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1 Préliminaires

1.1 Recherche de 2 nombres connaissant leur somme et
leur produit

{ p1+p2=S
pip2 = P
<
pr+p2=>5
pip2 = P
(X =p1)(X —p2) =0
<

pL+p2=S

pip2 = P

X2 —(p1+p2)X +pip2=0
«—= X2 -SX+P=0

1.2 Racines n-iémes complexes
1.2.1 Racines n-iémes complexes d’un nombre complexe non nul

Soit un nombre complexe Z # 0.
Soit n un entier naturel différent de 0 et de 1. Soit I’équation z” = Z d’inconnue
complexe z.



1. Comme Z # 0 alors z # 0. On résoud donc cette équation dans C*. Alors
comme un nombre complexe non nul a une écriture trigonométrique, on
pose Z = pe'? et z = re'®
Donc 2" = Z <= (re!®)" = pe'? <= r"ei"™ = pet?
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2. Lorsque k décrit Z alors les mesures d’angle — sont représentées
n

géométriquement sur le cercle trigonométrique par n points dis-
tincts sommets d’un polygone inscrit régulier correspondants

aux n valeurs suivantes £k =0,1,2,--- ,n—1
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il — + —

Sa={g¢pe\" "/ /kel0:n-1)}

Donc le cardinal de I’ensemble S,, des solutions est n.

Ces solutions sont appelées les racines-niémes complexes de Z.
Onappelleracine-niéme de 1’unité une racine-niéme complexes del.
1.2.2 Racines n-iémes de 'unité

On note U,, ’ensemble des racines niémes complexes de 'unité. ici Z =1 =
161'0

i(O + M) 2

LU, ={V1e\" " kelo;n—1|y={e n [kel0;n—1]}.
) ) 2km

2. On pose w = cos(%) +i sm(%) —e n

(a) les solutions de I'équation 2" = 1 sont les w* ou k € [|0;n — 1]]

(b) Comme w # 1 alors la somme des racines n-iémes complexes de 'unité
est :

0 1 2 n—1 ol —w"
w tw tw'ttw =W —

=0
1l-w
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1.2.3 Racines cubiques de 'unité
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3. On considére 3 points A, B et C d’affixes respectives a, b et c.

— ABC' est un triangle équilatéral direct <= la rotation vectorielle
d’angle de mesure T transforme /@ en ﬁ
= 22 2623(21@) = c—a=—j%b—a)
= cta(-1-j)+b2=0<=c+aj+bj?=0car 1 +5j+52=0
<= b+cj+aj? = 0 en multipliant les 2 membres par j et en utilisant
j3 =1 <= a+bj+cj?> = 0 en multipliant les 2 membres par j et en
utilisant j3 =1

— ABC est un triangle équilatéral <= la rotation vectorielle d’angle de
mesure ~ transforme E en zﬁ ou la rotation vectorielle d’angle de

mesure g transforme 1@ en 1@

<= a+bj+cj? = 0oua+bj®+cj) = 0 < (a+bj+cj?)(a+bj+cj) =
0

<= a® +ab(j + j2) + ac(j + j2) + b2 + be(j2 + ) + 25° = 0 =
a?+b?>+c? —bc—ca—ab=0

2 Reésolution de ’équation Ax®+Ba?+Cx+D =0
a coeflicients complexes

2.1 Préliminaire

Soit le polynéme Az3+ Bx?4+Cxz+D = 0ot A, B, C, D sont des coefficients
complexes avec A # 0.

B C D
B C D
— 23+ br?+cx+d=0o0ub= 1T etd= ) sont des coefficients

complexes.

2. On note P(x) = 23 + bx® + cx + d.
Alors P(z + h) = (x + h)3 + b(z + h)?> + c(x + h) +d = 2° + 32°h +
3zh? + h3 + ba? 4 2bxh + bh? + cx + ch + d = x® + 2%(3h + b) + x(3h? +
¢+ 2bh) + h3 +bh® 4+ ch +d

b
11 suffit de prendre h = —3 pour que P(z+h)=2®+pr+q

On se limitera dorénavant aux équations du 3™¢ degré du type z2 +px +q =0
ot (p,q) € C?

2.2 Résolution de 2 + pz + ¢ =0 ou (p,q) € C?

1. — Le théoréme de D’Alembert-Gauss permet d’affirmer 'existence de 3
solutions complexes x1, T2, x5 pour I’équation =3 + pxr +¢ =0
— (Formule de Viete) :
21,2, 23 sont les solutions de a2 + pr +q =0 < 23 +pzr +q =
(x — 1) (z — 22)(x — x3)
= 3 +pr+q=2>+2%(—r3— 10— 11) + 2(T320 + T 179 + 173) —



i=1 1<i<j<3

2. 11, xo,x3 désignant toujours les solutions de 2% +px +¢ =0,

(a) (z1+z2 +23)% = 22 + 22 + 22 + 22129 + 22173 + 2w073 = 27 + 23 +
23 + 2(z179 + 1123 + T2T3).

3 3
OI‘Z{EZ‘ZOGt Z TiTj :denC:OQZZx$+2p_
i=1 1<i<j<3 i=1

3
Par conséquent, | A = Zx? =—-2p
i=1

(b) Comme z1,x2 et x3 sont les solutions de I'équation 2® + pxr + ¢ = 0
alors 3 + pr1 +¢ =0 et 23 + pra + ¢ =0 et 23 + pr3 + ¢ = 0 donc
3 3 3

en sommant on obtient 0 = Z xf’ +p Z x; + 3q. Or Z z; = 0 donc

i=1 i=1 i=1

3
0= Zacf + p(0) + 3¢
i=1

Par conséquent, | B = Z a:f = -3¢

(¢) (z1+ @2+ 23)° = 23 + 23 + 2§ + 32123 + 32123 + 302} + 3w223 +
3:10395% + 333390% + 6x12973

3 3
Donc0 = -3¢+ 3 Z :E?xj — 6q Par conséquent | C' = Z :cij =3q|
1<i<j<3 1<i<j<3

3.(a) Il y aen tout 3! permutations des 3 lettres z,y, z. Voici donc les 6
bijections de z,y, z dans x,y, 2 :

fr oy 2\ (fxz oy z\ [z y =z
I I P L
04:<x Y z);05:<x Y z>;06:(1’ Y z)
Yy x oz Yy z oz z oz Yy

(b) Si o est une telle bijection alors f(x,y, z) un polynéme en z,y, z, on
désigne par f, le polynéme suivant : f,(x,y,2) = f(o(x),0(y),o(z)).

—14iv3
Posons f(x,y,2) = (z + jy + j22)% ou j = ﬂ alors comme

2
1+j+j2=0etj3=1
1. f01(x’yaz) = f(al(x),al(y),al(z)) = f(x’yaz) = (Z‘ + Jjy +

j%2)° = P
ii. fvz(x’yvz) = f(0'2($)70'2(y)70'2(2)) = f(x,z,y) = ($+]Z+]2y)3 =
Py

i, fy (2,0,2) = £(03(2), 73(9), 09(2)) = £(2,,) = (=+jg+720)° =
Bz +jy+5%2)3 = (jz+ 2y + 5%2)° = (x + j2 + j2y) = P»



iv. fa4(x,y,Z) = floa(2),0u(y), 04(2) = f(y,2,2) = (y + jz +
7%2) = Py + e+ 522)° = (y + P+ 5%2)° = (2 + jy + j%2)* =

V. foi(@,y,2) = ( 5(2),0
PPy +jz+ 520 = ()’ =

vi. fde(x Y,z ) ( ((,C) 06 ( ) 6( )) = f(z,x7y) = (z+]x+]2y)3 =

Pltir+iy)?’=0"=0°=
I’ensemble des polynoémes f, est réduit & deux éléments P; et Py avec
Pr=(z+jy+5°2)° et Py = (v +jz +5°%y)°

5(y )70 5(2)) = f(y, 2, 2) = (y+jz+i%2)° =

4. On suppose maintenant que x,y, z sont les solutions complexes de 3+
pr+q=0ou (p,q) € C?

(a)

(b)

(d)

()
(f)

Calculer Py + P, puis Py P, en fonction de p et de ¢ en utilisant le 1)
et le 2)

En déduire P; et P

) En posant a = x + jy + j%z et B = x + j%y + jz exprimer z,y,z en

fonction de « et de 8

«a et B étant donc les racines cubiques de P et de P, quelle rela-
tion doit les lier pour que les z;y, z obtenus précédemment soient
effectivement les solutions de 22 + px + ¢ = 0 (Utiliser le 1°)

En déduire les solutions dans C de I’équation : 23 + pz +¢q =0
Application : Résoudre dans C I’équation suivante :z> + 3z +2 =0

5. Sip € Ret g € R donner en étudiant les variations de la fonction de
R dans R définie par f(x) = 23 + pz + ¢ les conditions nécessaires et
suffisantes pour que les 3 racines de ’équation 2% + px + ¢ = 0 soient
réelles.



3 Résolution de I’équation Az + Bz?>+Cx+D =0
a coefficients réels

3.1 Préliminaire

Soit le polynéme Az3+ Bx?4+Cx+D = 0 ou A, B, C, D sont des coefficients
réels avec A # 0.

1. Montrer que résoudre Az + Bx? +Cx+D =0 <= 23+ b2z’ +cx+d =0
ou b, ¢, d sont des coefficients réels.

2. On note P(z) = 2 + bx? + cx + d. Montrer qu'’il existe un nombre réel
h tel que P(x + h) a la forme 2 + px + ¢

On se limitera dorénavant aux équations du 3¢ degré du type 23 +pz +¢q =0
ot (p,q) € R?

3.2 Résolution de (E): 2* + pr +q =0 ou (p,q) € R?

1. (a)

supposons u> et v3 sont des racines distinctes de

3
(F):mQ—i—qx—%:O

P’ P
donc et udv? = —7 donc | uv = -3 donc
(u+v)2 +p(u+v) +q=u>+3u?v+ 3uv? + 03 + pu+pv+gq
= —q+3uwv(utv)+q = 3(—%)(u+v)+pu+pv = —pu+—pv+ut+pv =0

Par conséquent u + v est racine de I’équation (F)

Comme u + v est racine de (E) alors

2% +pr+q = (x— (utv))z? + fr +1]

donc @® +pz +¢q = 2® + 2% [~ (u+v) + Bl + 2y — (u+v)f] = y(u+v).
On en déduit que

B~ (utv)=0
y—(u+v)B=p
—(u+v)=gq

Donc

{ﬁ:m+m
y=w+v)B+p=(u+v)?+p=(u+v)?—3uw

On vérifie que la 3"™¢ équation du systéme est vraie :

—y(u+v) = [—(u+v)? + 3uw](u +v) = —(u+v)? + 3u?v + 3uw? =
—ud —vd=g¢q

par conséquent 22 +pz+q = (z— (u+v))[22+ (u+v)z+ (u+v)% - 3uv]
Le discriminant de 2% + (u + v)z + (u + v)? — 3uv est

A= (u+tv)?—4(u+v)?+12uv = 12uv — 3(u+v)* = =3(u—v)? < 0
car u # v donc u + v est racine unique de (F)



3
(c) Soit I'équation (F) : 2% + qx — % = 0 de discriminant

3 2 3
_ 2yl T A
A= tig=—0p

Si 27¢% +4p3 > 0 alors (F) a deux solutions réelles distinctes que 1’on
peut noter u? et v3.

27¢% + 4p3
gy T
u? =
2
27¢% + 4p3
3 27
() —
2
avec
u? + 02 = —q
3
3,3 p
U = ——
27
donc en prenant u et v racines cubiques de u? et v3 avec uv = —g on

alors u + v racine unique de (E).
Donc la seule solution de (F) est

27¢% + 4p® o| —g 4 27¢% + 4p®
27 1 27

r=u-+v= 5 + 5

(Formules de Gerolamo Cardano)
3

2. (a) Montrer que si u® est la racine double de (F) : 22 + gz — ]2)—7 = 0 alors
2u et —u sont les racines de 1’équation (F)

(b) Donner dans ce cas I’écriture de ces racines en fonction de p et de ¢
ainsi que sa condition d’existence.(Formule de Gerolamo Cardano)

3. On se place dans le cas ot (F) n’a pas de solution & savoir 4p> +27¢% < 0

(a) On fait dans (E) le changement de variable défini par x = Ay avec
A > 0 tel que A2 = —3P-

Montrer que (E) se met sous la forme (G) : 4y®> — 3y = v ot 'on
déterminera .

(b) Montrer qu’il est toujours possible de poser v = cos(6)

(c) Déduire de I'équation (G) mise sous la forme 4y* — 3y = cos(#) que
—l<y<l

(d) Poser alors y = cos(a) et mettre (G) sous la forme cos(3a) = cos(6).
En déduire que (F) admet 3 solutions.
4. Applications :
(a) Résoudre I'équation : 2® — 722 + 172 —20 =0
(b) Résoudre I'équation : 3 — 3z + /2 =0



4 Historique

Le premier probléme célébre est celui de la duplication du cube.

Vers —250 Archiméde pose le probléme de la découpe d’une sphére pleine par un
plan en 2 parties tels que les volumes obtenus soient dans un rapport donné. En
1545, le mathématicien italien Gerolamo Cardano(Jérome Cardan) publie une
méthode de résolution algébrique développée par Niccolo Tartaglia des équations
du troisiéme degré ou la racine est exprimée en fonction de leurs coeflicients.
L’éléve de Cardan, Ludovico Ferrari, et Tartaglia découvrent une solution algé-
brique pour des équations du quatriéme degré.

En 1629, le mathématicien frangais, Albert Girard, admet la possibilité
qu’une équation ait des racines négatives ou des racines complexes. Il est ainsi
en mesure de compléter les découvertes partielles de Francois Viéte concernant
les relations entre les racines et les coefficients d’une équation algébrique. Viéte
avait découvert que si a et b sont les racines de 22 —pz+¢ =0, alorsp=a+b
et g=axb.

Plus généralement, Viéte démontre que, si le coefficient de plus haut degré
de I’équation p(z) = 0 est 1, alors 'opposé du coefficient d’ordre suivant est
égal & la somme de toutes les racines; le troisiéme coeflicient suivant est égal
a la somme de tous les produits de deux racines, et 'opposé du quatriéme
coefficient est égal & la somme de tous les produits de trois racines. Si le degré
de ’équation est pair, le dernier coefficient est le produit de toutes les racines;
'l est impair, I’'opposé de ce coefficient est égal au produit de toutes les racines.
Viéte apporte également une contribution importante aux méthodes numériques
d’approximation des racines d’équations.

En 1635, René Descartes publie un texte sur la théorie des équations, avec
notamment une régle des signes permettant de déterminer le nombre de solu-
tions positives et négatives d’une équation. Quelques décennies plus tard, Isaac
Newton indique une méthode itérative pour trouver les racines d’une équation,
incluant le cas particulier de la méthode de Héron décrite ci-dessus; elle est
connue aujourd’hui sous le nom de méthode de Newton-Raphson.

A la fin du 18™¢ siécle, le mathématicien allemand Carl Friedrich Gauss
démontre que toute équation polyndémiale a au moins une solution. Il reste ce-
pendant & déterminer si cette racine peut s’exprimer & l’aide d’une formule
algébrique faisant intervenir les coefficients de I’équation, comme c’est le cas
pour les équations de premier, second, troisiéme et quatriéme degrés. Dans le
cadre de cette recherche, le Frangais Joseph Lagrange développe une méthode
de permutation des racines d’'une équation. Cette idée est reprise par I'Italien
Paolo Ruffini, le Norvégien Niels Abel et le Francais Evariste Galois. Les travaux
de ces quatre mathématiciens conduisent a une théorie compléte des racines des
polynémes. D’aprés cette derniére, une équation polynémiale peut étre résolue
a l'aide d’une formule algébrique générale, seulement si le degré du polynéme
est inférieur a cing. Les travaux de Galois donnent également la réponse a deux
célébres problémes posés par les Grecs : Galois démontre qu’en utilisant seule-
ment un compas et une régle, il est impossible de partager un angle quelconque
en trois parties égales et de construire un cube dont le volume est le double du
volume d’un cube donné.



