 + 2(x1x2 + x1x3 + x2x3).

Or
3∑

i=1

xi = 0 et
∑

1≤i<j≤3

xixj = p donc = 02 =

3∑
i=1

x2
i + 2p.

Par conséquent, A =

3∑
i=1

x2
i = −2p

(b) Comme x1, x2 et x3 sont les solutions de l’équation x3 + px + q = 0
alors x3

1 + px1 + q = 0 et x3
2 + px2 + q = 0 et x3

3 + px3 + q = 0 donc

en sommant on obtient 0 =
3∑

i=1

x3
i + p

3∑
i=1

xi + 3q. Or
3∑

i=1

xi = 0 donc

0 =

3∑
i=1

x3
i + p(0) + 3q

Par conséquent, B =

3∑
i=1

x3
i = −3q

(c) (x1 + x2 + x3)
3 = x3

1 + x3
2 + x3

3 + 3x1x
2
2 + 3x1x

2
3 + 3x2x

2
1 + 3x2x

2
3 +

3x3x
2
1 + 3x3x

2
2 + 6x1x2x3

Donc 0 = −3q + 3

3∑
1≤i<j≤3

x2
ixj − 6q Par conséquent C =

3∑
1≤i<j≤3

x2
ixj = 3q .

3. (a) Il y aen tout 3! permutations des 3 lettres x, y, z. Voici donc les 6
bijections de x, y, z dans x, y, z :

σ1 =

(
x y z
x y z

)
; σ2 =

(
x y z
x z y

)
; σ3 =

(
x y z
z y x

)
σ4 =

(
x y z
y x z

)
; σ5 =

(
x y z
y z x

)
; σ6 =

(
x y z
z x y

)
(b) Si σ est une telle bijection alors f(x, y, z) un polynôme en x, y, z, on

désigne par fσ le polynôme suivant : fσ(x, y, z) = f(σ(x), σ(y), σ(z)).

Posons f(x, y, z) = (x + jy + j2z)3 où j =
−1 + i

√
3

2
alors comme

1 + j + j2 = 0 et j3 = 1

i. fσ1(x, y, z) = f(σ1(x), σ1(y), σ1(z)) = f(x, y, z) = (x + jy +
j2z)3 = P1

ii. fσ2(x, y, z) = f(σ2(x), σ2(y), σ2(z)) = f(x, z, y) = (x+jz+j2y)3 =
P2

iii. fσ3(x, y, z) = f(σ3(x), σ3(y), σ3(z)) = f(z, y, x) = (z+jy+j2x)3 =
j3(z + jy + j2x)3 = (jz + j2y + j3x)3 = (x+ jz + j2y) = P2
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iv. fσ4
(x, y, z) = f(σ4(x), σ4(y), σ4(z)) = f(y, x, z) = (y + jx +

j2z)3 = j3(y+ jx+ j2z)3 = (jy+ j2x+ j3z)3 = (z+ jy+ j2x)3 =

v. fσ5
(x, y, z) = f(σ5(x), σ5(y), σ5(z)) = f(y, z, x) = (y+jz+j2x)3 =

j3(y + jz + j2x)3 = ()3 == ()3 =

vi. fσ6
(x, y, z) = f(σ6(x), σ6(y), σ6(z)) = f(z, x, y) = (z+jx+j2y)3 =

j3(z + jx+ j2y)3 = ()3 = ()3 =

l’ensemble des polynômes fσ est réduit à deux éléments P1 et P2 avec
P1 = (x+ jy + j2z)3 et P2 = (x+ jz + j2y)3

4. On suppose maintenant que x, y, z sont les solutions complexes de x3 +
px+ q = 0 où (p, q) ∈ C2

(a) Calculer P1 + P2 puis P1P2 en fonction de p et de q en utilisant le 1)
et le 2)

(b) En déduire P1 et P2

(c) En posant α = x + jy + j2z et β = x + j2y + jz exprimer x, y, z en
fonction de α et de β

(d) α et β étant donc les racines cubiques de P1 et de P2, quelle rela-
tion doit les lier pour que les x; y, z obtenus précédemment soient
effectivement les solutions de x3 + px+ q = 0 (Utiliser le 1°)

(e) En déduire les solutions dans C de l’équation : x3 + px+ q = 0

(f) Application : Résoudre dans C l’équation suivante :x3 + 3x+ 2 = 0

5. Si p ∈ R et q ∈ R donner en étudiant les variations de la fonction de
R dans R définie par f(x) = x3 + px + q les conditions nécessaires et
suffisantes pour que les 3 racines de l’équation x3 + px + q = 0 soient
réelles.
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3 Résolution de l’équation Ax3+Bx2+Cx+D = 0
à coefficients réels

3.1 Préliminaire
Soit le polynôme Ax3+Bx2+Cx+D = 0 où A,B,C,D sont des coefficients

réels avec A ̸= 0.

1. Montrer que résoudre Ax3+Bx2+Cx+D = 0 ⇐⇒ x3+bx2+cx+d = 0
où b, c, d sont des coefficients réels.

2. On note P (x) = x3 + bx2 + cx + d. Montrer qu’il existe un nombre réel
h tel que P (x+ h) a la forme x3 + px+ q

On se limitera dorénavant aux équations du 3me degré du type x3 + px+ q = 0
où (p, q) ∈ R2

3.2 Résolution de (E) : x3 + px+ q = 0 où (p, q) ∈ R2

1. (a) supposons u3 et v3 sont des racines distinctes de

(F ) : x2 + qx− p3

27
= 0

donc u3 + v3 = −q et u3v3 = −p3

27
donc uv = −p

3
donc

(u+ v)3 + p(u+ v) + q = u3 + 3u2v + 3uv2 + v3 + pu+ pv + q

= −q+3uv(u+v)+q = 3(−p

3
)(u+v)+pu+pv = −pu+−pv+u+pv = 0

Par conséquent u+ v est racine de l’équation (E)

(b) Comme u+ v est racine de (E) alors
x3 + px+ q = (x− (u+ v))[x2 + βx+ γ]
donc x3+ px+ q = x3+x2[−(u+ v)+β] +x[γ− (u+ v)β]− γ(u+ v).
On en déduit que  β − (u+ v) = 0

γ − (u+ v)β = p
−γ(u+ v) = q

Donc {
β = (u+ v)
γ = (u+ v)β + p = (u+ v)2 + p = (u+ v)2 − 3uv

On vérifie que la 3ime équation du système est vraie :
−γ(u+ v) = [−(u+ v)2 + 3uv](u+ v) = −(u+ v)3 + 3u2v + 3uv2 =
−u3 − v3 = q
par conséquent x3+px+q = (x−(u+v))[x2+(u+v)x+(u+v)2−3uv]
Le discriminant de x2 + (u+ v)x+ (u+ v)2 − 3uv est
∆ = (u+ v)2− 4(u+ v)2+12uv = 12uv− 3(u+ v)2 = −3(u− v)2 < 0
car u ̸= v donc u+ v est racine unique de (E)

6



(c) Soit l’équation (F ) : x2 + qx− p3

27
= 0 de discriminant

∆ = q2 + 4
p3

27
=

27q2 + 4p3

27
.

Si 27q2+4p3 > 0 alors (F ) a deux solutions réelles distinctes que l’on
peut noter u3 et v3.

u3 =
−q +

√
27q2 + 4p3

27
2

v3 =
−q −

√
27q2 + 4p3

27
2

avec  u3 + v3 = −q

u3v3 = −p3

27

donc en prenant u et v racines cubiques de u3 et v3 avec uv = −p

3
on

alors u+ v racine unique de (E).
Donc la seule solution de (E) est

x = u+ v =

3

√√√√√−q +

√
27q2 + 4p3

27
2

+

3

√√√√√−q +

√
27q2 + 4p3

27
2

(Formules de Gerolamo Cardano)

2. (a) Montrer que si u3 est la racine double de (F ) : x2+ qx− p3

27
= 0 alors

2u et −u sont les racines de l’équation (E)

(b) Donner dans ce cas l’écriture de ces racines en fonction de p et de q
ainsi que sa condition d’existence.(Formule de Gerolamo Cardano)

3. On se place dans le cas où (F ) n’a pas de solution à savoir 4p3+27q2 < 0

(a) On fait dans (E) le changement de variable défini par x = λy avec

λ > 0 tel que λ2 = −4

3
p.

Montrer que (E) se met sous la forme (G) : 4y3 − 3y = γ où l’on
déterminera γ.

(b) Montrer qu’il est toujours possible de poser γ = cos(θ)

(c) Déduire de l’équation (G) mise sous la forme 4y3 − 3y = cos(θ) que
−1 ≤ y ≤ 1

(d) Poser alors y = cos(α) et mettre (G) sous la forme cos(3α) = cos(θ).
En déduire que (E) admet 3 solutions.

4. Applications :
(a) Résoudre l’équation : x3 − 7x2 + 17x− 20 = 0

(b) Résoudre l’équation : x3 − 3x+
√
2 = 0
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4 Historique
Le premier problème célèbre est celui de la duplication du cube.

Vers −250 Archimède pose le problème de la découpe d’une sphère pleine par un
plan en 2 parties tels que les volumes obtenus soient dans un rapport donné. En
1545, le mathématicien italien Gerolamo Cardano(Jérôme Cardan) publie une
méthode de résolution algébrique développée par Niccolò Tartaglia des équations
du troisième degré où la racine est exprimée en fonction de leurs coefficients.
L’élève de Cardan, Ludovico Ferrari, et Tartaglia découvrent une solution algé-
brique pour des équations du quatrième degré.

En 1629, le mathématicien français, Albert Girard, admet la possibilité
qu’une équation ait des racines négatives ou des racines complexes. Il est ainsi
en mesure de compléter les découvertes partielles de François Viète concernant
les relations entre les racines et les coefficients d’une équation algébrique. Viète
avait découvert que si a et b sont les racines de x2 − px+ q = 0, alors p = a+ b
et q = a× b.

Plus généralement, Viète démontre que, si le coefficient de plus haut degré
de l’équation p(x) = 0 est 1, alors l’opposé du coefficient d’ordre suivant est
égal à la somme de toutes les racines ; le troisième coefficient suivant est égal
à la somme de tous les produits de deux racines, et l’opposé du quatrième
coefficient est égal à la somme de tous les produits de trois racines. Si le degré
de l’équation est pair, le dernier coefficient est le produit de toutes les racines ;
s’il est impair, l’opposé de ce coefficient est égal au produit de toutes les racines.
Viète apporte également une contribution importante aux méthodes numériques
d’approximation des racines d’équations.

En 1635, René Descartes publie un texte sur la théorie des équations, avec
notamment une règle des signes permettant de déterminer le nombre de solu-
tions positives et négatives d’une équation. Quelques décennies plus tard, Isaac
Newton indique une méthode itérative pour trouver les racines d’une équation,
incluant le cas particulier de la méthode de Héron décrite ci-dessus ; elle est
connue aujourd’hui sous le nom de méthode de Newton-Raphson.

À la fin du 18me siècle, le mathématicien allemand Carl Friedrich Gauss
démontre que toute équation polynômiale a au moins une solution. Il reste ce-
pendant à déterminer si cette racine peut s’exprimer à l’aide d’une formule
algébrique faisant intervenir les coefficients de l’équation, comme c’est le cas
pour les équations de premier, second, troisième et quatrième degrés. Dans le
cadre de cette recherche, le Français Joseph Lagrange développe une méthode
de permutation des racines d’une équation. Cette idée est reprise par l’Italien
Paolo Ruffini, le Norvégien Niels Abel et le Français Évariste Galois. Les travaux
de ces quatre mathématiciens conduisent à une théorie complète des racines des
polynômes. D’après cette dernière, une équation polynômiale peut être résolue
à l’aide d’une formule algébrique générale, seulement si le degré du polynôme
est inférieur à cinq. Les travaux de Galois donnent également la réponse à deux
célèbres problèmes posés par les Grecs : Galois démontre qu’en utilisant seule-
ment un compas et une règle, il est impossible de partager un angle quelconque
en trois parties égales et de construire un cube dont le volume est le double du
volume d’un cube donné.
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