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"Le seul objet naturel de la pensée mathématique est le nombre entier. C’est le nombre
extérieur qui nous a imposé le continu, que nous avons inventé sans doute mais qu’il
nous a forcés d’inventer."
Henri POINCARE , La valeur de la science.

1 Définition des réels

1.1 Définition d’une coupure de Dedekind

En mathématiques, une coupure de Dedekind d’un ensemble totalement ordonné E est un
couple (A, B) de sous-ensembles de E, lesquels forment à eux deux une partition de E, où
tout élément de A est inférieur à tout élément de B.

1.2 Définition d’une coupure de Q

On dit qu’on a réalisé une coupure dans Q lorsqu’on forme deux sous-ensembles de Q appe-
lés classe inférieure I et classe supérieure S tels que :

1. Tout rationnel est soit dans I soit dans S .

2. I ̸= ∅ et S ̸= ∅

3. Tout rationnel r ∈ I est inférieur à tout rationnel r′ ∈ S

1.3 Exemple

Soit I = {r ∈ Q tels que r < 0 ou (r ≥ 0 et r2 < 2)}.
Soit S = {r ∈ Q tels que r ≥ 0 et r2 ≥ 22}.
On a ainsi réalisé une coupure dans Q car les 3 conditions précédentes sont vérifiées.

1.4 Définition d’un rationnel et d’un irrationnel par une coupure

Dedekind, dans son ouvrage de 1872, s’appuie sur une représentation géométrique :
la représentation de la droite réelle et sa restriction à l’ensemble des rationnels.
Il observe que l’on peut couper cette droite en deux parties.

• si la coupure se fait sur un rationnel r, le découpage donne deux parties qui peuvent
être :
⋄ A = {a ∈ Q tels que a < r} et B = b ∈ Q tels que b ≥ r}

ou A′ = {a ∈ Q tels que a ≤ r} et B′ = b ∈ Q tels que b > r}
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⋄ Dans ce premier cas, il associe le rationnel r aux coupures (A, B) et (A′, B′) qu’il
considère comme seulement légèrement différentes.

• si la coupure se fait sur un irrationnel x , le découpage donne deux parties qui sont :
⋄ A = {a ∈ Q tels que a < x} et B = b ∈ Q tels que b > x}
⋄ Dans ce second cas, il « crée » un nouveau nombre irrationnel représenté par la

coupure (A, B)

2 Propriétés

2.0.1

R n’est pas dénombrable.

2.0.2

Q est dénombrable

2.0.3

Q est dense dans R

2.0.4

(Q,+,×) est un corps premier c’est-à-dire qu’il n’y a pas d’autre corps strictement inclus
dans Q.

Soit Q′ un sous-corps inclus dans Q. Nous allons démontrer que Q′ = Q .
• On a bien entendu Q′ ⊂ Q.
• Nous allons démontrer que Q ⊂ Q′.

⋄ On a 1Q ∈ Q′ car Q′ sous corps de Q. Mais comme + est interne dans Q′ alors
1 + 1 = 2 ∈ Q′ et par récurrence , on prouve que tout entier naturel n ∈ Q′

⋄ Comme Q′ est un groupe, tout élément n ∈ Q′ admet un symétrique −n ∈ Q′.
Par conséquent, tout entier relatif n ∈ Q′.

⋄ Comme tout élément d non nul de Q′ admet un inverse
1
d
∈ Q′

⋄ Soit un rationner =
n
d
∈ Q alors r = n × 1

d
avec n ∈ Z et d ∈ N donc comme × est

interne dans Q′ alors r = n × 1
d

• Comme Q′ ⊂ Q et que Q ⊂ Q′ alors Q′ = Q.

2.0.5 Les racines carrées d’un nombre premier sont des irrationnels

Démontrer que si p est un entier naturel premier alors
√

p est un irrationnel.

Corrigé
Raisonnons par l’absurde. supposons que

√
p est un nombre rationnel.

Alors ∃n ∈ Z ∃d ∈ N∗ √
p =

n
d
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Par conséquent, p =
n2

d2 donc pd2 = n2.

Or tout entier naturel est décomposable en produits d’entiers premiers ce qui est le cas de d2 et
de n2.
L’exposant de l’entier premier p dans les entiers n2 et dans d2 est pair .
Mais alors l’exposant de l’entier premier p dans l’entier pd2 est impair alors que cet exposant
est pair dans n2. Ce n’est pas possible car pd2 = n2.
Par conséquent,

√
p ne peut être un nombre rationnel. c’est donc un nombre irrationnel.

2.1 Théorème HLW : dHermite-Linderman-Waierstrass

On admet le résultat suivant

Soit un entier r ≥ 2.
Si a1, a2, · · · , ar sont des nombres rationnels distincts deux à deux alors

ea1 , ea2 , · · · , ear sont linéairement indépendants sur Q

.

Démonstration Cf sujet Maths X-Ens24MP-D

2.1.1 Corollaire : le logarithme d’un nombre rationnel positif ̸= 1 est irrationnel

Soit a ∈ Q+∗ − {1} alors ln(a) ∈ R − Q

Raisonnons par l’absurde. Supposons que ln(a) ∈ Q.
a = exp(ln(a) donc a − eln(a) = 0 ou encore a.e0 − 1.eln(a) = 0. Or les rationnels a et 1 sont
distincts donc d’après le Théorème HLW, on devrait avoir (e0, eln(a))) distincts puisque ln(a) ̸=
0 et linéairement indépendants dans Q .
Or ce n’est pas le cas car on a une combinaison linéaire nulle de (e0, eln(a)) avec un au moins des
coefficients rationnels qui n’est pas nul. Impossible.
par conséquent, ln(a) est irrationnel.

2.1.2 Corollaire : ea est transcendant si a ∈ Q+∗

Soit a ∈ Q∗ alors ∀P ∈ Q[X] P(ea) ̸= 0

Démontrons la contraposée :

supposons ∃P =
n

∑
k=1

pkXk ∈ Q[X] et P(ea) = 0.

On a donc
n

∑
k=1

pkeak = 0 d’où l’existence d’une combinaison linéaire nulle avec des coefficients

rationnels p0, p1, · · · , pn des éléments e0, ea, e2a, · · · , ena avec des nombres rationnels 0, a, 2a, · · · , na
distincts car a ̸= 0. Ceci est impossible d’après le théorème HLW.
Par conséquent, ∀P ∈ Q[X] P(ea) ̸= 0.
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3 Exercices

3.1 Irrationnalité de e

3.1.1 Sujet

3.1.2 Corrigé

Partie A
Soit la fonction numérique d’une variable réelle f définie par f (x) = x e1−x.

1. • Etant donné que la fonction exponentielle est définie sur R alors e1−x est bien défini
pour tout x ∈ R donc f (x) = x e1−x est bien défini sur R

• f est dérivable (donc continue) sur R car c’est le produit de deux fonctions dérivables
sur R :
— x 7→ x est dérivable sur R ;
— x 7→ e1−x est aussi dérivable sur R car c’est la composée de 2 fonctions

— x 7→ 1 − x qui est dérivable sur R

— la fonction exponentielle qui est dérivable sur R

— ∀x ∈ R on a 1 − x ∈ R

• ∀x ∈ R f ′(x) = 1e1−x + x(−1)e1−x = e1−x(1 − x) du signe du binôme 1 − x car
e1−x > 0

• Quand x 7→ −∞ on a 1 − x 7→ +∞ et donc e1−x 7→ +∞ donc x e1−x 7→ −∞
• f (x) = x

e
ex donc quand x 7→ +∞ on a

x
ex 7→ 0 donc f (x) 7→ 0

•
x −∞ 1 +∞

f ′(x) + 0 −
1

f (x) ↗ ↘

−∞ 0

2. Voici la courbe représentative C de f dans le plan P

3. (a) Comme f est continue sur [0; 1] car elle est continue sur R alors f est intégrable sur

[0; 1] donc I1 =
∫ 1

0
f (x) dx existe

(b) Posons u(x) = x et v′(x) = e1−x alors u′(x) = 1 et on peut choisir v(x) = −e1−x
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(c) u et v étant toutes deux de classe C1 on peut alors intégrer I1 par parties :

(d) I1 = [−xe1−x]10 −
∫ 1

0
−e1−x dx = [−xe1−x − e1−x]10 = e − 2

I1 = e − 2 représente en unités d’aire la mesure du domaine plan déterminé par l’axe des
abscisses, la courbe C de f et les droites d’équation x = 0, x = 1

Partie B

Pour tout entier n ≥ 1 on pose In =
∫ 1

0
xn e1−x dx

1. (a) Soit x ∈ [0; 1] alors 0 ≤ x ≤ 1 donc −0 ≥ −x ≥ −1 d’où 1 ≥ 1 − x ≥ 0 c’est-à-dire
0 ≤ 1 − x ≤ 1.
Or exp est croissante sur R donc sur [0; 1] par conséquent e0 ≤ e1−x ≤ e1 c’est-à-dire
1 ≤ e1−x ≤ e. Or xn ≥ 0 donc l’on a : xn ≤ xn e1−x ≤ e xn

(b) La fonction polynôme x 7→ xn est continue sur R donc sur [0; 1] donc est intégrable

sur cet intervalle. Jn =
∫ 1

0
xn dx existe et vaut [

xn+1

n + 1
]10 =

1
n + 1

.

(c) Comme les bornes 0 et 1 sont dans l’ordre croissant, comme sur cet intervalle pour

tout entier n ≥ 1 l’on a : l’on a : xn ≤ xn e1−x ≤ e xn alors
∫ 1

0
xn dx ≤

∫ 1

0
xn e1−x dx ≤

∫ 1

0
e xn dx

donc
∫ 1

0
xn dx ≤

∫ 1

0
xn e1−x dx ≤ e

∫ 1

0
xn dx. Or Jn =

∫ 1

0
xn dx =

1
n + 1

donc
1

n + 1
≤ In ≤ e

n + 1

(d) D’après le théorème des gendarmes comme lim
n 7→+∞

1
n + 1

= 0 et lim
n 7→+∞

e
n + 1

= 0

alors lim
n 7→+∞

In = 0

2. Soit In+1 =
∫ 1

0
xn+1 e1−x dx. Posons

{
u(x) = xn+1 =⇒ u′(x) = (n + 1)xn

v′(x) = e1−x ⇐= v(x) = −e1−x

u et v sont toutes deux de classe C − 1 sur [0; 1] donc on peut intégrer par parties :

In+1 = [−xn+1e1−x]10 −
∫ 1

0
(n + 1)xn (−e1−x) dx = −1 + (n + 1)

∫ 1

0
xn e1−x dx = (n + 1)In − 1

3. Pour tout entier n ≥ 1 on pose kn = n! e − In où factorielle de n : n! = 1 × 2 × 3 × · · · × n
est le produit des n premiers entiers naturels non nuls.
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(a) kn+1 = (n + 1)! e − In+1 = (n + 1) n!e − (n + 1)In + 1 = (n + 1)(n! e − In) + 1 =
(n + 1)kn + 1

(b) k1 = 1! e − I1 = e − I1 = e − (e − 2) = 2
Démontrons par récurrence sur n que kn est un nombre entier pour tout entier n ≥ 1.
Posons pr(n) : ”kn ∈ N”
• étape 1 : initialisation pour k = 1 k1 ∈ N car k1 = 2.
• étape 2 : hérédité

Soit n ∈ N∗ supposons que kn ∈ N alors (n + 1)kn + 1 ∈ N donc kn+1 ∈ N.
• pr est initialisée en 1 et pr est héréditaire donc pr est vraie pour tout entier n ≥ 1.

Par conséquent, ∀k ∈ N∗ kn ∈ N.

(c) On sait déjà que
1

n + 1
≤ In ≤ e

n + 1
donc kn +

1
n + 1

≤ kn + In ≤ kn +
e

n + 1
.

Soit n ≥ 2 alors n + 1 ≥ 3 donc
1

n + 1
≤ 1

3
d’où

e
n + 1

≤ e
3

. Or e ≤ 3 donc
e

n + 1
≤ 3

3
.

Par conséquent kn ≤ kn +
1

n + 1
≤ kn + In ≤ kn +

e
n + 1

kn + 1.

Comme kn et kn+1 sont deux entiers consécutifs alors n! e = kn + In n’est pas un
nombre entier car il est strictement compris entre deux entiers consécutifs.

4. (a) Soient p et q deux entiers strictement positifs.

Supposons que n ≥ q alors
n! p

q
=

1 × 2 × 3 × · · · × (q − 1)× q × (q + 1)× · · · × n × p
q

=

1 × 2 × 3 × · · · × (q − 1)× (q + 1)× · · · × n × p est un nombre entier.

(b) Raisonnons par l’absurde. Supposons que e est un nombre rationnel donc il existerait

p et q deux entiers strictement positifs tels que e =
p
q

.

Mais alors n! e = n!
p
q

serait un entier donc kn + In serait aussi un entier.

Or cela est faux. Donc l’hypothèse e rationnel est fausse.
On en déduit que le nombre e est irrationnel.
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