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"Il n’y a pas de mathématiques modernes. Ces deux mots anodins font pourtant
régner la terreur dans des millions de foyers ot les parents, angoissés, “séchent” sur
des problémes donnés a leurs fils en quatriéme. "

Jean Rostand

1 Définition d’un ensemble

Un ensemble peut étre déterminé :
e soit en extension lorsque le nombre de ses éléments n’est pas tres élevé. On définit
I'ensemble en donnant la liste de ses éléments.
ex : 'ensemble des résultats du jet d'un dé est QO = {1;2;3;4;5;6}
e soit en compréhension par une propriété caractéristique.
ex : ’ensemble des entiers pairs
On appelle ensemble vide qu’on note @ un ensemble qui n’a aucun élément

2 Appartenance

Lorsqu’un objet x appartient a un ensemble E , on écrit x € E.
Dans le cas contraire on écrit x ¢ E.

3 Parties ou sous-ensembles d’un ensemble E
3.1 Définition

On dit qu'un ensemble A est inclus dans un ensemble E ou que A est une partie de E ou que
A est un sous-ensemble de E lorsque I'implication : Vx x € A = x € E est vraie.

On écrit alors A C E.

Lorsque A est strictement inclus dans E, on écrit A C E

Un ensemble A n’est pas inclus dans un ensemble E lorsque :3x x € Aetx € E.

On note P(E) I'ensemble des parties d'un ensemble E.




3.2 Remarque

Attention a ne pas confondre la relation d’appartenance € et la relation d’inclusion C.
1. Larelation d’appartenance concerne un objet et un ensemble.
2. La relation d’inclusion concerne deux ensembles.
3. Bienentendu, x € E <= {x} CE

3.3 Exemples

NcZcDcQcRcC

IN = I'ensemble des entiers naturels = {0;1;2;3;--- }

Z =1ensemble des entiers relatifs = {- - -; —6; —5; —4; —3; -2, —1;0;1;2;3; - - - .}

D = l'ensemble des nombres décimaux = l’ensemble des nombres avec un nombre

fini de chiffres apres la virgule = l'ensemble des nombres qui ont la forme suivante :
entier relatif

puissance positive de 10

Q = l'ensemble des nombres rationnels = I'ensemble des nombres qui ont la forme sui-

_ entier relatif

“entier relatif non nul

R =1" ensemble des nombres réels = | — o0; +00]

C = l'ensemble des nombres complexes = {x +iy/x € R;y € R;i* = —1}

R — Q = l’ensemble des nombres irrationnels.

V2: V3, V6, V7 V2 + V33 — V2,155 ln(;); V2 nz;sin(lo") ;8in(20°) ;cos(5°) ;tan(25°) sont

des irrationnels.
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3.4 Exercice: /2 ¢ D

I Démontrer que v/2 n’est pas un nombre décimal.

Raisonnons par l'absurde. supposons que /2 est un décimal donc il a un développement déci-

mal fini. Soit x le dernier chiffre de ce développement décimal. On sait que \@2 =2donc

e ou x = 1 donc le développement décimal de x* se termine par 1 donc il est impossible
d’obtenir 2

e ou x = 2 donc le développement décimal de x? se termine par 4 donc il est impossible
d’obtenir 2

e ou x = 3 donc le développement décimal de x? se termine par 9 donc il est impossible
d’obtenir 2

e ou x = 4 donc le développement décimal de x? se termine par 6 donc il est impossible
d’obtenir 2

e ou x = 5 donc le développement décimal de x* se termine par 5 donc il est impossible
d’obtenir 2

e ou x = 6 donc le développement décimal de x* se termine par 6 donc il est impossible
d’obtenir 2

e ou x = 7 donc le développement décimal de x? se termine par 9 donc il est impossible
d’obtenir 2

e ou x = 8 donc le développement décimal de x? se termine par 4 donc il est impossible
d’obtenir 2

e ou x = 9 donc le développement décimal de x* se termine par 1 donc il est impossible
d’obtenir 2

Par conséquent, on aboutit & une contradiction donc /2 ne peut étre un nombre décimal.



3.5 Exercice:\?2 ¢ Q

1. Démontrer que si un entier 7 est pair alors son carré n? est pair
2. Démontrer que si un entier 1 est impair alors son carré n? est impair
3. Démontrer par 'absurde que v/2 est un nombre irrationnel (c’est-a- dire ne peut se

mettre sous la forme g oll p est un entier relatif et 4 un entier relatif non nul).

3.5.1 Corrigé

1. soit un entier n pair alors 3k € IN tel que n = 2k donc son carré n? = (2k)? = 4k? =
2(2k?) = 2k’ ot k' = 2k? est un entier naturel donc n? est pair

2. soit un entier n impair alors 3k € N tel que n = 2k + 1 donc son carré n? = (2k +1)? =
4k? + 4k +1 = 2(2k> + 2k) + 1 = 2K + 1 ot1 k' = 2k? + 2k) est un entier naturel donc 1>
est impair

pZ

q_zn

Par consé%uent p? = 2g% donc p? est pair donc p est pair d’ott Ik € N tel gue p =2k.

Comme p? = 24% alors (2k)? = 24 . On en déduit que q> = 2k? donc ¢ est pair d’oi1

k" € N tel que g = 2k’

Mais alors la fraction s = 2k = L3 est réductible. Contradiction. Donc I'hypothese

2k’ K
V2 € Q est fausse.

L'ensemble des entiers naturels pairs (ou 'ensemble des multiples de 2) est {x = 2k/k € IN}
est inclus strictement dans IN
L'ensemble des entiers naturels impairs est {x = 2k + 1/k € IN} est inclus strictement dans IN

3. Supposons que v/2 = Z irréductible avec p € N etq € IN* donc 2 =



3.6 Propriétés

1.

Pour tout ensemble E,ona @ C E.
@ s’appelle la partie vide de E.

Pour tout ensemble E,ona E C E.
E s’appelle la partie pleine de E
Quelques exemples :
siE = {a} alors P(E) = {@; {a}}
siE = {a;b} alors P(E) = {@;{a};{b};{a,b}}
si E = {a;b;c} alors P(E) = {@; {a}; {b};{c};{a,b};{a,c};{b,c};{a,b,c}}
si E = @ alors P(E) = {©@}
si E est un ensemble fini ayant n éléments alors ’ensemble P(E) de ses parties a 2"
éléments
Démonstration : Pour créer I’ensemble des parties P(E) d’un ensemble E,
e on place d’abord la seule partie a 0 éléments qui est 'ensemble vide @
e puis les parties a 1 élément qu’on appelle les singletons,
les parties a 2 éléments qu’on appelle les paires,
celles a 3 éléments,

celles a n — 1 éléments
et enfin la seule partie a n éléments, la partie pleine c’est-a-dire I'ensemble E lui-
méme.
Par conséquent,
e si Ey = {a} alors P(E1) = {@; {a}}
e siEy = {a;b} alors E; = Ey U {b} et P(Ey) = {D; {a}; {b};{a;b}}
e siE; = {a;b;c}alorsE3 = E;U{c}etP(E) = {

On peut donc remarquer que lorsque 1’on ajoute un élément rouge a un ensemble E;
, alors I'ensemble des parties du nouvel ensemble E; U {x} est formé de toutes les an-
ciennes parties de E; auxquelles on ajoute de nouvelles parties qui sont en fait formées
des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Donc il y a autant de nouvelles parties ayant ce nouvel élément rouge x que d’anciennes
parties n’ayant pas x.
On pose pr(n) :" le nombre de parties d'un ensemble ayant n éléments est 2""
e Etape 1: initialisation
A-t-on pr(0)?
c’est-a-dire a-t-on le nombre de parties d"un ensemble ayant 0 éléments est 20 ?
Oui car si Card(E) = 0 c’est que E = @ donc P(E) = P(@) = {@}. P(E) n’a donc
qu’un seul élément.
Par conséquent pr(0) est vraie.
e Etape 2 : hérédité
Soit un certain entier k > 0. A-t-on pr(k) = pr(k+1)?
c’est-a-dire a-t-on le nombre de parties d"un ensemble ayant k éléments est 2¢ =
que le nombre de parties d'un ensemble ayant k + 1 éléments est 2K+1
Supposons que 'hypothese de récurrence suivante " le nombre de parties d'un en-
semble ayant k éléments est 2F " soit vraie.

O {at; {b} {chi{a b} {a;chi{b;c}{a;bict}



Soit un ensemble F ayant k 4 1 éléments. Isolons un élément x de F . Par conséquent
F =EU{x} ou E a k éléments.

Alors l'ensemble des parties du nouvel ensemble F = E U {x} est formé de toutes
les anciennes parties de E auxquelles on ajoute de nouvelles parties qui sont en fait
formées des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Or d’apres 'hypothese de récurrence, Card(P(E)) = 2k et de plus il y a autant de
nouvelles parties ayant ce nouvel élément rouge que d’anciennes parties n’ayant pas
{x}

donc Card(P(F)) = 2k + 2K = 2(2F) = 21k CQFD.

Conclusion pr est initialisé en 0 et pr est héréditaire

donc pour tout entier naturel n, si Card(E) = n alors Card(P(E)) = 2""

5. On appelle (Z) le nombre de parties a p éléments d’'un ensemble E ayant n éléments.

Ceci se notait auparavant C;,. On parle aussi du nombre de combinaisons de p élé-
ments pris parmi n.

6. (a)

(b)

(©

(d)

(e)

()

(8)

(h)

Sip > n alors (;l) =0

normal car on peut pas former de parties ayant plus d’éléments que 'ensemble E.

n
Pour tout entier naturel #, < 0> =1

cariln’ y a qu'une seule partie ayant 0 élément dans 'ensemble E : c’est la partie vide
@

n
Pour tout entier naturel 7, (n) =1

car il n” y a qu'une seule partie ayant n éléments dans 1’ensemble E : c’est la partie
pleine E

n
Pour tout entier naturel 7, < 1> =n

car il n'y a que n parties ayant un seul élément dans un ensemble E : ce sont les
singletons de chacun des éléments de E.

. n n
Pour tout p compris entre 0 et 1, (P) = (n - P)
car choisir p éléments dans un ensemble E est équivalent a choisir n — p éléments
dans cet ensemble.

. n n—1 n—1
Pour tout p compris entre 0 et p = p—1 + p
Cette formule s’appelle la Grande Formule de PASCAL.
Démonstration : On isole un élément x de E.

est le nombre total de parties a p éléments = nombre de parties a p éléments

e n—1 n—1
contenant x plus le nombre de parties a p éléments ne contenant pas x = +

p—1
Formule du biné6me de Newton :
Pour tous réelsa et b l'on a

oy = 3 (1ot = @ray = 3 ()ar

k=0 k=0

¢ xkqn—k = (1
douvxeR (1+ux)" 1" " = X

1§)<> k;)(k)

)



n
(i) Pour tout entier naturel 7, 2 (Z) = 2" en posant x = 1
k=0
L n
(j) Pour tout entier naturel #, Z (—1)k (k> = (0 en posant x = —1
k=0

(a+b)’ |1 !

(a+h)' | 1+ a+b

(a+b)® | 11211 a’+2ab+b?

|
(a+bY |1+3+3+1 a’+3a%b+3ab%+b’

.
I
(a+b)* | 1+4+614/-1| a*+da’bebab+4ab+b*
L]
T

(a+b |1]5(10{10{ 5|1 | a®+5a'b+10a%b?+10a%?
+Hab+b?

Triangle dit de PASCAL (en fait retrouvé chez dans les manuscrits Miroir de Jade des 4 inconnues du
chinois SHOU-CHI-YIE en 1303 et dans les travaux chez de I'indien BASKHARA 1114-1185)
On peut remarquer que :

e Dans la colonne correspondant a p = 1 on retrouve les entiers naturels

n
e Dans la colonne correspondant & p = 2 on retrouve les nombres triangulaires T, = ) _ k
k=1

— T =1
— Th=1+2=3
— T3=1+2+3=6
— Ty =14+24+3+4=10
— T3=1+2+3+4+5=15
e La somme des éléments de chaque ligne est 2".
Par exemple, pourn =4onaS=1+4+6+4+1=16=2*
¢ Si on additionne les termes de chaque ligne affectés alternativement des signes + et —
on obtient comme somme : 0
Par exemple, pourn =5onaS=1-5+10-104+5-1=0



Démonstration par récurrence de la Formule du bindme de Newton (1642-1727)
Soient a et b des nombres réels donc ab = ba. Alors :

n . .
VineN (a+b)" =) <7> a bl

i=0

(f?) i b
o \J

M-

Vi €N (a+b)" =

]

en effectuant le changement d’indice j = n — i

Démonstration :

n
Notons pr(n) : (a+b)" Z( )u b,

1. Initialisation : elle est vraieenn = O car :
(a+b)0=1= (8) a® p0-0

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k > 0 c’est-a-dire que :

(a+b)k= Xk: <Il(> a* bk

i=0

k
Alors (a + b)) = (a4 b)(a+b)* = (a+b)] Z()a vk

_ K\ opk o (KN 1k k k—i kN k11 (kY k0
—(a+b)(<0)ab—l—(1)ab TG al ki PR e akp’)

=(a+b)(bk+(]1c)a1bk—1+m+ ’f O ( kl)ak—1b1+a")

:(abk+<’1<)azbk1+._.+<llf) gt k=i g
Lpktl 71< Ao Iz{ g i (k
= pktt +abk[(ll{) + (15)] + a? bkl[@) + (1)] +-tal bkfﬂ[(’lf) + (ifl)] +
it bk—i[(’lf) n (ifl>}+...+akb1[(£> n (kfl>]+ak+1

_bk—i—l_'_abk(k‘{l)_'_azbk—l (k‘;1>+”,+aibk—i+l (k+1)+ gL pk- l<’f+1>+
k+1
—i—akbl( + ak+1
k
k+1 aObk+1+abk k+1 _‘_a2bk71 k+1 _i_,”_i_aibkfzﬁrl k+1 4 1+1bk1 k+1 +
0 1 2 i+1
+ ak p! (k;:1> + (lli—i—}) ak+1p0
+

3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n > 0



Cette formule est valable pour tous éléments a et b d'un anneau a condition que ces éléments
soient commutables c’est-a-dire que ab = ba.

C’est le cas pour des matrices carrées d’ordre 1 : A et B a condition d’avoir vérifié que AB =
BA.

Souvent A = I la matrice de I'identité donc IB = B et BI = B donc IB = BI donc

VneN(I+B)" =Y (”) g =Yy (”) 1B =Y <”> B/
=0\ =0\ N
Exemple :
11

0 1)
Déterminer une écriture simplifiée de A"pour tout entier naturel 7.

Soit la matrice A = (

. . 11 . 10 . 01
Soient la matrice A = (0 1), la matrice I = (0 1) et la matrice | = (0 O)
e A=1+]

e -6
0 0/\0 O 0 0/
La matrice | est dite nilpotente.
On peut alors démontrer par récurrence que Vn > 2 J*" =0
En effet,
— J? = 0la propriété est vraie au rang n = 2
— Soit un entier k > 2 supposons que Jf=Oalorsft1 =]k =J0=0
— La propriété étant initialisée en 2 et étant héréditaire est donc vraie pour tout entier
n>2
o Alors comme [ et ] sont commutables puisque I] = J[IcarI] =Jet ]I =]
on peut donc appliquer la formule du bindme de Newton :

VneEN A"=(I+])" = f (’;) "k gk

k=0

An_ g n I k _ ¢ n k
=2 k)1 =21 ()]

k=0 k=0
Orapartirdek=2onaJf =0

1
ey =E(0)1=0)r ()1 =1om-( 9+ -

1 n
0 1

)



4 Opérations sur des ensembles
4.1 Union
Si A et B sont des parties de E alors la réunion de A et de B qu’on note A U B est la partie de

E formée des éléments de A et des éléments de B
Plus formellement AUB ={x € E/x € Aou x € B}

4.2 Intersection

Si A et B sont des parties de E alors l'intersection de A et de B qu'on note A N B est la partie
de E formée des éléments de A qui sont aussi des éléments de B
Plus formellement ANB={x € E/x € Aetx € B}

/
N

10



4.3 Complémentaire

Si A est une partie de E , alors on appelle complémentaire de A dans E , la partie formée des
éléments de E qui n’appartiennent pas a A. On note cette partie A ou CE A

4.4 Différence

Si A et B sont des parties de E alors on appelle différence de A et B qu’on note

A — B ou A\B l'ensemble formé par les éléments de A n’appartenant pas a B.
A\B=ANB=A—-(ANB)

4.5 Différence symétrique

Si A et B sont des parties de E alors on appelle différence symétrique de A et B qu’on note
AAB l’ensemble formé par les éléments appartenant a un et un seul des ensembles A et B En
fait, AAB = (AUB) — (AN B) = (A\B) U(B\A).

On a quatre définitions équivalentes de AAB :

1. AAB = (A\B)U(\A)

2. AAB=(ANB)U(BNA)
3. AAB=(AUB)/(ANB)
4. AAB= (AUB)N(AUB)

11



4.6 Propriétés les plus importantes

© Q0 0

Soit un ensemble E. Soient A et B des sous ensembles ( ou des parties) de E. Alors :

AU =A

AUA=A

AUE=E

ACAUB

BC AUB

A UB = BU A (commutativité)
(AUB)UC = AU (BUC) (associativité)

AN =0

ANA=A

ANE=A

ANBCA

ANBCB

AN B = BN A (commutativité)
(ANB)NC = AN (BNC) (associativité)

N(BUC) = (AN B)U(ANC) (distributivité de N par rapport a U)
U(BNC) = (AUB)N(AUC) (distributivité de U par rapporta nN)

B NIRS

Uu
|
axmQ
C D
o]

pNINLN]

C D

N
I

> D>D>
\ :)
||

ACB

AN (B/C) =(ANB)/(ANC)

((AUB)/(AUC)) C AU(B/C)

(AAB)AC = AA(BAC) (associativité)

AAB = BAA (commutativité)

AAD = A (I'ensemble vide @ est élément neutre dans P(E))
AAA = A (tout élément de P(E) est son propre symétrique)

(P(E),A) est donc un groupe abélien.

De plus, AN (BAC) = (AN B)A(ANC) (distributivité de N par rapporta A)
Par conséquent (P(E), A, N) est un anneau.

Cet anneau est un anneau de Boole car tout élément A de vérifie ANA = A

12



5 Produit cartésien de deux ensembles

On appelle produit cartésien de deux ensembles E et F qu’on note E x F, I'ensemble suivant :
ExF={(x;y)/x € Eety € F}.
C’est I'ensemble des couples ot le premier élément appartient a E et le deuxiéme élément
appartienta F.
e Lorsque E = F, E x E se note E?
o Le produit cartésien des ensembles E , F et G est :
ExFxG={(x;y;z)/x € E;yc Fetze G}
C’est'ensemble des triplets ot le premier élément appartient a E, le deuxiéme élément
appartient a F et le troisieme élément appartient a G
e On peut généraliser le produit cartésien a n ensembles :
E1 X Ey X E3 x --- X Ey
e EXEXEX---x E(n fois) se note E"

5.1 Exemples

e {(x;y)/x € Rety € R} se note R?

e Lorsque l'on jette 2 dés , ’ensemble des résultats possibles est 'univers
Q = {1;2;3;4;5;6} x {1;2;3;4;5;6} qu’on note encore {1;2;3;4;5;6}>
Q est formé des 36 couples (1;1); (1;2);- - -; (6;5); (6;6) que 1'on peut représenter par le
tableau a 2 entrées ci-dessous :

del de2 1 2 3 4 5 6

~

N§ N N (N I (V'S
S | | | | S

~
~

NINDNINDNDN
— | — | — | — | —|—

N N
Q| W W W W W
% N Nab? N N N
Q1| Q1| Q1| O1| Q1| U1
N N N N N N

~

Ll B Bl B Bl B
S | | | | — | ~—
O\U‘I‘)-lku)l\)»—\
O\U‘I‘Hkb.)l\)»—\
CARSUIRE IO N
O‘\U‘I\)-BQJNH
NGB NG
AN\ O\ O\ O\ O
S || | | | —

~

QN Q1| x| Q| N —
|||
|||
|||
||
||
~| [

~
~

ou par le dessin suivant
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6 Exercices
6.1

Soit un ensemble E = {a;b; c}. Peut-on écrire ?
l.acE
2.aCE
3. {a} CE
4. D € E
5. 9 CE
6. {&} CE

6.2

I Les notations @, { }, {@}, {{®}} désignent-t-elles le méme ensemble ?

6.3

Déterminer :
1. P(@)
2. P(P(D))
3. P(P(P(Q)))
4. Quel est Card(P(P(P(P(D)))))?

6.3.1 Corrigé
La démarche utilisée est de construire I'ensemble de parties P (E) en créant d’abord la partie
vide, puis les parties a 1 élément, puis celles a 2 éléments, etc, jusqu’a la partie pleine E.

1. P(©) = {D}.
On vérifie bien ici que comme Card(@) = 0 alors Card(P(®)) =20 =1

2. P(P(@)) = P({2}) = {; {2}

On vérifie bien ici que comme Card(P(@)) = 1 alors Card(P(P(@))) = 2! =2
3. P(P(P(2))) = P({2:{@}})

= {2 {2}; {{2}}:{2; {2} }}
4. Card(P(P(P(P(2))))) = 2* = 16 car Card(P(P(P(2)))) — 4

6.4

Donner des exemples de partitions des ensembles E suivants :
1. E={a; b; ¢}
2.E={a; B;v;0;¢}
3. E = L'ensemble des chiffres du systéme décimal

14



6.5

Soit E = {a;b}. A quels ensembles appartient les éléments suivants :
(a;b)

- {a}

- (a;{b})

(a; E)

- {2}

- (@3 {a})

o Ul W N

6.6

Soit un ensemble E. Pour toutes parties A, B de E onnote AxB = AUB.
Démontrer que ; U; N s’obtiennent en utilisant seulement .

6.7

On considere les sous-ensembles de IN suivants :
A=1{1,23,4,5,6,7},B=1{1,3,57},C={2,4,6},D = {3,6}

1. Déterminer BN D,CN D
2. Déterminer BU C,C U D. Une de ces réunions est-elle disjointe ?
3. Déterminer CAD.

4. Déterminer les complémentaires dans A de B,C et D.

6.8

On considere les ensembles suivants :
A=1{1,2,5};B={{1,2},5},;C={{1,2,5}};D =40,1,2,5};E = {5,1,2}
F={{1,2}{5}};G = {{1,2},{5},5} et H = {5, {1}, {2}}

1. Donner le nombre d’éléments de chacun de ces ensembles.

2. Quelles sont les relations d’égalité ou d’inclusion existant entre ces ensembles ?

3. Déterminer ANB,GUD, E/G

6.9

On suppose que A, B et C sont des sous-ensembles d’'un méme ensemble E.
Simplifier les expressions suivantes :

1. (AUB)N(AUB)

2. BU(A—-B)
3. AN(AUB)
4. AN(AUB)N(AUBUCQ)
5. AU(ANB)U(ANBNC)

15



6.10

Soient X et Y des ensembles. Démontrer 1'équivalence logique suivante :

X=Y < XNY=XUY

6.10.1 Corrigé

1. =
Supposons que X = Yalors XNY =XNX=XetXUY=XUX=X
donc XNY = XUY.CQFD.

2.
Supposons que XNY = XUY

e Démontrons que X C Y:
Soit x € X. Comme X C XUYalorsx € XUY.Or XNY = XUY doncx € XNY
donc x € Y. CQFD.

e Par un démonstration analogue, en permutant les roles symétriques de X et de Y on
prouve que Y C X.

e Comme X C YetY C Xalors X =Y. CQFD.

3. Comme X =Y = XNY=XUYetque XNY =XUY = X=Y
alors X =Y <= XNY=XUY

16



6.11 Agrégation Externe 1978

1. Vérifier que I'ensemble des parties P(()) de I'ensemble () muni de 1'opération
"différence symétrique" A définie par :
A: POQ)xPQ) — P(Q)
(xy) — xAy={tcQ/(te(xUy)ett & (xNy)}
est un groupe abélien.

2. Démontrer que P(Q2) avec comme loi de groupe"additif "celle définie au 1°) peut étre
muni d’une structure d’espace vectoriel sur le corps a 2 éléments K = Z/27Z = {0;1}
Grace a quelle propriété particuliere de cette loi de groupe, cela est-il possible ?

3. Quelle est alors la dimension de cet espace vectoriel P(Q2) ?
Fournir une base de cet espace.

4. Vérifier que I'application

a: PQ)xPQ) — Z/2Z
(xy) — a(xy) =[xNy |

est une forme bilinéaire symétrique non dégénérée sur P(Q))

6.11.1 Corrigé
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6.12 Différence symétrique de plusieurs ensembles

Soit n entier > 3. Soient A1, Ay, - - - , A, des parties de E. Démontrer par récurrence que :
x € Ay A AZA - AA, < x appartient a un nombre impair de A;

6.12.1 Corrigé
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6.13 Rationnels a racines carrées irrationnelles

1. Soit un entier naturel b € IN.
Démontrer 1'équivalence logique suivante :

b est un carré parfait < Vb e Q

2. Soient a et b des entiers naturels premiers.
Démontrer que :

Va+vVbh¢Q

3. Soient a, b, ¢, d quatre nombres rationnels tels qued > 0; b > 0; Vb ¢ Q
Démontrer que :

a+Vb=c+Vd= (a=c)et(b=4d)

6.13.1 Corrigé

1. Soit un entier naturel b € IN*.

(a)

(b)

Par conséquent, | b est un carré parfait <= vb € Q

-

Supposons que b est un carré parfait donc 3n € N b = n? alors v/b = n.

OrIN C Q.Doncn € Qdouvb € Q.

—:

Pour démontrer que Vb € Q == b est un carré parfait nous allons démontrer sa
contraposée a savoir que : b n’est un carré parfait = v/b ¢ Q.

Soit b qui n’est pas un carré parfait. Raisonnons par I’absurde. Supposons que v'b € Q

alors comme v/b > Oalors 3p € N 3 € N* b= P itréductible donc pAg=1
P’ q
P
En utilisant le fait qu'un entier naturel se décompose en produit de facteurs premiers
comme p A g = 1alors p?> A g> = 1 puisque p? et g* ont les mémes facteurs premiers
que p et g avec juste un exposant doublé.

Or ¢? divise p? donc forcément ¢> = 1 puisque p? A g2 = 1.

On obtient donc b = p2 donc b est un carré parfait. Impossible donc Vb ¢ Q. CQFD.

Par conséquent , b = = donc p? = b 2.

2. Soient a et b des entiers naturels premiers donc a et b ne sont pas des carrés parfaits donc
VaéQetvVb ¢ Q.
Supposons que v/a + Vb € Q.

Comme a — b = (v/a— v/b)(yv/a+ Vb) alors /a — Vb =

a

—b
Va+vb

doncsia—b € Q

alors /Ja—vVbeQ.

Par conséquent {

Va+vbheQ
Va—+vbeQ

Par conséquent, par addition et par soustraction des deux lignes , \/a € Q et Vb € Q.
Cela est impossible.

Par conséquent, \/a + Vb ¢ Q
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3. Soient a4, b, c,d quatre nombres rationnels tels qued > 0; b > 0; Vb ¢Q
Supposons que a + Vb = ¢ + V/d.
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6.14

W

a1

10.

11.

12.

Partie entiére d’un nombre réel

On admet que tout réel x est compris entre 2 entiers relatifs consécutifs et n + 1 c’est-a-dire
que Vx € R Jununiquen € Ztelquen < x <n+ 1.

Cet entier n qui est le plus grand entier relatif précédant x s’appelle la partie entiére de x .
On le note Ent(x) ou [x] en Mathématiques. On a donc

[x] <x<[x]+1

. Tracer avec précision dans un repere (O; 7, 7) la courbe représentative de la fonction
partie entiere de R dans Z qui, a tout réel x associe [x]. Pour le graphique, on prendra
x € [—4;4]

. Démontrer que Vx e RVk € Z [x + k| = [x] + k

. Vx € R encadrer le nombre x — [x]

. Démontrer que l'application epi : R +— [0; 1[ qui & tout réel x associe epi(x) = x — [x]
est périodique. Quelle est sa période ? Dessiner la courbe représentative de epi dans un
autre repere pour x € [—4;4]

. Exprimer [—x] en fonction de [x]. Justifier.
. Dessiner avec précision les courbes des fonctions suivantes dans des reperes différents :
(a) f définie sur [—4;4] par f(x) = [|x]]
(b) g définie sur [—2;2] par g(x) = [2x]
(c) h définie sur [—1;1] par h(x) = [3x]
(d) i définie sur [—4;4] par i(x) = [Z]

(e) j définie sur [—6;6] par j(x) = [g}

(f) k définie sur [—2;2] par k(x) = [x?]

(g) I définie sur [0;9] par I(x) = [\/]

Pour chaque graphique, une justification est demandée. Attention aux bornes des in-
tervalles.

=R N R

. Déterminer puis dessiner avec précision dans un repére orthonormé 1’ensemble des

points M de coordonnées (x;v) tels que [x]? + [y]*> =0
. Soient les fonctions :
d:x— [T_‘_l];w:x»—) [sz—i—l] ets:x— w(x) —w(—x)

(a) Déterminer é(x), w(x) et s(x) en fonction de x. Dessiner leurs courbes.
x —x
211wyl =
. Démontrer que V(x,y) € R? [x+y] = [x]+[y] +eotte=00ue=1
X

(b) En déduire que Vx € R1'ona: x([

Démontrer que V(x,y) € R? [x—y] = [x] — [y] +eotte =0oue = —1
Démontrer que Vn € N*  [x] + [x + %] +[x+ %] +o 4+ nT—l} = [nx]
Démontrer que Vn € IN* [@] = [x]

21



6.14.1 Corrigé

On admet que tout réel x est compris entre 2 entiers relatifs consécutifs n et n + 1 c’est-a-dire
que Vx € R Jun unique n € Z tel que n < x < n + 1. Cet entier n qui est le plus grand entier
relatif précédant x s’appelle la partie entiere de x . On le note Ent(x) ou [x] en Mathématiques.
Onadonc [x] <x < [x]+1

—4 <x < —3alors [x] = —4
—3<x< —2alors [x] = -3
—2<x < —1lalors [x] = 2
—1<x < O0alors [x] =
si0 < x < 1lalors [x] =
sil < x < 2alors [x]
[x]
[x]

si2 < x < 3alors [x
si3 < x < 4alors [x
e six =4alors [x] =4

0
1
2
3

Voici donc dans un repeére (O u, v ) la courbe représentative de la fonction partie en-
tiere de R dans Z qui , a tout réel x associe [x]. Pour le graphique, on prendra x € [—4;4]

2. Vx e Ralors [x] <x < [x]+1doncVk € Z [x] +k < x+k < [x] +1+k. Or [x] + ket
[x] + k 4 1 sont deux entiers consécutifs donc ‘ [x + k| =[x] +k ‘

3. Vx € R comme [x] < x < [x]+1alors [x] —[x] < x—[x] < [x]+1— [x] donc

‘ 0<x—[x]<1 ‘ Lorsque x est un réel positif alors x — [x] s’appelle aussi la partie déci-

male de x
4. Soit k € Z* alors 'application epi : R — [0; 1] qui & tout réel x associe epi(x) = x — [x]
est périodique de période k car :
e L'ensemble de définition de epi qui est R est tel que Vx € D,y; on x +k € Dy,
o Vx € Dypiepi(x +k) = (x +k) — [x + k] = x +k— ([x] +k) = x — [x] = epi(x)
La plus petite période k strictement positive est 1 donc "la" période de x — [x] est 1.
La courbe représentative de epi ressemble a un champ d’épis dans un autre repére pour
€ [—4;4]
5. Si[x] <x < [x]+1alors —[x] > —x > —[x] — 1 donc —[x] =1 < —x < —[x] Donc pour
exprimer [—x| en fonction de [x], il faudra distinguer 2 cas :

(a) ou bien x est un entier relatif k alors —x est I'entier —k aussi donc [—x] = [—k] =
—k = —[x] donc| [—x] = —[x]

(b) ou bien x n’est pas entier alors [x] < x < [x] +1
alors —[x] > —x > —[x] —1donc —[x] — 1 < —x < —[x]. Et comme —[x] — 1 et —[x]

sont des entiers consécutifs alors‘ [—x] = —[x] — ‘

6. Nous allons dessiner avec précision les courbes des fonctions suivantes dans des reperes
différents :
(a) f définie sur [—4;4] parf(x) = [|x|]
L'ensemble de définition D est centré en 0 et Vx € Dy f(—x) = f(x) donc f est
paire donc on étudie f sur [0;4] et on complete la courbe en utilisant la symétrie
orthogonale d’axe I'axe des ordonnées.

(b) g définie sur [—2;2] par g(x) = [2x]
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-3
esi—2<x< -5 alors —4 < 2x < —3 donc [2x] = —4

si _73 <x < —lalors =3 < 2x < —2donc [2x] = -3
esi—1<x< %alors —2 <2x < —1donc [2x] = -2
Si%l < x < 0alors —1 < 2x < 0 donc [2x] = —1

1
si0§x<§alor50§2x<1donc 2x] =0

1
sii§x<1alorsl§2x<2donc[2x}:1

. si1§x<galor32§2x<3donc[2x}:2

o si% < x < 2alors3 < 2x < 4donc 2x] =3
e six = 2alors 2x = 4 donc [2x] = 4
(c) h définie sur [—1;1] par h(x) = [3x]

-2
esi—1<x< ?alors —3<3x < —2donc [3x] = -3
. si%z§x<%alors—2§3x<—1donc[3x]:—2
-1
° si?§x<0alors—1§3x<0donc[3x]:—1

1
. si0§x<éalors0§3x<1donc[3x}:0

m.
QINW| =

2
e si §x<5alorsl§3x<2donc[3x]:1

< x < lalors2 < 3x < 3 donc [3x] =2

e six = 1alors 3x = 3 alors [3x] =3

(d) i définie sur [—4;4] par i(x) = [g]

° sif4§x<72alor572§%<71donc [g} = -2

e si

o si—2<x<0alors —-1< g <0donc[g]:—1

. si0§x<2alors0§%<1donc[§]20
. si2§x<4alorsl§%<2donc[%]:1
. six:4alors§:2donc[%]:2

(e) j définie sur [—6; 6] par j(x) = [g]
e si—6<x< —3alors -2 < % < —1donc [

e si—3 <x<O0alors —1 < % <0donc[g]

|=-2
~1

W[ R

si0 < x < 3alors 0 < <1donc[§]:0

N RWI| =R

< 2donc [%] =1

si3<x<6alors1 <
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. six:6a10rsg:2donc[%]:2

(f) k définie sur [—2;2] par k(x) = [x?]
L'ensemble de définition Dy est centré en 0 et Vx € Dy f(—x) = f(x) donc f est paire

donc on étudie f sur [0;2] et on complete la courbe en utilisant la symétrie orthogo-
nale d’axe I’axe des ordonnées.

sil <x < +2alors1 < x? < 2donc [x?]
siv2 < x < V3alors2 < x%2 < 3 donc [x
siv3 < x < 2alors 3 < x2 < 4 donc [x?]
si x = 2 alors x> = 4 donc [x?] = 4

(g) I définie sur [0;9] par I(x) = [/x]

si0 < x < 1lalors 0 < x? < 1donc [x ]=0
]

3

si0 <x<lalors0 < /x <1donc[y/x]=0
sil<x<4alors1 < /x <2donc [y/x] =1
si4 < x <9alors2 < /x < 3donc [\/x] =2
six =9alors v/x =3 donc [\/x] =3

. On voudrait déterminer puis dessiner avec précision dans un repere orthonormé l’en-
semble des points M de coordonnées (x;y) tels que [x]2 + [y]> =0
On sait que la somme de 2 réels de méme signe est nulle si et seulement si chacun de ces
réels est nul.
Donc [x?+ [y? =0 x> =[y)> =0« [x] =0et[y] =0
S0<x<let0<y<1

1 1
. (a) osiszalorsm—ldoncé() [2+1] 11 1
ix # O0alors x> > 0doncx?+1 > 1donc0 < ——— < 1doncé
o;lx# alors x* > 0donc x*+1 > 1donc <x2+1< oncé(x) = [x2+1}
(b) o six=0alors -~ = Odoncw(x) = [5— i ]=0
N 241 x2 41 y
e six >0alorsx? —x+1> 0car A = —3 < 0 donc x? +1>xd0nc0<m<1
donc w(x) = | 2"“]
e six < Oalors x? +x+1>0carA273<0doncx2+1>fxdonc0<xz_7j:1<
x x
1donc0 > 71 > —1doncw(x) = [9@7—#1] =-1

(¢) e six=0alorss(x) =w(0) —w(0)=0
e six >0alorss(x) =w(x) —w(—x)=0—(-1)=1
e six <Oalorss(x) =w(x) —w(—x)=-1-0= -1
donc Vx € Rona xs(x) = |x| car
e six =0alorsxs(x) =0
e six > 0alors xs(x) = 1x = x
e six <Oalorss(x) = —1x = —x
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