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"Il n’y a pas de mathématiques modernes. Ces deux mots anodins font pourtant
régner la terreur dans des millions de foyers où les parents, angoissés, “sèchent” sur
des problèmes donnés à leurs fils en quatrième. "
Jean Rostand

1 Définition d’un ensemble

Un ensemble peut être déterminé :
• soit en extension lorsque le nombre de ses éléments n’est pas très élevé. On définit

l’ensemble en donnant la liste de ses éléments.
ex : l’ensemble des résultats du jet d’un dé est Ω = {1; 2; 3; 4; 5; 6}

• soit en compréhension par une propriété caractéristique.
ex : l’ensemble des entiers pairs

On appelle ensemble vide qu’on note ∅ un ensemble qui n’a aucun élément

2 Appartenance

Lorsqu’un objet x appartient à un ensemble E , on écrit x ∈ E.
Dans le cas contraire on écrit x /∈ E.

3 Parties ou sous-ensembles d’un ensemble E

3.1 Définition

On dit qu’un ensemble A est inclus dans un ensemble E ou que A est une partie de E ou que
A est un sous-ensemble de E lorsque l’implication : ∀x x ∈ A⇒ x ∈ E est vraie.
On écrit alors A ⊆ E.
Lorsque A est strictement inclus dans E, on écrit A ⊂ E
Un ensemble A n’est pas inclus dans un ensemble E lorsque :∃x x ∈ A et x /∈ E.
On note P(E) l’ensemble des parties d’un ensemble E.
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3.2 Remarque

Attention à ne pas confondre la relation d’appartenance ∈ et la relation d’inclusion ⊂.

1. La relation d’appartenance concerne un objet et un ensemble.

2. La relation d’inclusion concerne deux ensembles.

3. Bien entendu, x ∈ E ⇐⇒ {x} ⊂ E

3.3 Exemples

N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C

N = l’ensemble des entiers naturels = {0; 1; 2; 3; · · · }
Z = l’ensemble des entiers relatifs = {· · · ;−6;−5;−4;−3;−2;−1; 0; 1; 2; 3; · · · .}
D = l’ensemble des nombres décimaux = l’ensemble des nombres avec un nombre
fini de chiffres après la virgule = l’ensemble des nombres qui ont la forme suivante :

entier relati f
puissance positive de 10
Q = l’ensemble des nombres rationnels = l’ensemble des nombres qui ont la forme sui-

vante :
entier relati f

entier relati f non nul
R = l’ ensemble des nombres réels = ]−∞;+∞[
C = l’ensemble des nombres complexes = {x + iy/x ∈ R; y ∈ R; i2 = −1}
R−Q = l’ensemble des nombres irrationnels.
√

2;
√

3;
√

6;
√

7;
√

2+
√

3;
√

3−
√

2;
√

15; ln(
3
2
); 3
√

2; π2;sin(10˚) ;sin(20˚) ;cos(5˚) ;tan(25˚) sont
des irrationnels.
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3.4 Exercice :
√

2 /∈ D

Démontrer que
√

2 n’est pas un nombre décimal.

Raisonnons par l’absurde. supposons que
√

2 est un décimal donc il a un développement déci-

mal fini. Soit x le dernier chiffre de ce développement décimal. On sait que
√

2
2
= 2 donc

• ou x = 1 donc le développement décimal de x2 se termine par 1 donc il est impossible
d’obtenir 2

• ou x = 2 donc le développement décimal de x2 se termine par 4 donc il est impossible
d’obtenir 2

• ou x = 3 donc le développement décimal de x2 se termine par 9 donc il est impossible
d’obtenir 2

• ou x = 4 donc le développement décimal de x2 se termine par 6 donc il est impossible
d’obtenir 2

• ou x = 5 donc le développement décimal de x2 se termine par 5 donc il est impossible
d’obtenir 2

• ou x = 6 donc le développement décimal de x2 se termine par 6 donc il est impossible
d’obtenir 2

• ou x = 7 donc le développement décimal de x2 se termine par 9 donc il est impossible
d’obtenir 2

• ou x = 8 donc le développement décimal de x2 se termine par 4 donc il est impossible
d’obtenir 2

• ou x = 9 donc le développement décimal de x2 se termine par 1 donc il est impossible
d’obtenir 2

Par conséquent, on aboutit à une contradiction donc
√

2 ne peut être un nombre décimal.
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3.5 Exercice :
√

2 /∈ Q

1. Démontrer que si un entier n est pair alors son carré n2 est pair

2. Démontrer que si un entier n est impair alors son carré n2 est impair

3. Démontrer par l’absurde que
√

2 est un nombre irrationnel (c’est-à- dire ne peut se

mettre sous la forme
p
q

où p est un entier relatif et q un entier relatif non nul).

3.5.1 Corrigé

1. soit un entier n pair alors ∃k ∈ N tel que n = 2k donc son carré n2 = (2k)2 = 4k2 =
2(2k2) = 2k′ où k′ = 2k2 est un entier naturel donc n2 est pair

2. soit un entier n impair alors ∃k ∈ N tel que n = 2k + 1 donc son carré n2 = (2k + 1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2k′ + 1 où k′ = 2k2 + 2k) est un entier naturel donc n2

est impair

3. Supposons que
√

2 =
p
q

irréductible avec p ∈N et q ∈N∗ donc 2 =
p2

q2 .

Par conséquent p2 = 2q2 donc p2 est pair donc p est pair d’où ∃k ∈N tel que p = 2k.
Comme p2 = 2q2 alors (2k)2 = 2q2 . On en déduit que q2 = 2k2 donc q2 est pair d’où
∃k′ ∈N tel que q = 2k′

Mais alors la fraction
p
q

=
2k
2k′

=
k
k′

est réductible. Contradiction. Donc l’hypothèse
√

2 ∈ Q est fausse.

L’ensemble des entiers naturels pairs (ou l’ensemble des multiples de 2) est {x = 2k/k ∈ N}
est inclus strictement dans N

L’ensemble des entiers naturels impairs est {x = 2k + 1/k ∈N} est inclus strictement dans N
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3.6 Propriétés

1. Pour tout ensemble E , on a ∅ ⊂ E.
∅ s’appelle la partie vide de E.

2. Pour tout ensemble E , on a E ⊆ E .
E s’appelle la partie pleine de E

3. Quelques exemples :
• si E = {a} alors P(E) = {∅; {a}}
• si E = {a; b} alors P(E) = {∅; {a}; {b}; {a, b}}
• si E = {a; b; c} alors P(E) = {∅; {a}; {b}; {c}; {a, b}; {a, c}; {b, c}; {a, b, c}}
• si E = ∅ alors P(E) = {∅}

4. si E est un ensemble fini ayant n éléments alors l’ensemble P(E) de ses parties a 2n

éléments
Démonstration : Pour créer l’ensemble des parties P(E) d’un ensemble E,
• on place d’abord la seule partie à 0 éléments qui est l’ensemble vide ∅
• puis les parties à 1 élément qu’on appelle les singletons,
• les parties à 2 éléments qu’on appelle les paires,
• celles à 3 éléments ,
• ...
• celles à n− 1 éléments
• et enfin la seule partie à n éléments, la partie pleine c’est-à-dire l’ensemble E lui-

même.
Par conséquent,
• si E1 = {a} alors P(E1) = {∅; {a}}
• si E2 = {a; b} alors E2 = E1 ∪ {b} et P(E2) = {∅; {a}; {b}; {a; b}}
• si E3 = {a; b; c} alors E3 = E2∪{c} etP(E) = {∅; {a}; {b}; {c}; {a; b}; {a; c}; {b; c}; {a; b; c}}

On peut donc remarquer que lorsque l’on ajoute un élément rouge à un ensemble Ei
, alors l’ensemble des parties du nouvel ensemble Ei ∪ {x} est formé de toutes les an-
ciennes parties de Ei auxquelles on ajoute de nouvelles parties qui sont en fait formées
des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Donc il y a autant de nouvelles parties ayant ce nouvel élément rouge x que d’anciennes
parties n’ayant pas x.
On pose pr(n) :" le nombre de parties d’un ensemble ayant n éléments est 2n"
• Etape 1 : initialisation

A-t-on pr(0) ?
c’est-à-dire a-t-on le nombre de parties d’un ensemble ayant 0 éléments est 20 ?
Oui car si Card(E) = 0 c’est que E = ∅ donc P(E) = P(∅) = {∅}. P(E) n’a donc
qu’un seul élément.
Par conséquent pr(0) est vraie.

• Etape 2 : hérédité
Soit un certain entier k ≥ 0. A-t-on pr(k) =⇒ pr(k + 1) ?
c’est-à-dire a-t-on le nombre de parties d’un ensemble ayant k éléments est 2k =⇒
que le nombre de parties d’un ensemble ayant k + 1 éléments est 2k+1

Supposons que l’hypothèse de récurrence suivante " le nombre de parties d’un en-
semble ayant k éléments est 2k " soit vraie.
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Soit un ensemble F ayant k + 1 éléments. Isolons un élément x de F . Par conséquent
F = E ∪ {x} où E a k éléments.
Alors l’ensemble des parties du nouvel ensemble F = E ∪ {x} est formé de toutes
les anciennes parties de E auxquelles on ajoute de nouvelles parties qui sont en fait
formées des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Or d’après l’hypothèse de récurrence, Card(P(E)) = 2k et de plus il y a autant de
nouvelles parties ayant ce nouvel élément rouge que d’anciennes parties n’ayant pas
{x}
donc Card(P(F)) = 2k + 2k = 2(2k) = 21+k CQFD.

• Conclusion pr est initialisé en 0 et pr est héréditaire
donc pour tout entier naturel n, si Card(E) = n alors Card(P(E)) = 2n"

5. On appelle (n
p) le nombre de parties à p éléments d’un ensemble E ayant n éléments.

Ceci se notait auparavant Cp
n . On parle aussi du nombre de combinaisons de p élé-

ments pris parmi n.

6. (a) Si p > n alors
(

n
p

)
= 0

normal car on peut pas former de parties ayant plus d’éléments que l’ensemble E.

(b) Pour tout entier naturel n,
(

n
0

)
= 1

car il n’ y a qu’une seule partie ayant 0 élément dans l’ensemble E : c’est la partie vide
∅

(c) Pour tout entier naturel n,
(

n
n

)
= 1

car il n’ y a qu’une seule partie ayant n éléments dans l’ensemble E : c’est la partie
pleine E

(d) Pour tout entier naturel n,
(

n
1

)
= n

car il n’y a que n parties ayant un seul élément dans un ensemble E : ce sont les
singletons de chacun des éléments de E.

(e) Pour tout p compris entre 0 et n,
(

n
p

)
=

(
n

n− p

)
car choisir p éléments dans un ensemble E est équivalent à choisir n − p éléments
dans cet ensemble.

(f) Pour tout p compris entre 0 et n
(

n
p

)
=

(
n− 1
p− 1

)
+

(
n− 1

p

)
Cette formule s’appelle la Grande Formule de PASCAL.
Démonstration : On isole un élément x de E.(

n
p

)
est le nombre total de parties à p éléments = nombre de parties à p éléments

contenant x plus le nombre de parties à p éléments ne contenant pas x =
(

n− 1
p− 1

)
+

(
n− 1

p

)
.

(g) Formule du binôme de Newton :
Pour tous réels a et b l’on a

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k = (b + a)n =

n

∑
k=0

(
n
k

)
an−kbk

(h) d’où ∀x ∈ R (1 + x)n =
n

∑
k=0

(
n
k

)
xk1n−k =

n

∑
k=0

(
n
k

)
xk
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(i) Pour tout entier naturel n,
n

∑
k=0

(
n
k

)
= 2n en posant x = 1

(j) Pour tout entier naturel n,
n

∑
k=0

(−1)k
(

n
k

)
= 0 en posant x = −1

Triangle dit de PASCAL (en fait retrouvé chez dans les manuscrits Miroir de Jade des 4 inconnues du
chinois SHOU-CHI-YIE en 1303 et dans les travaux chez de l’indien BASKHARA 1114-1185)
On peut remarquer que :

• Dans la colonne correspondant à p = 1 on retrouve les entiers naturels

• Dans la colonne correspondant à p = 2 on retrouve les nombres triangulaires Tn =
n

∑
k=1

k

— T1 = 1
— T2 = 1 + 2 = 3
— T3 = 1 + 2 + 3 = 6
— T4 = 1 + 2 + 3 + 4 = 10
— T3 = 1 + 2 + 3 + 4 + 5 = 15

• La somme des éléments de chaque ligne est 2n.
Par exemple, pour n = 4 on a S = 1 + 4 + 6 + 4 + 1 = 16 = 24

• Si on additionne les termes de chaque ligne affectés alternativement des signes + et −
on obtient comme somme : 0
Par exemple, pour n = 5 on a S = 1− 5 + 10− 10 + 5− 1 = 0
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Démonstration par récurrence de la Formule du binôme de Newton (1642-1727)
Soient a et b des nombres réels donc ab = ba. Alors :

∀n ∈N (a + b)n =
n

∑
i=0

(
n
i

)
ai bn−i

Or
(

n
p

)
=

(
n

n− p

)
donc

∀n ∈N (a + b)n =
n

∑
j=0

(
n
j

)
an−j bj

en effectuant le changement d’indice j = n− i

Démonstration :

Notons pr(n) : (a + b)n =
n

∑
i=0

(
n
i

)
ai bn−i.

1. Initialisation : elle est vraie en n = 0 car :

(a + b)0 = 1 =

(
0
0

)
a0 b0−0

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k ≥ 0 c’est-à-dire que :

(a + b)k =
k

∑
i=0

(
k
i

)
ak bn−k

Alors (a + b)k+1 = (a + b)(a + b)k = (a + b)[
k

∑
i=0

(
k
i

)
ak bn−k]

= (a+ b)(
(

k
0

)
a0bk +

(
k
1

)
a1 bk−1 + · · ·+

(
k
i

)
ai bk−i + · · ·+

(
k

k− 1

)
ak−1 b1 +

(
k
k

)
akb0)

= (a + b)(bk +

(
k
1

)
a1 bk−1 + · · ·+

(
k
i

)
ai bk−i + · · ·+

(
k

k− 1

)
ak−1 b1 + ak)

= (abk +

(
k
1

)
a2 bk−1 + · · ·+

(
k
i

)
ai+1 bk−i + · · ·+

(
k

k− 1

)
ak b1 + ak+1

+bk+1 +

(
k
1

)
a1 bk + · · ·+

(
k
i

)
ai bk−i+1 + · · ·+

(
k

k− 1

)
ak−1 b2 + akb)

= bk+1 + abk[

(
k
1

)
+

(
k
0

)
] + a2 bk−1[

(
k
2

)
+

(
k
1

)
] + · · · + ai bk−i+1[

(
k
i

)
+

(
k

i− 1

)
] +

ai+1 bk−i[

(
k
i

)
+

(
k

i + 1

)
] + · · ·+ ak b1[

(
k
k

)
+

(
k

k− 1

)
] + ak+1

= bk+1 + abk
(

k + 1
1

)
+ a2 bk−1

(
k + 1

2

)
+ · · ·+ ai bk−i+1

(
k + 1

i

)
+ ai+1 bk−i

(
k + 1
i + 1

)
+

· · ·+ ak b1
(

k + 1
k

)
+ ak+1

=

(
k + 1

0

)
a0bk+1 + abk

(
k + 1

1

)
+ a2 bk−1

(
k + 1

2

)
+ · · ·+ ai bk−i+1

(
k + 1

i

)
+ ai+1 bk−i

(
k + 1
i + 1

)
+

· · ·+ ak b1
(

k + 1
k

)
+

(
k + 1
k + 1

)
ak+1b0

3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n ≥ 0
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Cette formule est valable pour tous éléments a et b d’un anneau à condition que ces éléments
soient commutables c’est-à-dire que ab = ba.
C’est le cas pour des matrices carrées d’ordre n : A et B à condition d’avoir vérifié que AB =
BA.
Souvent A = I la matrice de l’identité donc IB = B et BI = B donc IB = BI donc

∀n ∈N (I + B)n =
n

∑
j=0

(
n
j

)
In−j Bj =

n

∑
j=0

(
n
j

)
I Bj =

n

∑
j=0

(
n
j

)
Bj

Exemple :

Soit la matrice A =

(
1 1
0 1

)
.

Déterminer une écriture simplifiée de Anpour tout entier naturel n.

Soient la matrice A =

(
1 1
0 1

)
, la matrice I =

(
1 0
0 1

)
et la matrice J =

(
0 1
0 0

)
• A = I + J

• J2 =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

La matrice J est dite nilpotente.
On peut alors démontrer par récurrence que ∀n ≥ 2 Jn = O.
En effet,
— J2 = 0 la propriété est vraie au rang n = 2
— Soit un entier k ≥ 2 supposons que Jk = O alors Jk+1 = J Jk = J O = O
— La propriété étant initialisée en 2 et étant héréditaire est donc vraie pour tout entier

n ≥ 2
• Alors comme I et J sont commutables puisque I J = J I car I J = J et J I = J

on peut donc appliquer la formule du binôme de Newton :

∀n ∈N An = (I + J)n =
n

∑
k=0

(
n
k

)
In−k Jk

An =
n

∑
k=0

(
n
k

)
I Jk =

n

∑
k=0

(
n
k

)
Jk

Or à partir de k = 2 on a Jk = O

Donc ∀n ∈N An =
1

∑
k=0

(
n
k

)
Jk =

(
n
0

)
J0 +

(
n
1

)
J1 = I + nJ =

(
1 0
0 1

)
+

(
0 n
0 0

)
=

(
1 n
0 1

)
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4 Opérations sur des ensembles

4.1 Union

Si A et B sont des parties de E alors la réunion de A et de B qu’on note A ∪ B est la partie de
E formée des éléments de A et des éléments de B
Plus formellement A ∪ B = {x ∈ E/x ∈ A ou x ∈ B}

4.2 Intersection

Si A et B sont des parties de E alors l’intersection de A et de B qu’on note A ∩ B est la partie
de E formée des éléments de A qui sont aussi des éléments de B
Plus formellement A ∩ B = {x ∈ E/x ∈ A et x ∈ B}
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4.3 Complémentaire

Si A est une partie de E , alors on appelle complémentaire de A dans E , la partie formée des
éléments de E qui n’appartiennent pas à A. On note cette partie A ou CE A

4.4 Différence

Si A et B sont des parties de E alors on appelle différence de A et B qu’on note
A− B ou A\B l’ensemble formé par les éléments de A n’appartenant pas à B.
A\B = A ∩ B = A− (A ∩ B)

4.5 Différence symétrique

Si A et B sont des parties de E alors on appelle différence symétrique de A et B qu’on note
A∆B l’ensemble formé par les éléments appartenant à un et un seul des ensembles A et B En
fait, A∆B = (A

⋃
B)− (A

⋂
B) = (A\B)⋃(B\A).

On a quatre définitions équivalentes de A∆B :

1. A∆B = (A\B) ∪ (\A)

2. A∆B = (A ∩ B) ∪ (B ∩ A)

3. A∆B = (A ∪ B)/(A ∩ B)

4. A∆B = (A ∪ B) ∩ (A ∪ B)
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4.6 Propriétés les plus importantes

♥ ♥ ♥
Soit un ensemble E. Soient A et B des sous ensembles ( ou des parties) de E. Alors :

1.



A ∪∅ = A
A ∪ A = A
A ∪ E = E
A ⊆ A ∪ B
B ⊆ A ∪ B
A ∪ B = B ∪ A (commutativité)
(A ∪ B) ∪ C = A ∪ (B ∪ C) (associativité)

2.



A ∩∅ = ∅
A ∩ A = A
A ∩ E = A
A ∩ B ⊆ A
A ∩ B ⊆ B
A ∩ B = B ∩ A (commutativité)
(A ∩ B) ∩ C = A ∩ (B ∩ C) (associativité)

3.
{

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivité de ∩ par rapport à ∪)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (distributivité de ∪ par rapport à ∩)

4.


A = A
A ∩ A = ∅
A ∪ A = E
A ∪ B = A ∩ B
A ∩ B = A ∪ B

5.

 A/B = ∅ ⇐⇒ A ⊆ B
A ∩ (B/C) = (A ∩ B)/(A ∩ C)
((A ∪ B)/(A ∪ C)) ⊆ A ∪ (B/C)

6.


(A∆B)∆C = A∆(B∆C) (associativité)
A∆B = B∆A (commutativité)
A∆∅ = A (l’ensemble vide ∅ est élément neutre dans P(E))
A∆A = A ( tout élément de P(E) est son propre symétrique)

(P(E), ∆) est donc un groupe abélien.
De plus, A ∩ (B∆C) = (A ∩ B)∆(A ∩ C) (distributivité de ∩ par rapport à ∆)
Par conséquent (P(E), ∆,∩) est un anneau.
Cet anneau est un anneau de Boole car tout élément A de vérifie A ∩ A = A
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5 Produit cartésien de deux ensembles

On appelle produit cartésien de deux ensembles E et F qu’on note E× F, l’ensemble suivant :
E× F = {(x; y)/x ∈ E et y ∈ F}.
C’est l’ensemble des couples où le premier élément appartient à E et le deuxième élément
appartient à F.

• Lorsque E = F , E× E se note E2

• Le produit cartésien des ensembles E , F et G est :
E× F× G = {(x; y; z)/x ∈ E, y ∈ F et z ∈ G}
C’est l’ensemble des triplets où le premier élément appartient à E, le deuxième élément
appartient à F et le troisième élément appartient à G
• On peut généraliser le produit cartésien à n ensembles :

E1 × E2 × E3 × · · · × En
• E× E× E× · · · × E( n fois) se note En

5.1 Exemples

• {(x; y)/x ∈ R et y ∈ R} se note R2

• Lorsque l’on jette 2 dés , l’ensemble des résultats possibles est l’univers
Ω = {1; 2; 3; 4; 5; 6} × {1; 2; 3; 4; 5; 6} qu’on note encore {1; 2; 3; 4; 5; 6}2

Ω est formé des 36 couples (1; 1); (1; 2); · · · ; (6; 5); (6; 6) que l’on peut représenter par le
tableau à 2 entrées ci-dessous :

de1 de2 1 2 3 4 5 6
1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

ou par le dessin suivant
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6 Exercices

6.1

Soit un ensemble E = {a; b; c}. Peut-on écrire ?

1. a ∈ E

2. a ⊂ E

3. {a} ⊂ E

4. ∅ ∈ E

5. ∅ ⊂ E

6. {∅} ⊂ E

6.2

Les notations ∅, {}, {∅}, {{∅}} désignent-t-elles le même ensemble ?

6.3

Déterminer :

1. P(∅)

2. P(P(∅))

3. P(P(P(∅)))

4. Quel est Card(P(P(P(P(∅))))) ?

6.3.1 Corrigé

La démarche utilisée est de construire l’ensemble de parties P(E) en créant d’abord la partie
vide, puis les parties à 1 élément, puis celles à 2 éléments , etc, jusqu’à la partie pleine E.

1. P(∅) = {∅}.
On vérifie bien ici que comme Card(∅) = 0 alors Card(P(∅)) = 20 = 1

2. P(P(∅)) = P({∅}) = {∅; {∅}}
On vérifie bien ici que comme Card(P(∅)) = 1 alors Card(P(P(∅))) = 21 = 2

3. P(P(P(∅))) = P({∅; {∅}})
= {∅; {∅}; {{∅}}; {∅; {∅}}}

4. Card(P(P(P(P(∅))))) = 24 = 16 car Card(P(P(P(∅)))) = 4

6.4

Donner des exemples de partitions des ensembles E suivants :

1. E = {a ; b ; c}
2. E = {α ; β ; γ ; δ ; ε}
3. E = L’ensemble des chiffres du système décimal
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6.5

Soit E = {a; b}. A quels ensembles appartient les éléments suivants :

1. (a; b)

2. {a}
3. (a; {b})
4. (a; E)

5. {∅}
6. (∅; {a})

6.6

Soit un ensemble E. Pour toutes parties A, B de E on note A ? B = A ∪ B.
Démontrer que ;∪;∩ s’obtiennent en utilisant seulement ?.

6.7

On considère les sous-ensembles de N suivants :
A = {1, 2, 3, 4, 5, 6, 7}, B = {1, 3, 5, 7}, C = {2, 4, 6}, D = {3, 6}

1. Déterminer B ∩ D, C ∩ D

2. Déterminer B ∪ C, C ∪ D. Une de ces réunions est-elle disjointe ?

3. Déterminer C∆D.

4. Déterminer les complémentaires dans A de B, C et D.

6.8

On considère les ensembles suivants :
A = {1, 2, 5}; B = {{1, 2}, 5}; C = {{1, 2, 5}}; D = {0, 1, 2, 5}; E = {5, 1, 2}
F = {{1, 2}{5}}; G = {{1, 2}, {5}, 5} et H = {5, {1}, {2}}

1. Donner le nombre d’éléments de chacun de ces ensembles.

2. Quelles sont les relations d’égalité ou d’inclusion existant entre ces ensembles ?

3. Déterminer A ∩ B, G ∪ D, E/G

6.9

On suppose que A, B et C sont des sous-ensembles d’un même ensemble E.
Simplifier les expressions suivantes :

1. (A ∪ B) ∩ (A ∪ B)

2. B ∪ (A− B)

3. A ∩ (A ∪ B)

4. A ∩ (A ∪ B) ∩ (A ∪ B ∪ C)

5. A ∪ (A ∩ B) ∪ (A ∩ B ∩ C)
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6.10

Soient X et Y des ensembles. Démontrer l’équivalence logique suivante :

X = Y ⇐⇒ X ∩Y = X ∪Y

6.10.1 Corrigé

1. =⇒:
Supposons que X = Y alors X ∩Y = X ∩ X = X et X ∪Y = X ∪ X = X
donc X ∩Y = X ∪Y.CQFD.

2. ⇐=:
Supposons que X ∩Y = X ∪Y
• Démontrons que X ⊂ Y :

Soit x ∈ X. Comme X ⊂ X ∪ Y alors x ∈ X ∪ Y. Or X ∩ Y = X ∪ Y donc x ∈ X ∩ Y
donc x ∈ Y. CQFD.

• Par un démonstration analogue, en permutant les rôles symétriques de X et de Y on
prouve que Y ⊂ X.

• Comme X ⊂ Y et Y ⊂ X alors X = Y. CQFD.

3. Comme X = Y =⇒ X ∩Y = X ∪Y et que X ∩Y = X ∪Y =⇒ X = Y
alors X = Y ⇐⇒ X ∩Y = X ∪Y
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6.11 Agrégation Externe 1978

1. Vérifier que l’ensemble des parties P(Ω) de l’ensemble Ω muni de l’opération
"différence symétrique" ∆ définie par :

∆ : P(Ω)×P(Ω) −→ P(Ω)
(x; y) 7−→ x∆y = {t ∈ Ω / (t ∈ (x ∪ y) et t /∈ (x ∩ y)}

est un groupe abélien.

2. Démontrer que P(Ω) avec comme loi de groupe"additif "celle définie au 1◦) peut être
muni d’une structure d’espace vectoriel sur le corps à 2 éléments K = Z/2Z = {0̄; 1̄}
Grâce à quelle propriété particulière de cette loi de groupe, cela est-il possible ?

3. Quelle est alors la dimension de cet espace vectoriel P(Ω) ?
Fournir une base de cet espace.

4. Vérifier que l’application

α : P(Ω)×P(Ω) −→ Z/2Z

(x; y) 7−→ α(x; y) =| x ∩ y |

est une forme bilinéaire symétrique non dégénérée sur P(Ω)

6.11.1 Corrigé
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6.12 Différence symétrique de plusieurs ensembles

Soit n entier ≥ 3. Soient A1, A2, · · · , An des parties de E. Démontrer par récurrence que :
x ∈ A1 ∆ A2∆ · · · ∆An ⇐⇒ x appartient à un nombre impair de Ai

6.12.1 Corrigé
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6.13 Rationnels à racines carrées irrationnelles

1. Soit un entier naturel b ∈N.
Démontrer l’équivalence logique suivante :

b est un carré parfait ⇐⇒
√

b ∈ Q

2. Soient a et b des entiers naturels premiers.
Démontrer que : √

a +
√

b /∈ Q

3. Soient a, b, c, d quatre nombres rationnels tels que d ≥ 0 ; b ≥ 0 ;
√

b /∈ Q

Démontrer que :
a +
√

b = c +
√

d =⇒ (a = c) et (b = d)

6.13.1 Corrigé

1. Soit un entier naturel b ∈N∗.
(a) =⇒ :

Supposons que b est un carré parfait donc ∃n ∈N b = n2 alors
√

b = n.
Or N ⊂ Q. Donc n ∈ Q d’où

√
b ∈ Q.

(b) ⇐= :
Pour démontrer que

√
b ∈ Q =⇒ b est un carré parfait nous allons démontrer sa

contraposée à savoir que : b n’est un carré parfait =⇒
√

b /∈ Q.
Soit b qui n’est pas un carré parfait. Raisonnons par l’absurde. Supposons que

√
b ∈ Q

alors comme
√

b ≥ 0 alors ∃p ∈N ∃q ∈N∗
√

b =
p
q

irréductible donc p ∧ q = 1.

Par conséquent , b =
p2

q2 donc p2 = b q2.

En utilisant le fait qu’un entier naturel se décompose en produit de facteurs premiers
comme p ∧ q = 1 alors p2 ∧ q2 = 1 puisque p2 et q2 ont les mêmes facteurs premiers
que p et q avec juste un exposant doublé.
Or q2 divise p2 donc forcément q2 = 1 puisque p2 ∧ q2 = 1.
On obtient donc b = p2 donc b est un carré parfait. Impossible donc

√
b /∈ Q. CQFD.

Par conséquent, b est un carré parfait ⇐⇒
√

b ∈ Q

2. Soient a et b des entiers naturels premiers donc a et b ne sont pas des carrés parfaits donc√
a /∈ Q et

√
b /∈ Q.

Supposons que
√

a +
√

b ∈ Q.

Comme a − b = (
√

a −
√

b)(
√

a +
√

b) alors
√

a −
√

b =
a− b
√

a +
√

b
donc si a − b ∈ Q

alors
√

a−
√

b ∈ Q .

Par conséquent
{ √

a +
√

b ∈ Q√
a−
√

b ∈ Q

Par conséquent, par addition et par soustraction des deux lignes ,
√

a ∈ Q et
√

b ∈ Q.
Cela est impossible.
Par conséquent,

√
a +
√

b /∈ Q
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3. Soient a, b, c, d quatre nombres rationnels tels que d ≥ 0 ; b ≥ 0 ;
√

b /∈ Q

Supposons que a +
√

b = c +
√

d.
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6.14 Partie entière d’un nombre réel

On admet que tout réel x est compris entre 2 entiers relatifs consécutifs n et n + 1 c’est-à-dire
que ∀x ∈ R ∃ un unique n ∈ Z tel que n ≤ x < n + 1.
Cet entier n qui est le plus grand entier relatif précédant x s’appelle la partie entière de x .
On le note Ent(x) ou [x] en Mathématiques. On a donc

[x] ≤ x < [x] + 1

1. Tracer avec précision dans un repère (O;−→u ,−→v ) la courbe représentative de la fonction
partie entière de R dans Z qui , à tout réel x associe [x]. Pour le graphique, on prendra
x ∈ [−4; 4]

2. Démontrer que ∀x ∈ R ∀k ∈ Z [x + k] = [x] + k

3. ∀x ∈ R encadrer le nombre x− [x]

4. Démontrer que l’application epi : R 7→ [0; 1[ qui à tout réel x associe epi(x) = x − [x]
est périodique. Quelle est sa période ? Dessiner la courbe représentative de epi dans un
autre repère pour x ∈ [−4; 4]

5. Exprimer [−x] en fonction de [x]. Justifier.

6. Dessiner avec précision les courbes des fonctions suivantes dans des repères différents :

(a) f définie sur [−4; 4] par f (x) = [|x|]
(b) g définie sur [−2; 2] par g(x) = [2x]

(c) h définie sur [−1; 1] par h(x) = [3x]

(d) i définie sur [−4; 4] par i(x) = [
x
2
]

(e) j définie sur [−6; 6] par j(x) = [
x
3
]

(f) k définie sur [−2; 2] par k(x) = [x2]

(g) l définie sur [0; 9] par l(x) = [
√

x]
Pour chaque graphique, une justification est demandée. Attention aux bornes des in-
tervalles.

7. Déterminer puis dessiner avec précision dans un repère orthonormé l’ensemble des
points M de coordonnées (x; y) tels que [x]2 + [y]2 = 0

8. Soient les fonctions :
δ : x 7→ [

1
x2 + 1

] ; ω : x 7→ [
x

x2 + 1
] et s : x 7→ ω(x)−ω(−x)

(a) Déterminer δ(x), ω(x) et s(x) en fonction de x. Dessiner leurs courbes.

(b) En déduire que ∀x ∈ R l’on a : x([
x

x2 + 1
]− [

−x
x2 + 1

]) = |x|

9. Démontrer que ∀(x, y) ∈ R2 [x + y] = [x] + [y] + ε où ε = 0 ou ε = 1

10. Démontrer que ∀(x, y) ∈ R2 [x− y] = [x]− [y] + ε où ε = 0 ou ε = −1

11. Démontrer que ∀n ∈N∗ [x] + [x +
1
n
] + [x +

2
n
] + · · ·+ [x +

n− 1
n

] = [nx]

12. Démontrer que ∀n ∈N∗ [
[nx]

n
] = [x]
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6.14.1 Corrigé

On admet que tout réel x est compris entre 2 entiers relatifs consécutifs n et n + 1 c’est-à-dire
que ∀x ∈ R ∃ un unique n ∈ Z tel que n ≤ x < n + 1. Cet entier n qui est le plus grand entier
relatif précédant x s’appelle la partie entière de x . On le note Ent(x) ou [x] en Mathématiques.
On a donc [x] ≤ x < [x] + 1

1. • si −4 ≤ x < −3 alors [x] = −4
• si −3 ≤ x < −2 alors [x] = −3
• si −2 ≤ x < −1 alors [x] = −2
• si −1 ≤ x < 0 alors [x] = −1
• si 0 ≤ x < 1 alors [x] = 0
• si 1 ≤ x < 2 alors [x] = 1
• si 2 ≤ x < 3 alors [x] = 2
• si 3 ≤ x < 4 alors [x] = 3
• si x = 4 alors [x] = 4

Voici donc dans un repère (O;−→u ,−→v ) la courbe représentative de la fonction partie en-
tière de R dans Z qui , à tout réel x associe [x]. Pour le graphique, on prendra x ∈ [−4; 4]

2. ∀x ∈ R alors [x] ≤ x < [x] + 1 donc ∀k ∈ Z [x] + k ≤ x + k < [x] + 1 + k. Or [x] + k et
[x] + k + 1 sont deux entiers consécutifs donc [x + k] = [x] + k

3. ∀x ∈ R comme [x] ≤ x < [x] + 1 alors [x] − [x] ≤ x − [x] < [x] + 1 − [x] donc
0 ≤ x− [x] < 1 . Lorsque x est un réel positif alors x− [x] s’appelle aussi la partie déci-

male de x

4. Soit k ∈ Z∗ alors l’application epi : R 7→ [0; 1[ qui à tout réel x associe epi(x) = x − [x]
est périodique de période k car :
• L’ensemble de définition de epi qui est R est tel que ∀x ∈ Depi on x + k ∈ Depi
• ∀x ∈ Depi epi(x + k) = (x + k)− [x + k] = x + k− ([x] + k) = x− [x] = epi(x)

La plus petite période k strictement positive est 1 donc "la" période de x 7→ [x] est 1.
La courbe représentative de epi ressemble à un champ d’épis dans un autre repère pour
x ∈ [−4; 4]

5. Si [x] ≤ x < [x] + 1 alors −[x] ≥ −x > −[x]− 1 donc −[x]− 1 < −x ≤ −[x] Donc pour
exprimer [−x] en fonction de [x], il faudra distinguer 2 cas :

(a) ou bien x est un entier relatif k alors −x est l’entier −k aussi donc [−x] = [−k] =
−k = −[x] donc [−x] = −[x]

(b) ou bien x n’est pas entier alors [x] < x < [x] + 1
alors −[x] > −x > −[x]− 1 donc −[x]− 1 < −x < −[x]. Et comme −[x]− 1 et −[x]
sont des entiers consécutifs alors [−x] = −[x]− 1

6. Nous allons dessiner avec précision les courbes des fonctions suivantes dans des repères
différents :

(a) f définie sur [−4; 4] par f (x) = [|x|]
L’ensemble de définition D f est centré en 0 et ∀x ∈ D f f (−x) = f (x) donc f est
paire donc on étudie f sur [0; 4] et on complète la courbe en utilisant la symétrie
orthogonale d’axe l’axe des ordonnées.

(b) g définie sur [−2; 2] par g(x) = [2x]
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• si −2 ≤ x <
−3
2

alors −4 ≤ 2x < −3 donc [2x] = −4

• si
−3
2
≤ x < −1 alors −3 ≤ 2x < −2 donc [2x] = −3

• si −1 ≤ x <
−1
2

alors −2 ≤ 2x < −1 donc [2x] = −2

• si
−1
2
≤ x < 0 alors −1 ≤ 2x < 0 donc [2x] = −1

• si 0 ≤ x <
1
2

alors 0 ≤ 2x < 1 donc [2x] = 0

• si
1
2
≤ x < 1 alors 1 ≤ 2x < 2 donc [2x] = 1

• si 1 ≤ x <
3
2

alors 2 ≤ 2x < 3 donc [2x] = 2

• si
3
2
≤ x < 2 alors 3 ≤ 2x < 4 donc [2x] = 3

• si x = 2 alors 2x = 4 donc [2x] = 4

(c) h définie sur [−1; 1] par h(x) = [3x]

• si −1 ≤ x <
−2
3

alors −3 ≤ 3x < −2 donc [3x] = −3

• si
−2
3
≤ x <

−1
3

alors −2 ≤ 3x < −1 donc [3x] = −2

• si
−1
3
≤ x < 0 alors −1 ≤ 3x < 0 donc [3x] = −1

• si 0 ≤ x <
1
3

alors 0 ≤ 3x < 1 donc [3x] = 0

• si
1
3
≤ x <

2
3

alors 1 ≤ 3x < 2 donc [3x] = 1

• si
2
3
≤ x < 1 alors 2 ≤ 3x < 3 donc [3x] = 2

• si x = 1 alors 3x = 3 alors [3x] = 3

(d) i définie sur [−4; 4] par i(x) = [
x
2
]

• si −4 ≤ x < −2 alors −2 ≤ x
2
< −1 donc [

x
2
] = −2

• si −2 ≤ x < 0 alors −1 ≤ x
2
< 0 donc [

x
2
] = −1

• si 0 ≤ x < 2 alors 0 ≤ x
2
< 1 donc [

x
2
] = 0

• si 2 ≤ x < 4 alors 1 ≤ x
2
< 2 donc [

x
2
] = 1

• si x = 4 alors
x
2
= 2 donc [

x
2
] = 2

(e) j définie sur [−6; 6] par j(x) = [
x
3
]

• si −6 ≤ x < −3 alors −2 ≤ x
3
< −1 donc [

x
3
] = −2

• si −3 ≤ x < 0 alors −1 ≤ x
3
< 0 donc [

x
3
] = −1

• si 0 ≤ x < 3 alors 0 ≤ x
3
< 1 donc [

x
3
] = 0

• si 3 ≤ x < 6 alors 1 ≤ x
2
< 2 donc [

x
3
] = 1
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• si x = 6 alors
x
3
= 2 donc [

x
2
] = 2

(f) k définie sur [−2; 2] par k(x) = [x2]
L’ensemble de définition D f est centré en 0 et ∀x ∈ D f f (−x) = f (x) donc f est paire
donc on étudie f sur [0; 2] et on complète la courbe en utilisant la symétrie orthogo-
nale d’axe l’axe des ordonnées.

• si 0 ≤ x < 1 alors 0 ≤ x2 < 1 donc [x2] = 0
• si 1 ≤ x <

√
2 alors 1 ≤ x2 < 2 donc [x2] = 1

• si
√

2 ≤ x <
√

3 alors 2 ≤ x2 < 3 donc [x2] = 2
• si
√

3 ≤ x < 2 alors 3 ≤ x2 < 4 donc [x2] = 3
• si x = 2 alors x2 = 4 donc [x2] = 4

(g) l définie sur [0; 9] par l(x) = [
√

x]

• si 0 ≤ x < 1 alors 0 ≤
√

x < 1 donc [
√

x] = 0
• si 1 ≤ x < 4 alors 1 ≤

√
x < 2 donc [

√
x] = 1

• si 4 ≤ x < 9 alors 2 ≤
√

x < 3 donc [
√

x] = 2
• si x = 9 alors

√
x = 3 donc [

√
x] = 3

7. On voudrait déterminer puis dessiner avec précision dans un repère orthonormé l’en-
semble des points M de coordonnées (x; y) tels que [x]2 + [y]2 = 0
On sait que la somme de 2 réels de même signe est nulle si et seulement si chacun de ces
réels est nul.
Donc [x]2 + [y]2 = 0⇔ [x]2 = [y]2 = 0⇔ [x] = 0 et [y] = 0
⇔ 0 ≤ x < 1 et 0 ≤ y < 1

8. (a) • si x = 0 alors
1

x2 + 1
= 1 donc δ(x) = [

1
x2 + 1

] = 1

• si x 6= 0 alors x2 > 0 donc x2 + 1 > 1 donc 0 <
1

x2 + 1
< 1 donc δ(x) = [

1
x2 + 1

] =

0

(b) • si x = 0 alors
x

x2 + 1
= 0 donc ω(x) = [

x
x2 + 1

] = 0

• si x > 0 alors x2− x + 1 > 0 car ∆ = −3 < 0 donc x2 + 1 > x donc 0 <
x

x2 + 1
< 1

donc ω(x) = [
x

x2 + 1
] = 0

• si x < 0 alors x2 + x + 1 > 0 car ∆ = −3 < 0 donc x2 + 1 > −x donc 0 <
−x

x2 + 1
<

1 donc 0 >
x

x2 + 1
> −1 donc ω(x) = [

x
x2 + 1

] = −1

(c) • si x = 0 alors s(x) = ω(0)−ω(0) = 0
• si x > 0 alors s(x) = ω(x)−ω(−x) = 0− (−1) = 1
• si x < 0 alors s(x) = ω(x)−ω(−x) = −1− 0 = −1

donc ∀x ∈ R on a xs(x) = |x| car
• si x = 0 alors xs(x) = 0
• si x > 0 alors xs(x) = 1x = x
• si x < 0 alors s(x) = −1x = −x
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