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1 Notion de Fonction

1.1 Définition

On dit que f est une fonction d’un ensemble E vers un ensemble F lorsque f
est une relation de l’ensemble E vers l’ensemble F telle que tout élément x
de E a au plus(c’est-à-dire 0 ou 1 image ) dans F On écrit :

f : E −→ F
x 7−→ f(x)

Attention, il ne faut pas confondre f la fonction et f(x) qui est l’image de x
par f .
Si on appelle y l’image de x par f , on dit aussi que x est un antécédent de y
par f

1.2 Ensemble de définition d’une fonction

Soit f une fonction de E vers F . Alors certains éléments de E peuvent ne pas
avoir d’image et d’autres en ont une seule. On appelle ensemble de définition
de f , l’ensemble des éléments x de E qui ont une image. On note Df , cet
ensemble de définition. Par conséquent Df = {x ∈ E/f(x)existe}

1.3 Ensembles de définition de fonctions numériques

On appelle fonction numérique d’une variable réelle toute fonction de R dans
R. Voici quelques ensembles de définition classiques à connaître :

Si f(x) est alors son ensemble de définition Df est :
un polynôme R

n(x)

d(x)
{x ∈ R/n(x) existe et d(x) existe et d(x) ̸= 0}

√
r(x) {x ∈ R/r(x) existe et r(x) ≥ 0}

ln(g(x)) {x ∈ R/g(x) existe et g(x) > 0}
exp(h(x)) {x ∈ R/h(x) existe}

(gof)(x) = g[f(x)] {x ∈ R/f(x) existe et f(x) ∈ Dg}
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1.4 Exercice

Déterminer les ensembles de définition des fonctions numériques d’une variable
réelle définies par :

1. f(x) =

√
x+ 2

x+ 3

2. g(x) =

√
x+ 2√
x+ 3

3. h(x) = ln(x2 + 5x+ 6)

4. i(x) = ln(x+ 2) + ln(x+ 3)

5. h(x) = ln(x2 + 2x+ 1)

6. h(x) = ln(x2 + x+ 1)

2 Notion d’Application

2.1 Définition

On dit que f est une application d’un ensemble E vers un ensemble F lorsque
f est une relation de l’ensemble E vers l’ensemble F telle que :
tout élément x de E a 1 et 1 seule image dans F

2.2 Propriétés

1. Si f est une application de E vers F alors f est une fonction de E
vers F .

2. La réciproque est fausse mais si f est une fonction de E vers F alors
f n’est pas forcément une application de E vers F . Par contre, la
restriction de f à son ensemble de définition qu’on note f/Df est une
application de Df vers F .

Par exemple x 7→ 1

x
est une fonction de R dans R mais n’est pas une

application de R dans R.

x 7→ 1

x
est une application de R∗ dans R

2.2.1 Exemples particuliers

1. On appelle application identique de E l’application

IdE : E −→ E
x 7−→ IdE(x) = x

2. Soit A un sous-ensemble de E.
On appelle Indicatrice de A l’application

χA : E −→ {0; 1}

x 7−→ χA(x) =

{
1 si x ∈ A
0 si x /∈ A
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2.3 Egalité d’applications

Deux applications f et g sont dites égales lorsqu’elles ont même ensemble de
départ E , même ensemble d’arrivée F et que ∀x ∈ E on a f(x) = g(x)

2.4 Ensemble Image d’une partie

Soit f une application de E dans F .
Si A est une partie de E on appelle ensemble-image de A par f le sous-
ensemble de F noté f < A > formé des images des éléments de A par f .

f < A >= {f(x)/x ∈ A}

2.5 Ensemble image réciproque d’une partie

Soit f une application de E dans F .
Si B est une partie de F on appelle ensemble-image réciproque de B par f le
sous-ensemble de E noté f−1 < B > formé des antécédents des éléments de
B par f .

f−1 < B >= {x ∈ E/f(x) ∈ B}

Sur notre schéma, f−1 < B > est l’ensemble formé des 3 éléments des zones
bleues
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2.6 Opérations sur les applications
2.6.1 Somme

Soient f et g des applications de E dans R.
On appelle somme des applications f et g l’application

f + g : E −→ R
x 7−→ (f + g)(x) = f(x) + g(x)

2.6.2 Produit

Soient f et g des applications de E dans R.
On appelle produit des applications f et g l’application

f g : E −→ R
x 7−→ (f g)(x) = f(x) g(x)

2.6.3 Multiplication d’une application numérique par un réel

Soient λ ∈ R et f une application de E dans R.
On appelle multiplication de l’applications f par le réel λ l’application

λf : E −→ R
x 7−→ (λf)(x) = λf(x)

2.7 Composée d’applications
2.7.1 Définition

Soient f une application de E dans F et g une application de F dans G
On appelle composée de f suivie de g l’application

g o f : E −→ G
x 7−→ (g o f)(x) = g(f(x))

2.8 Remarques et Propriétés

1. Attention ! il se peut bien que l’on puisse créer g o f mais que l’on ne
puisse pas créer f o g

2. Si l’on peut créer g o f et f o g , ces deux applications ne sont pas
forcément égales donc la loi o de composition d’applications n’est pas
commutative.

3. Par contre, cette loi est associative, c’est-à-dire que
• si f une application de E dans F
• si g une application de F dans G
• si h une application de G dans H
• alors (h o g) o f = h o(g o f)
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2.9 Restriction et prolongement d’une application
2.9.1 Définitions

1. Si f est une application de E vers F et si A est une partie de E , alors
l’application suivante notée

f/A : A −→ F
x 7−→ (f/A)(x) = f(x)

s’appelle la restriction de f à A.
2. Si f est une application de A dans F et si A est une partie de E, On

appelle prolongement de f sur E toute application

g : E −→ F
x 7−→ g(x)

telle que pour tout x de A l’on a g(x) = f(x)

2.9.2 Exemple

f définie par f(x) =
ex − 1

x
est une application de R∗ dans R .

1. f est continue sur R∗ car
• x 7→ ex − 1 est continue sur R donc sur R∗

• x 7→ x est continue sur R donc sur R∗

• x 7→ x ne s’annule jamais sur R∗

2. f n’est pas définie en 0 donc n’est pas continue en 0

Comme l’on sait que lim
x 7→0

ex − 1

x
= 1

Soit g définie par

g(x) =

{
f(x) si x ̸= 0
1 si x = 0

g prolonge f sur R.
Comme

• g coïncide avec f sur R∗ alors g y est donc continue car f l’est sur R∗

• lim
x 7→0

g(x) = lim
x 7→0

ex − 1

x
= 1 = g(0) donc g est continue en 0

• Par conséquent g est continue sur R.
On dira alors que g prolonge f par continuité en 0

2.9.3 Remarque

si f est une fonction de E vers F alors f/Df est une application de Df vers
F

5



2.10 Application injective
2.10.1 Définitions équivalentes de l’injectivité

Soit f une application d’un ensemble E vers un ensemble F .
On dit que f est injective lorsque l’une des définitions équivalentes suivantes
est vérifiée

1. définition 1 :
Deux éléments quelconques différents de E ont deux images différentes
dans F .
Ce qui se traduit par :
∀x ∈ E ∀x′ ∈ E x ̸= x′ =⇒ f(x) ̸= f(x′)

2. définition 2 (qui est la contraposée de la définition 1)
∀x ∈ E ∀x′ ∈ E f(x) = f(x′) =⇒ x = x′

3. définition 3 ( en terme d’équation)
pour tout y de F , l’équation y = f(x) d’inconnue x dans E admet au
plus 1 (c’est-à-dire 0 ou 1) solution dans E

2.10.2 Définition de la non-injectivité

Soit f une application d’un ensemble E vers un ensemble F .
On dit que f est non-injective lorsqu’il existe au moins deux éléments de E
qui ont la même image dans F .
∃x ∈ E ∃x′ ∈ E f(x) = f(x′) et x ̸= x′
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2.10.3 Exemples

1. Ex 1 : toute fonction affine
f : R −→ R

x 7−→ f(x) = ax+ b

où a ̸= 0 est injective.

• Une fonction affine étant définie sur R est bien une application de R
dans R

• Utiliser la définition 1 avec les différences est concluante :
Soient x et x′ des réels avec x ̸= x′ alors ax ̸= ax′ donc ax+b ̸= ax′+b
donc f(x) ̸= f(x′). CQFD.

• Mais il est conseillé d’utiliser la définition 2 car il est plus facile d’uti-
liser les égalités que les différences :
Soient x et x′ des réels. Supposons f(x) = f(x′) donc ax+b = ax′+b
d’où ax = ax′ donc a(x − x′) = 0 . Par conséquent comme a ̸= 0 on
obtient x = x′. CQFD.

2. Ex 2 : la fonction carré
g : R −→ R

x 7−→ g(x) = x2

n’est pas injective
• La fonction g étant définie sur R est bien une application de R dans
R

• mais elle n’est pas injective car 4 ̸= −4 et pourtant g(4) = g(−4) = 16

3. Ex 3 : la restriction h de la fonction carré à R+ c’est à dire
h : R+ −→ R

x 7−→ h(x) = x2

est injective .
En effet, soient x et x′ des réels positifs . Supposons que h(x) = h(x′)
donc x2 = x′2 donc x2 − x′2 = 0. D’où (x− x′)(x+ x′) = 0 donc x = x′

ou x = −x′. Or il est impossible d’avoir x = −x′ sauf si x = x′ = 0 car
x et x′ sont positifs. Donc on a x = x′. CQFD.

4. Ex 4 : l’application

f : R− {−2} −→ R− {2}
x 7−→ f(x) =

2x+ 1

x+ 2

est injective
• Utiliser la définition 1 avec les différences n’est pas concluante .

En effet, soient x et x′ des réels avec x ̸= x′ alors 2x ̸= 2x′ donc
2x+ 1 ̸= 2x′ + 1. De même, x+ 2 ̸= x′ + 2 mais on ne peut conclure

que f(x) ̸= f(x′). Par exemple, 2 ̸= 4 et 3 ̸= 6 mais
2

3
=

4

6
• Il faut donc utiliser la définition 2 : Soient x et x′ des réels de R−{−2}.

Supposons f(x) = f(x′) donc
2x+ 1

x+ 2
=

2x′ + 1

x′ + 2
donc (2x+ 1)(x′ + 2) = (2x′ + 1)(x+ 2)
donc 2xx′ + 4x + x′ + 2 = 2xx′ + 4x′ + x + 2 donc 3x = 3x′ d’où
x = x′. CQFD.

7



2.11 Application surjective
2.11.1 Définitions équivalentes de la surjectivité

Soit f une application d’un ensemble E vers un ensemble F .
On dit que f est surjective lorsque l’une des définitions équivalentes suivantes
est vérifiée

1. définition 1 :
Tout élément de F a au moins un antécédent dans E.

2. définition 2 :
∀y ∈ F ∃x ∈ E y = f(x)

3. définition 3 ( en terme d’équation)
Pour tout y de F , l’équation y = f(x) d’inconnue x dans E admet au
moins 1 solution dans E

2.11.2 Définition de la non-surjectivité

Soit f une application d’un ensemble E vers un ensemble F .
On dit que f est non-surjective lorsque l’une des définitions équivalentes sui-
vantes est vérifiée

1. définition 1 :
Il existe au moins un élément de F qui n’a pas d’antécédent dans E.

2. définition 2 :
∃y ∈ F ∀x ∈ E y ̸= f(x)

2.11.3 Exemples

1. La fonction carré
g : R −→ R

x 7−→ g(x) = x2

n’est pas surjective
• La fonction g étant définie sur R est bien une application de R dans
R

• mais elle n’est pas surjective car g < R >= R+ donc un réel y < 0
n’a pas d’antécédent pour g dans R

2. L’application
i : R −→ R+

x 7−→ i(x) = x2

est surjective .
∀y ∈ R+ l’équation y = i(x) d’inconnue x dans R.
⇔ y = x2 ⇔ x2 − y = 0 ⇔ x2 − (

√
y)2 = 0 ⇔ (x−√

y)(x+
√
y) = 0 ⇔

x =
√
y ou x = −√

y
Tout y de R+ a donc deux antécédents √

y et −√
y dans R donc i est

surjective.
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2.12 Application bijective
2.12.1 Définitions équivalentes de la bijectivité

Soit f une application d’un ensemble E vers un ensemble F .
On dit que f est bijective lorsque l’une des définitions équivalentes suivantes
est vérifiée

1. définition 1 :
Tout élément de F a un et un seul antécédent dans E.

2. définition 2 :
∀y ∈ F ∃! x ∈ E y = f(x)

3. définition 3 ( en terme d’équation)
Pour tout y de F , l’équation y = f(x) d’inconnue x dans E admet 1
et 1 seule solution dans E

Une application bijective s’appelle aussi une bijection.

2.12.2 Définition de la bijection réciproque

Si f est une bijection de E sur F

f : E −→ F
x 7−→ f(x)

alors on peut créer l’application suivante :

f−1 : F −→ E
y 7−→ f−1(y) = l’antécédent de y par f

f−1 est elle aussi bijective et s’appelle la bijection réciproque de f

2.12.3 Propriétés

1. f−1 o f = IdE

2. f o f−1 = IdF

3. Si f est une bijection de E sur F et g une bijection de F sur G
alors g o f est une bijection de E sur G et (g o f)−1 = f−1 o g−1

4. Si f est une application de E dans F
Si g est une application de F dans E
Si {

g o f = IdE
f o g = IdF

Alors f est bijective et f−1 = g

Cette propriété est très utile pour démontrer que certaines applications sont
bijectives, par exemple, la symétrie centrale, la symétrie orthogonale, la trans-
lation, l’homothétie.
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2.12.4 Condition suffisante de bijectivité d’une fonction numérique

Soit f est une fonction numérique d’une variable réelle.
Si f est continue et si f est strictement monotone sur un intervalle I
Alors f réalise une bijection de I sur l’intervalle J = f < I >.

f−1 : J −→ I
y 7−→ f−1(y) = l’antécédent de y par f

est telle que la courbe représentative de f−1 est l’image de la courbe repré-
sentative de f par la symétrie orthogonale d’axe la droite d’équation y = x
dans un repère orthonormé.
De plus,

1. Comme f est continue sur I alors f−1 est continue sur f < I >.
2. si f est dérivable sur I et si f ′ ne s’annule jamais sur I alors

f−1 est dérivable sur f < I > et

∀y ∈ f < I > (f−1)′(y) =
1

f ′(f−1(y))

3. f−1 a le même sens de variations sur f < I > que f sur I.
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2.12.5 Exemples

1. Toute fonction affine

f : R −→ R
x 7−→ f(x) = ax+ b

où a ̸= 0 est bijective.
∀y ∈ R l’on a : l’équation y = f(x) d’inconnue x ∈ R

⇐⇒ y = ax+ b ⇐⇒ ax = y − b ⇐⇒ x =
y − b

a
car a ̸= 0.

Tout y de R admet donc un antécédent unique
y − b

a
dans R donc f est

bijective.
f−1 : R −→ R

y 7−→ f−1(y) =
y − b

a

La fonction affine f est représentée graphiquement par la droite (D)
d’équation y = ax+ b de pente a et d’ordonnée à l’origine b.

f−1 : R −→ R

x 7−→ f−1(x) =
x− b

a
=

1

a
x− b

a

est elle aussi une fonction affine représentée graphiquement par la droite

(D′) d’équation y =
1

a
x− b

a
de pente

1

a
et d’ordonnée à l’origine

b

a
.

(D) et (D′) sont symétriques par rapport à la droite d’équation y = x.

Programme en scilab

function y=f(x)
y=2*x +1

endfunction
function y=g(x)

y=x
endfunction
function y=h(x)

y=(1/2)*x-(1/2)
endfunction
clf
quadrillage
orthonorme
x=linspace(-10,10,50)
plot(x,f,"r")
x=linspace(-20,20,50)
plot(x,g,"b",x,h,"g")
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2. La fonction carré
g : R −→ R

x 7−→ g(x) = x2

n’est pas bijective car g n’est pas injective.
g n’est pas surjective non plus car g < R >= R+ donc un réel y < 0 n’a
pas d’antécédent pour g dans R

3. L’application
h : R+ −→ R

x 7−→ h(x) = x2

n’est pas bijective .
En effet, on a vu précédemment qu’elle était injective mais elle n’est pas
surjective car h < R+ >= R+ donc un réel y < 0 n’a pas d’antécédent
pour h dans R∗

4. L’application
i : R −→ R+

x 7−→ i(x) = x2

n’est pas bijective .
En effet, i n’est pas injective car 1 ̸= −1 et pourtant i(1) = i(−1)

5. L’application
j : R+ −→ R+

x 7−→ j(x) = x2

est bijective .
∀y ∈ R+ l’équation y = j(x) d’inconnue x dans R+.
⇔ y = x2 ⇔ x2 − y = 0 ⇔ x2 − (

√
y)2 = 0 ⇔ (x−√

y)(x+
√
y) = 0 ⇔

x =
√
y ou x = −√

y
La solution x = −√

y ne peut être acceptée que pour y = 0 (alors x = 0)
et à rejeter pour y > 0 car alors −√

y < 0 .
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Tout y de R+ a donc un seul antécédent √y dans R+ donc j est bijective.
Alors

j−1 : R+ −→ R+

y 7−→ f−1(y) =
√
y

programme en scilab

function y=f(x)
y=x*x

endfunction
function y=g(x)

y=x
endfunction
function y=h(x)

y=sqrt(x)
endfunction

clf
quadrillage
orthonorme
x=linspace(0,4,50)
plot(x,f,"r")
x=linspace(0,15,50)
plot(x,h,"g")
plot(x,g,"b")
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6. L’application

f : R− {−2} −→ R− {2}
x 7−→ f(x) =

2x+ 1

x+ 2

est bijective
(a) Méthode 1 :

Soit y ∈ R− {2}, y = f(x) ⇐⇒ y =
2x+ 1

x+ 2
⇐⇒ yx+ 2y = 2x+ 1

⇐⇒ x(y − 2) = 1− 2y ⇐⇒ x =
1− 2y

y − 2
car y ̸= 2.

Résolvons pour cela l’équation
1− 2y

y − 2
= −2.

1− 2y

y − 2
= −2 ⇐⇒ 1− 2y = −2y + 4 ⇐⇒ 1 = 4 impossible

Donc l’antécédent de y qui est
1− 2y

y − 2
est bien un élément de R−{−2}

Par conséquent, f est bien une application bijective de R−{−2} dans
R− {2} et

f−1 : R− {2} −→ R− {−2}
y 7−→ f−1(y) =

−2y + 1

y − 2

(b) Méthode 2 :

i. Df = R− {−2} =]−∞;−2[∪]− 2;+∞[

ii. f est une fonction fraction rationnelle donc f est dérivable donc
continue sur son ensemble de définition

iii. ∀x ∈ Df l’on a : f ′(x) =
3

(x+ 2)2
donc f ′(x) > 0. Par conséquent

f est strictement croissante sur ] − ∞;−2[ et f est strictement
croissante sur ]− 2;+∞[

iv. Comme f est une fonction rationnelle alors les limites à l’infini sont
les limites à l’infini du rapport des termes de plus haut degré. Par
conséquent,

A. lim
x→−∞

2x+ 1

x+ 2
= lim

x→−∞

2x

x
= 2.

Par conséquent, Cf admet au voisinage de −∞ une asymptote
horizontale d’équation y = 2

B. lim
x→+∞

2x+ 1

x+ 2
= lim

x→+∞

2x

x
= 2

Par conséquent, Cf admet au voisinage de +∞ une asymptote
horizontale d’équation y = 2

v. A. Quand x → −2− alors 2x + 1 → −3 et x + 2 → 0− donc
f(x) → +∞
Par conséquent, Cf admet au voisinage de −2− une asymptote
verticale d’équation x = −2
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B. Quand x → −2+ alors 2x + 1 → −3 et x + 2 → 0+ donc
f(x) → −∞
Par conséquent, Cf admet au voisinage de −2+ une asymptote
verticale d’équation x = −2

vi. Voici donc le tableau de variations de f

vii. A. Comme f est continue et strictement croissante sur ]−∞;−2[
alors f réalise une bijection de ]−∞;−2[ sur f <]−∞;−2[>
qui est ]2; +∞[

B. Comme f est continue et strictement croissante sur ]− 2;+∞[
alors f réalise une bijection de ]− 2;+∞[ sur f <]− 2;+∞[>
qui est ]−∞; 2[

C. De plus f(x) = 2 ⇐⇒ 2x+ 1

x+ 2
= 2 ⇐⇒ 2x + 1 = 2x + 4 ⇐⇒

1 = 4 impossible
D. par conséquent f < R − {−2} > est R − {2} et f est une

application bijective de R− {−2} sur R− {2}
viii. D’où le tableau de variations suivant :

x −∞ −2 +∞
f ′(x) + || +

+∞ || 2
f(x) ↗ || ↗

2 || −∞
Voici la courbe représentative de f qui est une hyperbole de centre Ω(−2; 2) et
d’axes D1 : y = 2 et D2 : x = −2

Les courbes de f et de f−1 sont symétriques par rapport à la droite d’équation
y = x.
La courbe représentative de f−1 est aussi une hyperbole de centre Ω′(2;−2) et
d’axes D′

1 : x = 2 et D′
2 : y = −2

Ω′ est le symétrique de Ω par rapport à la droite d’équation y = x.
D′

1 est le symétrique de D1 par rapport à la droite d’équation y = x.
D′

2 est le symétrique de D2 par rapport à la droite d’équation y = x.
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Courbes représentatives de f et de f−1
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2.13 Bijections et Involutions

2.13.1 Un lemme intéressant à savoir redémontrer en cas de besoin

Soit f une application de l’ensemble E dans l’ensemble F et soit g une appli-
cation de l’ensemble F dans l’ensemble E.
Démontrer que si g o f = IdE et si f o g = IdF alors f est bijective et f−1 = g

2.13.2 Bijections géométriques

1. Soit Tu⃗ la translation plane de vecteur u⃗. Déterminer Tu⃗ ◦ T−u⃗ puis
T−u⃗ ◦ Tu⃗. en déduire que toute translation est bijective et déterminer
sa bijection réciproque.

2. Soit S∆ la symétrie orthogonale plane d’axe ∆. Déterminer S∆ ◦ S∆ .
En déduire que toute symétrie orthogonale est bijective et déterminer
sa bijection réciproque.

3. Soit SΩ la symétrie centrale plane de centre Ω. Déterminer SΩ ◦ SΩ .
En déduire que toute symétrie centrale est bijective et déterminer sa
bijection réciproque.

4. Soit R(Ω, θ) la rotation plane de centre Ω et d’angle de mesure θ.
Déterminer R(Ω, θ)◦R(Ω,−θ) puis R(Ω,−θ)◦R(Ω, θ). En déduire que
toute rotation est bijective et déterminer sa bijection réciproque.

5. Soit H(Ω, k) l’homothétie plane de centre Ω et de rapport k ̸=
0.Déterminer H(Ω, k)◦H(Ω,

1

k
) puis H(Ω,

1

k
)◦H(Ω, k). En déduire que

toute homothétie est bijective et déterminer sa bijection réciproque.

2.13.3 Cas particulier de l’involution

Une application de E dans E est dite involutive lorsque f ◦ f = IdE .
D’après le lemme précédent, toute involution est bijective et f−1 = f .

2.13.4 Exemples d’involutions

1. Toute symétrie orthogonale plane est involutive.
2. Toute symétrie centrale plane est involutive.
3. Déterminer deux sous-ensembles E et F les plus grands possibles de R

tels que la fonction

f : E −→ F

x 7−→ f(x) =
x+ 2

x− 1

définisse une bijection de E vers F . Déterminer ensuite la bijection
réciproque de f . Que remarquez-vous ?
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Démonstration du lemme
Supposons que g ◦ f = IdE et si f ◦ g = IdF .
Pour démontrer que f est bijective, nous allons démontre que tout élément y ∈ F
a un antécédent unique x dans E.

• Existence de l’antécédent :
Soit y ∈ F .
Alors y = idF (y) = (f ◦ g)(y) = f [g(y)].
Or g(y) ∈ E.
Donc y a au moins un antécédent dans E c’est g(y). CQFD.

• Unicité de l’antécédent :
Supposons que y a deux antécédents x et x′ dans E pour f .
Alors y = f(x) = f(x′).
Donc x = idE(x) = (g ◦ f)(x) = g[f(x)] = g[f(x′)]
= (g ◦ f)(x′) = idE(x

′) = x′

Par conséquent, y a un antécédent unique dans E pour f
Alors

• f est bijective
• f a donc une bijection réciproque définie ainsi :

f−1 : F −→ E
y 7−→ f−1(y) = l’antécédent de y par f = g(y)

• Donc f−1 = g
Bijections géométriques

1. Soit Tu⃗ la translation plane de vecteur u⃗
• Tu⃗ ◦ T−u⃗ = T−u⃗+u⃗ = T0⃗ = idP
• T−u⃗ ◦ Tu⃗ = Tu⃗−u⃗ = T0⃗ = idP
• En conclusion toute translation Tu⃗ est bijective et [Tu⃗]

−1 = T−u⃗

2. Soit S∆ la symétrie orthogonale plane d’axe ∆.
• S∆ ◦ S∆ = idP
• S∆ ◦ S∆ = idP
• Donc toute symétrie orthogonale S∆ est bijective et [S∆]

−1 = S∆

3. Soit SΩ la symétrie centrale plane de centre Ω.
• SΩ ◦ SΩ = idP
• SΩ ◦ SΩ = idP
• Donc toute symétrie centrale SΩ est bijective et [SΩ]

−1 = SΩ.
4. Soit R(Ω, θ) la rotation de centre Ω et d’angle de mesure θ.

• R(Ω, θ) ◦R(Ω,−θ) = R(Ω,−θ + θ) = R(Ω, 0) = idP
• R(Ω,−θ) ◦R(Ω, θ) = R(Ω, θ − θ) = R(Ω, 0) = idP
• Donc toute rotation R(Ω, θ) est bijective et []−1 = R(Ω,−θ).

5. Soit H(Ω, k) l’homothétie de centre Ω et de rapport k ̸= 0.

• H(Ω, k) ◦H
(
Ω,

1

k

)
= H

(
Ω,

1

k
× k

)
= H(Ω, 1) = idP

• H

(
Ω,

1

k

)
◦H(Ω, k) = H

(
Ω, k × 1

k

)
= H(Ω, 1) = idP

• Donc toute homothétie H(Ω, k) est bijective et [H(Ω, k)]−1 = H

(
Ω,

1

k

)
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Cas particulier de l’involution
Une application de E dans E est dite involutive lorsque f ◦ f = IdE . D’après le
lemme précédent, toute involution est bijective et f−1 = f .

Exemples d’involutions
1. Toute symétrie orthogonale est involutive car

• S∆ est bijective
• [S∆]

−1 = S∆

2. Toute symétrie centrale est involutive car
• SΩ est bijective
• [SΩ]

−1 = SΩ

3. Ondésire que la fonction

f : E −→ F

x 7−→ f(x) =
x+ 2

x− 1

définisse une bijection de E vers F .
• Il faut donc prendre E = R− {1}
• Soit y ∈ F . l’équation y = f(x) d’inconnue x admet-elle une seule

solution x ∈ E

⋄ y = f(x) ⇐⇒ y =
x+ 2

x− 1
⇐⇒ y(x− 1) = x+ 2

⇐⇒ yx− y = x+ 2 ⇐⇒ x[y − 1] = y + 2
⋄ En prenant F = R− {1} alors y ̸= 1 et alors

y = f(x) ⇐⇒ x[y − 1] = y + 2 ⇐⇒ x =
y − 2

y − 1

⋄ Tout y ∈ F admet donc un unique antécédent
y − 2

y − 1
mais cet

antécédent est-il dans E ? Oui car

(p) :
y − 2

y − 1
= 1 ⇐⇒ y − 2 = y − 1 ⇐⇒ 2 = 1 (q)

On a p ⇐⇒ q qui est vraie . Mais la proposition (q) est fausse

donc la proposition p est fausse. Donc ∀y ̸= 1
y − 2

y − 1
̸= 1

• ⋄ f réalise une bijection de E = R− {1} sur F = R− {1}
⋄ Sa bijection réciproque est

f−1 : F = −→ E = R− {1}
y 7−→ f−1(y) =

y + 2

y − 1

⋄ f est bijective avec ici f−1 = f donc f est une involution.
.
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2.14 Les fonctions trigonométriques inverses
2.14.1 La fonction Arcsinus

Soit f la restriction de sin à I = [−π

2
;
π

2
].

• f est continue sur I
• f est strictement croissante sur I
• alors f réalise une bijection de I sur l’intervalle J = f < I >= [−1; 1]

Ce qui entraîne l’existence d’une bijection réciproque f−1 notée

Arcsin : [−1; 1] → I = [−π

2
;
π

2
]

y 7→ f−1(y) = l’antécédent de y par sin dans [−π

2
;
π

2
].

Arcsin(−1) = −π

2
car sin(−π

2
) = −1

Arcsin(−
√
3

2
) = −π

3
car sin(−π

3
) = −

√
3

2

Arcsin(−
√
2

2
) = −π

4
car sin(−π

4
) = −

√
2

2

Arcsin(−1

2
) = −π

6
car sin(−π

6
) = −1

2

Arcsin(0) = 0 car sin(0) = 0

Arcsin(
1

2
) =

π

6
car sin(

π

6
) =

1

2

Arcsin(

√
2

2
) =

π

4
car sin(

π

4
) =

√
2

2

Arcsin(

√
3

2
) =

π

3
car sin(

π

3
) =

√
3

2

Arcsin(1) =
π

2
car sin(

π

2
) = 1
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2.14.2 La fonction Arccosinus

Soit f la restriction de cos à I = [0;π].
• f est continue sur I
• f est strictement décroissante sur I
• alors f réalise une bijection de I sur l’intervalle J = f < I >= [−1; 1]

Ce qui entraîne l’existence d’une bijection réciproque f−1 notée

Arccos : [−1; 1] → I = [0;π]

y 7→ f−1(y) = l’antécédent de y par cos dans [0;π].

Arccos(−1) = π car cos(π) = −1

Arccos(−
√
3

2
) =

5π

6
car cos(

5π

6
) = −

√
3

2

Arccos(−
√
2

2
) =

3π

4
car cos(

3π

4
) = −

√
2

2

Arccos(−1

2
) =

2π

3
car cos(

2π

3
) = −1

2

Arccos(0) =
π

2
car cos(

π

2
) = 0
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Arccos(
1

2
) =

π

3
car cos(

π

3
) =

1

2

Arccos(

√
2

2
) =

π

4
car cos(

π

4
) =

√
2

2

Arccos(

√
3

2
) =

π

6
car cos(

π

6
) =

√
3

2

Arccos(1) = 0 car cos(0) = 1
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2.14.3 La fonction Arctangente

Soit f la restriction de tan à I =]− π

2
;
π

2
[.

• f est continue sur I
• f est strictement croissante sur I
• alors f réalise une bijection de I sur l’intervalle J = f < I >=] −
∞;∞[= R

Ce qui entraîne l’existence d’une bijection réciproque f−1 notée

Arctan : R → I =]− π

2
;
π

2
[

y 7→ f−1(y) = l’antécédent de y par tan dans ]− π

2
;
π

2
[.

lim
x→−∞

Arctan(x) = −π

2

Arctan(−
√
3) = −π

3
car tan(−π

3
) = −

√
3

Arctan(−1) = −π

4
car tan(−π

4
) = −1

Arctan(−
√
3

3
) = −π

6
car tan(−π

6
) = −

√
3

3

Arctan(0) = 0 car tan(0) = 0

Arctan(

√
3

3
) =

π

6
car tan(

π

6
) =

√
3

3

Arctan(1) =
π

4
car tan(

π

4
) = 1

Arctan(
√
3) =

π

3
car tan(

π

3
) =

√
3

lim
x→+∞

Arctan(x) =
π

2
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2.14.4 Propriétés des fonctions circulaires réciproques

1. Arcsin est impaire car :
• ∀y ∈ DArcsin on a −y ∈ DArcsin puisque DArcsin = [−1; 1]

• soit y ∈ [−1; 1] alors ∃x ∈ [−π

2
;
π

2
] tel que y = sin(x). Cet x est

Arcsin(y).
Mais comme y = sin(x) alors −y = −sin(x) = sin(−x).
Or −x ∈ [−π

2
;
π

2
] puisque x ∈ [−π

2
;
π

2
]

Donc −x = Arcsin(−y) d’où Arcsin(−y) = −x = −Arcsin(y).
CQFD

2. Arccos n’est ni paire ni impaire car
• bien que ∀y ∈ DArcsin on a −y ∈ DArcsin puisque DArcsin = [−1; 1]
• on a Arccos(−1) ̸= Arccos(1) et Arccos(−1) ̸= −Arccos(1) .

En effet, Arccos(−1) = −π puisque cos(−π) = −1 et Arccos(1) = 0
puisque cos(0) = 1

3. Arctan est impaire car :
• ∀y ∈ DArctan on a −y ∈ DArctan puisque DArctan = R
• soit y ∈ R alors ∃x ∈]− π

2
;
π

2
[ tel que y = tan(x). Cet x est Arctan(y).

Mais comme y = tan(x) alors −y = −tan(x) = tan(−x).
Or −x ∈]− π

2
;
π

2
[ puisque x ∈]− π

2
;
π

2
[

Donc −x = Arctan(−y) d’où Arctan(−y) = −x = −Arctan(y).
CQFD
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4. ∀y ∈ [−1; 1] sin(Arcsin(y)) = y

5. ∀y ∈ [−1; 1] cos(Arccos(y)) = y

6. ∀y ∈ R tan(Arctan(y)) = y

7. ∀x ∈ R Arcsin(sin(x)) = la mesure α située dans [−π

2
;
π

2
] telle que

sin(α) = sin(x)

Arcsin(sin(x)) =

 x− 2kπ si x ∈ [−π

2
+ 2kπ;

π

2
+ 2kπ]

π − x+ 2kπ si x ∈ [
π

2
+ 2kπ;

3π

2
+ 2kπ]

8. ∀x ∈ R Arccos(cos(x)) = la mesure α située dans [0;π] telle que
cos(α) = cos(x)

Arccos(cos(x)) =

{
x− 2kπ si x ∈ [0 + 2kπ;π + 2kπ]
2π − x+ 2kπ si x ∈ [π + 2kπ; 2π + 2kπ]

9. ∀x ∈ R− {π
2
+ kπ/k ∈ Z}

Arctan(tan(x)) = la mesure α située dans ] − π

2
;
π

2
[ telle que tan(α) =

tan(x)

Arctan(tan(x)) =


x− 2kπ si x ∈]− π

2
+ 2kπ;

π

2
+ 2kπ[

x− π − 2kπ si x ∈]π
2
+ 2kπ;

3π

2
+ 2kπ[ avec k ̸= 0

10. ∀y ∈ [−1; 1] sin(Arccos(y)) =
√
1− y2

∀y ∈ [−1; 1] sin2(Arccos(y)) = 1− cos2(Arccos(y)) = 1− y2

donc sin(Arccos(y)) = ±
√
1− y2.

Mais comme Arccos(y) ∈ [0;π] alors
sin(Arccos(y)) ≥ 0 donc sin(Arccos(y)) =

√
1− y2

11. ∀y ∈ [−1; 1] cos(Arcsin(y)) =
√
1− y2

∀y ∈ [−1; 1] cos2(Arcsin(y)) = 1− sin2(Arcsin(y)) = 1− y2

donc cos(Arcsin(y)) = ±
√
1− y2.

Mais comme Arcsin(y) ∈ [−π

2
;
π

2
] alors

cos(Arcsin(y)) ≥ 0 donc cos(Arcsin(y)) =
√
1− y2
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12. ∀y ∈ [−1; 1] Arcsin(y) +Arccos(y) =
π

2
∀y ∈ [−1; 1]
sin(Arcsin(y)+Arccos(y)) = sin(Arcsin(y))cos(Arccos(y))+sin(Arccos(y))cos(Arcsin(y))

= yy +
√

1− y2
√
1− y2 = y2 + 1− y2 = 1 .

Or −π

2
≤ Arcsin(y) ≤ π

2
et 0 ≤ Arccos(y) ≤ π

donc −π

2
≤ Arcsin(y) +Arccos(y) ≤ 3π

2
.

Or la seule mesure d’angle située dans [−π

2
;
3π

2
] et dont le sinus vaut 1

est
π

2
.

Par conséquent, Arcsin(y) +Arccos(y) =
π

2

13. Arcsin est dérivable sur ]− 1 ; 1[ et ∀y ∈]− 1 ; 1[ (Arcsin)′(y) =
1√

1− y2

f la restriction de sin à ]− π

2
;
π

2
[ y est dérivable et y admet pour nombre

dérivé cos(x) qui ne s’y annule jamais car cos(x) > 0 sur ]− π

2
;
π

2
[ .

Donc Arcsin est dérivable sur ] − 1; 1[ et ∀y ∈] − 1; 1[ (Arcsin)′(y) =
1

sin′(Arcsin(y))
=

1

cos(Arcsin(y))
=

1√
1− y2

14. Arccos est dérivable sur ]− 1 ; 1[ et ∀y ∈]− 1 ; 1[ (Arccos)′(y) = − 1√
1− y2

f la restriction de cos à ]0;π[ y est dérivable et y admet pour nombre
dérivé −sin(x) qui ne s’y annule jamais car −sin(x) < 0 sur ]0;π[ .
Donc Arccos est dérivable sur ]− 1; 1[ et ∀y ∈]− 1; 1[

(Arccos)′(y) =
1

cos′(Arccos(y))
=

1

−sin(Arcsin(y))
= − 1√

1− y2

Autre méthode :
∀y ∈ [−1; 1] Arcsin(y)+Arccos(y) =

π

2
donc Arccos(y) =

π

2
−Arcsin(y)

Arccos′(y) =
(π
2

)′
−Arcsin′(y) = 0− 1√

1− y2
=

1√
1− y2

15. Arctan est dérivable sur R et ∀y ∈ R (Arctan)′(y) =
1

1 + y2

f la restriction de tan à ]− π

2
;
π

2
[ y est dérivable et y admet pour nombre

dérivé 1 + tan2(x) qui ne s’y annule jamais car 1 + tan2(x) > 0 sur
]− π

2
;
π

2
[ .

Donc Arctan est dérivable sur R et

∀y ∈ R (Arctan)′(y) =
1

tan′(Arctan(y))
=

1

1 + tan2(Arctan(y))
=

1√
1 + y2

16. ∀(x, y) ∈ R2 tels que xy ̸= −1 arctan(x)− arctan(y) = arctan

(
x− y

1 + xy

)
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2.15 Les fonctions hyperboliques inverses

Soient les fonctions f et g définies sur R par f(x) =
1

2
ex et g(x) =

1

2
e−x.

2.15.1 Etude de la fonction sh

Soit la fonction sinus hyperbolique sh définie sur R par

sh(x) =
ex − e−x

2

1. Dsh = R donc ∀x ∈ Dsh on a −x ∈ Dsh.

Alors sh(−x) =
e−x − ex

2
= −sh(x) donc sh est impaire

2. Comme la courbe de sh admet O comme centre de symétrie, il suffit
d’étudier sh sur R+.
sh est la différence de f et de g qui sont toutes deux dérivables sur R
donc sh est dérivable sur R donc sur R+.
∀x ∈ R+ sh′(x) = ch(x) > 0 donc sh est strictement croissante sur R+

on a lim
x7→+∞

sh(x) = +∞ car lim
x 7→+∞

ex = +∞ et lim
x 7→+∞

e−x = 0

On en déduit le tableau de variations suivant en utilisant la symétrie de
la courbe de sh :

x −∞ 0 +∞
f ′(x) + 1 +

+∞
↗

f(x) 0
↗

−∞

3. Comme lim
x 7→+∞

sh(x)− f(x) = lim
x7→+∞

−e−x

2
= 0 alors la courbe représen-

tative Csh de sh admet comme asymptote au voisinage de +∞ la courbe
Cf

4. Comme ∀x ∈ R l’on a sh(x)−f(x) = −e−x

2
< 0 alors Csh est en dessous

de Cf

5. Posons k(x) = −e−x

2
. Comme lim

x7→−∞
sh(x)− k(x) = lim

x 7→−∞

ex

2
= 0 alors

la courbe représentative Csh de sh admet comme asymptote au voisinage
de −∞ la courbe Ck

6. Comme ∀x ∈ R l’on a sh(x)− k(x) =
ex

2
> 0 alors Csh est au dessus de

Cf

7. La tangente en 0 à Csh est la droite d’équation y = sh′(0)(x− 0)+ sh(0)
c’est-à-dire la droite d’équation y = x.
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2.15.2 Etude de la fonction ch

Soit la fonction cosinus hyperbolique ch définie sur R par

ch(x) =
ex + e−x

2

1. Dch = R donc ∀x ∈ Dch on a −x ∈ Dch.

Alors , ch(−x) =
e−x + ex

2
= ch(x) donc ch est paire

2. Comme la courbe de ch admet l’axe des ordonnées comme axe de symé-
trie, il suffit d’étudier ch sur R+.
ch est la somme de f et de g qui sont toutes deux dérivables sur R donc
ch est dérivable sur R donc sur R+.
∀x ∈ R+ ch′(x) = sh(x) ≥ 0 . ch′(x) ne s’annule qu’en 0 alors ch est
strictement croissante sur R+

on a lim
x 7→+∞

ch(x) = +∞ car lim
x 7→+∞

ex = +∞ et lim
x 7→+∞

e−x = 0

On en déduit le tableau de variations suivant en utilisant la symétrie de
la courbe de ch :

x −∞ 0 +∞
f ′(x) − 0 +

+∞ +∞
f(x) ↘ ↗

1

3. Comme lim
x 7→+∞

ch(x)− f(x) = lim
x 7→+∞

e−x

2
= 0 alors la courbe représenta-

tive Cch de ch admet comme asymptote au voisinage de +∞ la courbe
Cf

4. Comme ∀x ∈ R l’on a ch(x) − f(x) =
e−x

2
> 0 alors Cch est au dessus

de Cf

5. Comme lim
x7→−∞

ch(x)− g(x) = lim
x 7→−∞

ex

2
= 0 alors la courbe représenta-

tive Csh de sh admet comme asymptote au voisinage de −∞ la courbe
Cg

6. Comme ∀x ∈ R l’on a ch(x)− g(x) =
ex

2
> 0 alors Cch est au dessus de

Cg

7. La tangente en 0 à Cch est la droite d’équation y = ch′(0)(x− 0)+ ch(0)
c’est-à-dire d’équation y = 1.
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2.15.3 Etude de la fonction th

Soit la fonction tangente hyperbolique th définie sur R par

th(x) =
sh(x)

ch(x)

1. th est le quotient de sh et de ch qui ne s’annule jamais sur R donc
Dth = R.

∀x ∈ Dth = R on a −x ∈ Dth et th(−x) =
sh(−x)

ch(−x)
=

−sh(x)

ch(x)
= th(x)

donc th est impaire. Sa courbe admet donc O comme centre de symétrie.
Comme sh et ch sont dérivables sur R avec en plus ch qui ne s’annule
jamais sur R alors th est dérivable sur R.

∀x ∈ R th′(x) =
ch(x)ch(x)− sh(x)sh(x)

ch2(x)
=

1

ch2(x)
> 0

Donc th est strictement croissante sur R.

lim
x 7→+∞

th(x) = 1 car th(x) =
e2x − 1

e2x + 1
=

e2x
(
1− 1

e2x

)
e2x
(
1 +

1

e2x

) =
1− 1

e2x

1 +
1

e2x

lim
x 7→+∞

1

e2x
= 0

On en déduit le tableau de variations suivant en utilisant la symétrie de
la courbe de th :

x −∞ 0 +∞
th′(x) + +

+1
↗

0
↗

th(x) −1

2.15.4 Fonctions hyperboliques inverses

1. Comme la restriction de ch à R+ y est continue et strictement crois-
sante alors elle réalise une application bijective de R+ sur l’intervalle
J = [1;+∞[ . On appelle argument cosinus hyperbolique que l’on notera
argch sa bijection réciproque.

2. les courbes représentatives de la restriction de la fonction ch à R+ et de
argch sont symétriques par rapport à la droite d’équation y = x. Comme
1 a pour antécédent 0, comme la tangente au point d’abscisse 0 de Cch a
pour équation y = 1 alors la tangente au point d’abscisse 1 de la courbe
de argch a pour équation x = 1 . Cette tangente est verticale et Argch
n’est pas dérivable en 1
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3. • Méthode 1 :
Soit y ∈ [1; +∞[alors

ch(ln(y+
√
y2 − 1)) =

1

2

(
exp(ln(y +

√
y2 − 1)) + exp(−ln(y +

√
y2 − 1))

)
=

1

2

(
(y +

√
y2 − 1) + exp(ln(

1

y +
√
y2 − 1

))

)

=
1

2

(
(y +

√
y2 − 1) + (

1

y +
√
y2 − 1

)) =
1

2
(
(y +

√
y2 − 1)2 + 1

y +
√
y2 − 1

)

)

=
1

2

(
(y2 + y2 − 1 + 2y

√
y2 − 1 + 1

y +
√
y2 − 1

)

)
= y

Donc ln(y +
√
y2 − 1) est l’antécédent de y par ch donc

argch(y) = ln(y +
√

y2 − 1)

• Méthode 2 :
Soit y ∈ [1; +∞[
On sait que ch2(argch(y))− sh2(argch(y) = 1
Donc sh2(argch(y)) = ch2(argch(y))− 1 = y2 − 1

Or y ≥ 1 donc argch(y) ≥ 0 donc sh(argch(y)) = +
√
1− y2.

Or sh(x) = ch(x)− e−x

donc ch(argch(y))− e−argch(y) = sh(argch(y)) =
√
y2 − 1.

Comme ch(argch(y)) = y alors y − e−argch(y) =
√
y2 − 1

d’où y −
√
y2 − 1 = e−argch(y).

On en déduit que ln(y −
√
y2 − 1) = ln(e−argch(y))

donc argch(y) = −ln(y−
√
y2 − 1) = ln

(
1

y −
√
y2 − 1

)
= ln

(
y +

√
y2 − 1

y2 − (y2 − 1)

)
Par conséquent,

argch(y) = ln(y +
√
y2 − 1)

4. Comme ch′ = sh ne s’annule jamais sur ]0; +∞[ alors argch est dérivable
sur ]1; +∞[.

Alors ∀y > 1 (argch)′(y) = ln′(y +
√

y2 − 1) =

1 +
2y

2
√

y2 − 1

y +
√
y2 − 1

∀y > 1 (argch)′(y) =

√
y2 − 1 + y

(y +
√

y2 − 1)(
√
y2 − 1)

=
1√

y2 − 1

5. Comme sh est continue et strictement croissante sur R alors elle réa-
lise une application bijective de R sur R . On appelle argument sinus
hyperbolique que l’on notera argsh sa bijection réciproque.

6. Les courbes représentatives de sh et de argsh sont symétriques par raport
à la droite d’équation y = x. Comme 0 a pour antécédent 0, comme la
tangente au point d’abscisse 0 de Cch a pour équation y = x alors la
tangente au point d’abscisse 0 de la courbe de argsh a pour équation
y = x .
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7. Soit y ∈ R alors

sh(ln(y+
√
y2 + 1)) =

1

2

(
exp(ln(y +

√
y2 + 1))− exp(−ln(y +

√
y2 + 1))

)
=

1

2

(
(y +

√
y2 + 1)− exp(ln(

1

y +
√
y2 + 1

))

)

=
1

2

(
(y +

√
y2 + 1)− (

1

y +
√
y2 + 1

)) =
1

2
(
(y +

√
y2 + 1)2 − 1

y +
√
y2 + 1

)

)

=
1

2

(
(y2 + y2 + 1 + 2y

√
y2 + 1− 1

y +
√
y2 + 1

)

)
= y donc ln(y +

√
y2 + 1) est

l’antécédent de y par ch donc

argch(y) = ln(y +
√

y2 + 1)

8. Comme sh′ = ch ne s’annule jamais sur R alors argsh est dérivable sur

R. Alors (argsh)′(y) = ln′(y +
√
y2 + 1) =

1 +
2y

2
√
y2 + 1

y +
√

y2 + 1

∀y ∈ R (argsh)′(y) =

√
y2 + 1 + y

(y +
√
y2 + 1)(

√
y2 + 1)

=
1√

y2 + 1
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9. Comme th est continue et strictement croissante sur R, comme lim
x 7→−∞

th(x) = 1

et lim
x 7→+∞

th(x) = 1 alors la fonction th est une application bijective de

R sur l’intervalle ]− 1; 1[ .On appellera argument tangente hyperbolique
que l’on notera argth la bijection réciproque de la fonction th

10. On démontre que pour tout y ∈ ] − 1; 1[ l’on a th

(
1

2
ln

(
1 + y

1− y

))
= y

donc

argth(y) =
1

2
ln

(
(
1 + y

1− y

)
11. argth est dérivable sur R car th′ ne s’annule jamais sur R.

(argth)′(y) =

(
1

2
ln

(
1 + y

1− y

))′

=
1

1− y2
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2.15.5 Quelques propriétés

On démontre les formules suivantes pour tous réels a et b l’on a :
1.

ch(a+ b) = ch(a)ch(b) + sh(a)sh(b)

2.
sh(a+ b) = sh(a)ch(b) + sh(b)ch(a)

3.

th(a+ b) =
th(a) + th(b)

1 + th(a)th(b)

On en déduit les formules de multiplication des arcs :

ch(2a) = ch(a+ a) = ch2(a) + sh2(a) = 2ch2(a)− 1 = 1 + 2sh2(a)

car ch2(a)− sh2(a) = 1

sh(2a) = 2sh(a)ch(a)

et

th(2a) =
2th(a))

1 + th2(a)

Démontrer alors que

ch(x) =
1 + t2

1− t2
avec t = th

(x
2

)
;

sh(x) =
2t

1− t2
avec t = th

(x
2

)
et

th(x) =
2t

1 + t2
avec t = th

(x
2

)
1. Au voisinage de +∞ on a ch(x) ∼ 1

2
ex et sh(x) ∼ 1

2
ex

2. Au voisinage de −∞ on a ch(x) ∼ 1

2
e−x et sh(x) ∼ −1

2
e−x

3. La fonction x 7→ sh(x) − x est dérivable sur R et a pour dérivée x 7→
ch(x)− 1. Par conséquent comme ∀x ∈ R on a 1 ≤ ch(x) alors la dérivée
est positive donc la fonction est croissante sur R donc sur R+. Or elle
vaut 0 en x = 0 donc pour tout réel x ≥ 0, on a : sh(x) − x ≥ 0 donc
x ≤ sh(x)

4. (a) soit m(x) = ch(x) − (1 +
x2

2
) Alors m′(x) = sh(x) − x donc pour

tout réel x ≥ 0 l’on a m′(x) ≥ 0. Donc m est croissante sur R+. Or
m(0) = 0. Donc pour tout réel x ≥ 0 on a m(x) ≥ 0 donc pour tout

réel x ≥ 0 on a 1 +
x2

2
≤ ch(x) .
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(b) soit n(x) = sh(x)− (x+
x3

6
) Alors n′(x) = ch(x)− 1− x2

2
donc pour

tout réel x ≥ 0 l’on a n′(x) ≥ 0 d’après la question précédente. Donc
n est croissante sur R+. Or n(0) = 0. Donc pour tout réel x ≥ 0 on a

n(x) ≥ 0 donc x+
x3

6
≤ sh(x)

5. Sur [0; 1] on a :
(a) la fonction p définie par p(x) = 2x− sh(x) qui est dérivable et qui a

pour nombre dérivé 2− ch(x).
Or ∀x ∈ [0; 1] on a : 1 ≤ ch(x) ≤ ch(1) ≈ 1, 54 donc ∀x ∈ [0; 1]
on a : 2 − ch(x) > 0. La fonction p est donc croissante sur [0; 1] et
par conséquent p(x) ≥ p(0) avec p(0) = 0 donc 2x ≥ sh(x) donc
sh(x) ≤ 2x .

(b) la fonction q définie par q(x) = 1+x2− ch(x) qui est dérivable et qui
a pour nombre dérivé 2x− sh(x).
Or ∀x ∈ [0; 1] on a : 2x ≥ sh(x) donc ∀x ∈ [0; 1] on a : q′(x) ≥ 0. La
fonction q est donc croissante sur [0; 1] et par conséquent q(x) ≥ q(0)

avec q(0) = 0 donc 1 + x2 − ch(x) ≥ 0 donc ch(x) ≤ 1 + x2

6. (a) Soit la fonction r définie par r(x) = x +
x3

3
− sh(x). Alors r est

dérivable sur [0; 1] de nombre dérivé r′(x) = 1 + x2 − ch(x) ≥ 0
donc r est croissante sur [0; 1] donc r(x) ≥ r(0). Or r(0) = 0 donc

sh(x) ≤ x+
x3

3

(b) Soit la fonction s définie par s(x) = 1 +
x2

2
+

x4

12
− ch(x). Alors s

est dérivable sur [0; 1] de nombre dérivé s′(x) = x +
x3

3
− sh(x) ≥ 0

donc s est croissante sur [0; 1] donc s(x) ≥ s(0). Or s(0) = 0 donc

ch(x) ≤ 1 +
x2

2
+

x4

12

7. Comme, ∀x ∈ [0; 1], ch(x) ≤ 1 + x2 et ch(x) ≤ 1 +
x2

2
+

x4

12
alors

0 ≤ ch(x)− (1 +
x2

2
) ≤ x4

12
≤ 1

12

Comme, pour tout réel x compris entre 0 et 1, x+
x3

6
≤ sh(x) et sh(x) ≤

x+
x3

3
alors 0 ≤ sh(x)− (x+

x3

6
) ≤ x3

3
− x3

6
donc

0 ≤ sh(x)− (x+
x3

6
) ≤ x3

6
≤ 1

6
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3 Exercices

3.1 6 ensembles de définition classiques

Compléter le tableau suivant :

Si f est unefonction de R dans R telle que f(x) est : alors Df est :
un polynôme de variable x

n(x)

d(x)√
r(x)

ln(g(x))
exp(g(x))
(g ◦ f)(x)

si f(x) est alors Df est :
un polynome R

n(x)

d(x)
{x ∈ R/n(x) existe et d(x) existe et d(x) ̸= 0}√

r(x) {x ∈ R/r(x) existe et r(x) ≥ 0}
ln(g(x)) {x ∈ R/g(x) existe et g(x) > 0}
exp(h(x)) {x ∈ R/h(x) existe}
(gof)(x) {x ∈ R/f(x) existe et f(x) ∈ Dg}

3.2 Recherche d’ensembles de définition

Déterminer les ensembles de définition des fonctions numériques d’une variable
réelle x définies par :

1. f(x) = x2 + 2x− 3

2. g(x) = x2 + 5x+ 6

3. h(x) = ln(x2 + 5x+ 6)

4. i(x) = ln(x+ 2) + ln(x+ 3)

5. j(x) = ln(x2 + 2x+ 1)

6. k(x) = ln(x2 + x+ 1)

3.3 Recherche d’ensembles de définition

1. Dessiner un triangle équilatéral ABC dont le côté mesure a ∈ R+∗.
Par un point M de [AB] on construit les segments [MN ] et [MP ] tels
que (MN)//(BC), N ∈ [AC], (MP )//(AC), P ∈ [BC]

2. On pose x = AM et f(x) = AN +NM +MP + PB.
(a) Quel est l’ensemble de définition Def de f ?
(b) Pour tout x ∈ Def , simplifier f(x).
(c) Conclure.

37



3.4 Une fonction homographique particulière ♡♡♡

1. Démontrer que l’application

f : R− {−2} → R− {2}
x 7→ 2x+ 1

x+ 2

est bijective.
2. Déterminer alors la bijection réciproque f−1.
3. Dessiner Cf et Cf−1 dans un même repère orthonormé.

L’application

f : R− {−2} −→ R− {2}
x 7−→ f(x) =

2x+ 1

x+ 2

est bijective
1. Méthode 1 :

Soit y ∈ R− {2}, y = f(x) ⇐⇒ y =
2x+ 1

x+ 2
⇐⇒ yx+ 2y = 2x+ 1

⇐⇒ x(y − 2) = 1− 2y ⇐⇒ x =
1− 2y

y − 2
car y ̸= 2.

Résolvons pour cela l’équation
1− 2y

y − 2
= −2.

1− 2y

y − 2
= −2 ⇐⇒ 1− 2y = −2y + 4 ⇐⇒ 1 = 4 impossible

Donc l’antécédent de y qui est
1− 2y

y − 2
est bien un élément de R− {−2}

Par conséquent, f est bien une application bijective de R − {−2} dans
R− {2} et

f−1 : R− {2} −→ R− {−2}
y 7−→ f−1(y) =

−2y + 1

y − 2

2. Méthode 2 :

(a) Df = R− {−2} =]−∞;−2[∪]− 2;+∞[

(b) f est une fonction fraction rationnelle donc f est dérivable donc conti-
nue sur son ensemble de définition

(c) ∀x ∈ Df l’on a : f ′(x) =
3

(x+ 2)2
donc f ′(x) > 0. Par conséquent f

est strictement croissante sur ]−∞;−2[ et f est strictement croissante
sur ]− 2;+∞[

(d) Comme f est une fonction rationnelle alors les limites à l’infini sont
les limites à l’infini du rapport des termes de plus haut degré. Par
conséquent,
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i. lim
x→−∞

2x+ 1

x+ 2
= lim

x→−∞

2x

x
= 2.

Par conséquent, Cf admet au voisinage de −∞ une asymptote
horizontale d’équation y = 2

ii. lim
x→+∞

2x+ 1

x+ 2
= lim

x→+∞

2x

x
= 2

Par conséquent, Cf admet au voisinage de +∞ une asymptote
horizontale d’équation y = 2

(e) i. Quand x → −2− alors 2x+ 1 → −3 et x+ 2 → 0− donc f(x) →
+∞
Par conséquent, Cf admet au voisinage de −2− une asymptote
verticale d’équation x = −2

ii. Quand x → −2+ alors 2x+ 1 → −3 et x+ 2 → 0+ donc f(x) →
−∞
Par conséquent, Cf admet au voisinage de −2+ une asymptote
verticale d’équation x = −2

(f) Voici donc le tableau de variations de f

(g) i. Comme f est continue et strictement croissante sur ] − ∞;−2[
alors f réalise une bijection de ]−∞;−2[ sur f <]−∞;−2[> qui
est ]2; +∞[

ii. Comme f est continue et strictement croissante sur ] − 2;+∞[
alors f réalise une bijection de ]− 2;+∞[ sur f <]− 2;+∞[> qui
est ]−∞; 2[

iii. De plus f(x) = 2 ⇐⇒ 2x+ 1

x+ 2
= 2 ⇐⇒ 2x+1 = 2x+4 ⇐⇒ 1 = 4

impossible
iv. par conséquent f < R−{−2} > est R−{2} et f est une application

bijective de R− {−2} sur R− {2}
(h) D’où le tableau de variations suivant :

x −∞ −2 +∞
f ′(x) + || +

+∞ || 2
f(x) ↗ || ↗

2 || −∞
Voici la courbe représentative de f qui est une hyperbole de centre Ω(−2; 2) et
d’axes D1 : y = 2 et D2 : x = −2
Les courbes de f et de f−1 sont symétriques par rapport à la droite d’équation
y = x.
La courbe représentative de f−1 est aussi une hyperbole de centre Ω′(2;−2) et
d’axes D′

1 : x = 2 et D′
2 : y = −2

Ω′ est le symétrique de Ω par rapport à la droite d’équation y = x.
D′

1 est le symétrique de D1 par rapport à la droite d’équation y = x.
D′

2 est le symétrique de D2 par rapport à la droite d’équation y = x.
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3.5 Double et moitié

1. Soit l’application
f : R → R

x 7→ 2x

Démontrer que f est bijective et déterminer sa bijection réciproque.
2. l’application

g : N → N
x 7→ 2x

est –elle bijective ? oui ou non ? pourquoi ?
3.

h : N −→ N

x 7−→ h(x) =


x

2
si x est un entier pair

0 sinon

est –elle bijective ? oui ou non ? pourquoi ?
4. Déterminer l’application h o g

5. Déterminer l’application g o h

6. Déterminer de façon précise l’application h o h

7. Déterminer de façon précise l’application h o h o h
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3.6 Fonctions et applications

1. On associe à un élément quelconque x de N les éléments y de R tels
que x = y2 . A - t-on créé ainsi une application de N dans R ? Justifier.

2. On voudrait associer son inverse à un élément de R . Peut-on créer ainsi
une application de R dans R ? une fonction de R dans R ? Justifier

3. Pour chacune des 6 applications suivantes , indiquez si elle est injective,
surjective , bijective. Justifier. On donne A = {a; b; c; d} et B = {1; 2; 3}
•

f1 : A → B
a 7→ 1
b 7→ 1
c 7→ 2
d 7→ 3

•
f2 : A → B

a 7→ 1
b 7→ 1
c 7→ 2
d 7→ 2

•
f3 : B → A

1 7→ a
2 7→ b
3 7→ c

•
f4 : B → A

1 7→ a
2 7→ a
3 7→ b

•
f5 : A → A

a 7→ a
b 7→ a
c 7→ c
d 7→ d

•
f6 : A → A

a 7→ c
b 7→ d
c 7→ a
d 7→ b

4. Pour chacune des 4 applications suivantes, indiquez si elle est injective,
surjective , bijective Justifier.
•

g1 : R → R
x 7→ x2

•
g2 : R → R+

x 7→ x2
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•
g3 : R+ → R

x 7→ x2

•
g4 : R+ → R+

x 7→ x2
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3.7 Composée de surjections et d’injections ♡♡♡

Soient E, F et G trois ensembles non vides. Soit f une application de E vers
F et g une application de F vers G. Démontrer que

1. si f et g sont injectives alors g ◦ f est injective
2. si f et g sont surjectives alors g ◦ f est surjective
3. si g ◦ f est injective alors f est injective
4. si g ◦ f est surjective alors g est surjective
5. si g ◦ f est injective et que f est surjective alors g est injective
6. si g ◦ f est surjective et g est injective alors f est surjective

1. Soient x ∈ E et x′ ∈ E.
Supposons que (g ◦ f)(x) = (g ◦ f)(x′).
Alors g(f(x)) = g(f(x′)).
On en déduit que f(x) = f(x′) car g est injective.
Comme l’on a f(x) = f(x′) et que f est injective alors x = x′ CQFD.
On a ainsi démontré que g ◦ f est injective

2. Soit z ∈ G.
Comme g est surjective alors ∃y ∈ F z = g(y).
Mais l’on sait que f est surjective, alors cet y ∈ F a au moins un antécé-
dent x ∈ E c’est-à-dire ∃x ∈ E y = f(x).
Par conséquent ∃x ∈ E z = g(y) = g(f(x)) = (g ◦ f)(x).
On a ainsi démontré que ∀z ∈ G ∃x ∈ E z = (g ◦ f)(x). CQFD.
On a ainsi démontré que g ◦ f est surjective.

3. Soient x ∈ E et x′ ∈ E.
Supposons que f(x) = f(x′)
alors g(f(x) = g(f(x′)). Donc g(f(x)) = g(f(x′)).Mais g ◦f est injective.
Donc x = x′. CQFD. On a ainsi démontré que f est injective.

4. Soit z ∈ G.
Comme g ◦ f est surjective alors ∃x ∈ E z = (g ◦ f)(x).
On a donc ∃x ∈ E z = (g ◦ f)(x) = g(f(x)).
Or y = f(x) ∈ F on peut conclure que ∃y ∈ F z = g(y).
On a ainsi démontré que g est surjective

5. Soient y ∈ F et y′ ∈ F .
Supposons que g(y) = g(y′).
Or f est surjective donc cet y ∈ F a donc un antécédent x ∈ E par f .
De même y′ ∈ F a aussi un antécédent x′ ∈ E par f .
On a donc g(f(x)) = g(f(x′) c’est-à-dire (g ◦ f)(x) = (g ◦ f)(x′).
Mais g ◦ f est injective donc x = x′ d’où f(x) = f(x′).
On obtient donc y = y”. CQFD. On a ainsi démontré que g est injective

6. Soit y ∈ F .
Alors z = g(y) ∈ G Comme g ◦ f est surjective alors tout élément z de
G a au moins un antécédent x dans E par g ◦ f .
Donc ∃x ∈ E g(y) = (g ◦ f)(x). On a donc ∃x ∈ E g(y) = g(f(x)).
Mais g est injective donc y = f(x).
On a ainsi prouvé que ∃x ∈ E y = f(x).
Par conséquent, f est surjective
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3.8 Exercice ♡♡♡

Soit f une application de E dans E telle que f ◦ f ◦ f = f .
Démontrer que : f est injective ⇐⇒ f est surjective.

3.8.1 Corrigé

1. =⇒:
Supposons que f est injective.
Pour démontrer que f est surjective, nous allons démontrer que

∀y ∈ E ∃x ∈ E y = f(x)

Soit y ∈ E alors comme f ◦ f ◦ f = f on obtient f(f(f(y))) = f(y).
Or f est injective donc f(f(y)) = y donc y = f(f(y))donc ∃x = f(y) ∈ E
tel que y = f(x) donc f est surjective.

2. ⇐=:
Supposons que f est surjective.
Pour démontrer que f est injective, nous allons démontrer que

∀x ∈ E ∀x′ ∈ E f(x) = f(x′) =⇒ x = x′

Soient x ∈ E et x′ ∈ E. Supposons que f(x) = f(x′).
On a x ∈ E. or f est surjective donc ∃α ∈ E x = f(α).
On a x′ ∈ E. or f est surjective donc ∃β ∈ E x′ = f(β)
Comme f(x) = f(x′) alors f(f(α)) = f(f(β)) donc f(f(f(α))) = f(f(f(β))).
Or f ◦ f ◦ f = f donc f(α) = f(f(f(α))) = f(f(f(β))) = f(β).
Par conséquent, f(α) = f(β) d’où x = x′. CQFD.
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3.9 Images et Images réciproques d’ensembles

Soit f une application de l’ensemble E dans l’ensemble F .
1. Soient A et B des parties (ou des sous-ensembles ) de E.

On appelle ensemble image de A par f (qu’on note f < A >)
l’ensemble des images des éléments de A par f

(a) Démontrer que

f < A ∪B > = f < A > ∪ f < B >

(b) Démontrer que

f < A ∩B > ⊂ f < A > ∩ f < B >

Exhiber un contre-exemple prouvant que la réciproque est fausse.
(c) Démontrer que si f est injective alors

f < A ∩B > = f < A > ∩ f < B >

2. Soient A′ et B′ des parties (ou des sous-ensembles ) de F .
On appelle ensemble image réciproque de A′ par f
(qu’on note f−1 < A′ >) l’ensemble des antécédents des éléments de
A′ par f

3. (a) Démontrer que

f−1 < A′ ∪B′ > = f−1 < A′ > ∪ f−1 < B′ >

(b) Démontrer que

f−1 < A′ ∩B′ > = f−1 < A′ > ∩ f−1 < B′ >

1. Soient A et B des parties (ou des sous-ensembles ) de E.
On appelle ensemble image de A par f (qu’on note f < A >)
l’ensemble des images des éléments de A par f

(a) • Démontrons que f < A ∪B > ⊂ f < A > ∪ f < B > :

• Démontrons que f < A > ∪ f < B > ⊂ f < A ∪B > :

• On a donc prouvé que f < A ∪B > = f < A > ∪ f < B >

(b) • Démontrons que f < A ∩B > ⊂ f < A > ∩ f < B >
• La réciproque est fausse. Voici un contre-exemple :

(c) • Démontrons que si f est injective alors f < A > ∩ f < B >⊂<
A ∩B >
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• Comme l’on sait déjà que f < A ∩B > ⊂ f < A > ∩ f < B >
• On aura donc f < A ∩ B > : f < A > ∩ f < B > à condition

que f soit injective.
2. Soient A′ et B′ des parties (ou des sous-ensembles ) de F .

On appelle ensemble image réciproque de A′ par f
(qu’on note f−1 < A′ >) l’ensemble des antécédents des éléments de A′

par f

3. (a) Démontrer que

f−1 < A′ ∪B′ > = f−1 < A′ > ∪ f−1 < B′ >

(b) Démontrer que

f−1 < A′ ∩B′ > = f−1 < A′ > ∩ f−1 < B′ >
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3.10

Soit un ensemble E et soit A une partie de E telle que A ̸= ∅ et A ̸= E.
Soit les applications

f : P(E) → P(E)
X 7→ f(X) = X ∪A

et
g : P(E) → P(E)

X 7→ f(X) = X ∪A

1. Démontrer que f n’est pas injective.
2. Démontrer que g n’est pas injective.
3. Démontrer que f n’est pas surjective.
4. Démontrer que g n’est pas surjective.

3.10.1 Corrigé

1. f(A) = A ∪A = A et f(∅) = ∅ ∪A = A.
Par conséquent, A ̸= ∅ et pourtant f(A) = f(∅) donc f n’est pas injective.

2. g(A) = A ∩A = A et g(E) = E ∪A = A.
Par conséquent, A ̸= E et pourtant g(A) = g(E) donc g n’est pas injec-
tive.

3. ∅ n’a aucun antécédent dans P(E) pour f car il n’existera aucun X tel
que ∅ = f(X) puisque f(X) = X ∪A contient au moins A ̸= ∅.
Par conséquent, f n’est pas surjective.

4. E n’a aucun antécédent dans P(E) pour g car il n’existera aucun X
tel que E = g(X) puisque g(X) = X ∩ A ⊂ A ̸= E. Donc pour tout
X ∈ P(E) g(X) ̸= E Par conséquent, g n’est pas surjective.

3.11

Démontrer que l’application suivante est surjective

f : N → N

n 7→ f(n) =


n

2
si n pair

n− 1

2
si n impair

3.11.1 Corrigé

Soit y ∈ N. Alors de 2 choses l’une :

ou bien y est pair donc ∃k ∈ N y = 2k alors f(4k) =
4k

2
= 2k = y

ou bien y est impair donc ∃k ∈ N y = 2k + 1

alors f(4k + 3) =
4k + 3− 1

2
=

4k + 2

2
= 2k + 1 = y

Dans tous les cas, tout y ∈ N a au moins un antécédent par f dans N donc f
est surjective.
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3.12 Exercice

Soit l’application

f : R2 → R3

(x, y) 7→ f(x, y) = (−x, x+ y, y)

Soit l’application

g : R3 → R2

(x, y, z) 7→ g(x, y, z) = (x+ 2y,−y + z)

1. Démontrer que f est injective, non surjective
2. Démontrer que g est surjective et non injective
3. (a) Déterminer g o f

(b) Démontrer que g o f est bijective
(c) Déterminer alors l’application (g o f)−1

3.12.1 Corrigé

Soit l’application

f : R2 → R3

(x, y) 7→ f(x, y) = (−x, x+ y, y)

Soit l’application

g : R3 → R2

(x, y, z) 7→ g(x, y, z) = (x+ 2y,−y + z)

1. (a) f est injective car : soit (x, y) ∈ R2 et (x′, y′) ∈ R2

f(x, y) = f(x′, y′) =⇒ (−x, x+ y, y) = (−x′, x′ + y′, y′) =⇒ x = x′ et
y = y′ =⇒ (x, y) = (x′, y′)

(b) f n’est pas surjective car la résolution du système suivant n’aboutit
pas toujours à au moins une solution en (x, y) :
en effet soit (α, β, γ) ∈ R3

(α, β, γ) = f(x, y) ⇐⇒ (α, β, γ) = (−x, x+ y, y) ⇐⇒ x = α et y = γ
et x+ y = β ⇐⇒ x = α et y = γ et α+ γ = β.
Or il existe des triplets (α, β, γ) tels que α + γ ̸= β par exemple
(0, 1, 0).
Ces triplets n’auront donc pas d’antécédent (x, y) dans R2. Par consé-
quent f n’est pas surjective.

(c) f est injective et non surjective donc f n’est pas bijective.
,

2. (a) g est non injective car (0, 0, 0) ̸= (−2, 1, 1) et pourtant g(0, 0, 0) =
(0, 0) et g(−2, 1, 1) = (0, 0

(b) g est surjective car la résolution du système suivant aboutit toujours
à au moins une solution en (x, y, z) :
en effet soit (α, β) ∈ R2

(α, β) = g(x, y, z) ⇐⇒ (α, β) = (x + 2y,−y + z) ⇐⇒ x + 2y = α et
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β = −y + z ⇐⇒ x = α− 2y et z = β + y et y ∈ R
Donc il existe une infinité de triplets (x, y, z) solutions

(c) g est non injective et surjective donc g n’est pas bijective.
3. (a) g o f : R2 7→ R2 tellle que

∀(x, y) ∈ R2 g o f(x, y) = g(f(x, y)) = g((−x, x + y, y)) = (−x +
2(x+ y),−(x+ y) + y) = (x+ 2y,−x)

(b) g o f est bijective car
soit (α, β) ∈ R2

(α, β) = g(f(x, y)) ⇐⇒ (α, β) = (x + 2y,−x) ⇐⇒ x + 2y = α et

β = −x ⇐⇒ x = −β et y =
1

2
(α+ β)

Donc il existe un seul couple (x, y) solution
(c) Alors l’application (g o f)−1 : R2 7→ R2 telle que : ∀(α, β) ∈ R2 (g o f)−1(α, β) =

(−β,
1

2
(α+ β))

3.13 Deug Paris 7 - 1977

Soit f une fonction d’une variable réelle dérivable sur un intervalle I =]a ; b[
avec a < b telle que sa dérivée f ′ est continue sur I.
Soit x0 ∈ I telle que f ′(x0) ̸= 0.
Démontrer qu’il existe un intervalle J =]c ; d[⊂ I telle que x0 ∈ J et un
intervalle J ′ =]c′ ; d′[ contenant f(x0) tels que f réalise une bijection de J
sur J ′.

• Comme f ′(x0) ̸= 0 et que f ′ est continue sur I et que x0 ∈ I alors il
existe un intervalle ouvert J de centre x0 tel que ∀x ∈ J f ′(x) ̸= 0.

• Sur cet intervalle J on a f ′ qui ne peut changer de signe sinon ∃x1 ∈
J f ′(x1) = 0

• Par conséquent, f est strictement monotone sur J
• De plus f est continue sur J car f est dérivable donc continue sur I et
J ⊂ I

• Alors f réalise une bijection de J sur l’intervalle J ′ = f < J >
• Comme x0 ∈ J et que f est continue sur J alors f(x0) ∈ J ′. J ′ est un

intervalle ouvert ]c′ ; d′[ car f est strictement monotone sur J
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3.14 Fonction caractéristique

Soit un ensemble non vide E.
Soit F l’ensemble des applications de E dans {0; 1}.
Soient A et B des parties de E.
On appelle fonction caractéristique de la partie A l’application suivante notée
χA définie par :

χA : E −→ {0; 1}

x 7→
{

1 si x ∈ A
0 sinon

1. Démontrer que χ2
A = χA

2. Démontrer que χA∩B = χAχB

3. Démontrer que χA∪B = χA + χB − χA∩B

4. Que se passe-t-il si A et B sont disjoints ?
5. Démontrer que χA = (1− χA)

6. Démontrer que χA\B = χA(1− χB) = χ1 − χAχB

7. Démontrer que χA∆B = χA + χB − 2χAχB

8. Démontrer que
χ(A∆B)∆C = χA + χB + χC − 2χAχB − 2χAχC − 2χBχC + 4χAχBχC

9. Démontrer que l’application ϕ de P(E) dans F qui à toute partie A
associe ϕ(A) = χA est bijective.

10. En utilisant les fonctions caractéristiques, retrouver :
(a) la distributivité de ∩ par rapport à ∪
(b) les lois logiques de Morgan pour les ensembles.
(c) (A∆B)∆C = A∆(B∆C)

3.14.1 Corrigé

Soit un ensemble non vide E.
Soit F l’ensemble des applications de E dans {0; 1}.
Soient A et B des parties de E.
On appelle fonction caractéristique de la partie A l’application suivante notée
χA définie par :

χA : E −→ {0; 1}

x 7→
{

1 si x ∈ A
0 sinon

On utilisera le résultat suivant : 2 applications f et g sont égales lorsqu’elles
ont :

• le même ensemble de départ E,
• le même ensemble d’arrivée F
• et ∀x ∈ Ef(x) = g(x)

1.
χ2
A : E −→ {0; 1}

x 7→ χA(x)χA(x)) =

{
1× 1 = 1 si x ∈ A
0× 0 = 0 sinon
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donc χ2
A = χA car elles ont

• le même ensemble de départ E,
• le même ensemble d’arrivée {0; 1}
• et ∀x ∈ E χ2

A(x) = χA(x)

2. χA∩B = χAχB car elles ont
• le même ensemble de départ E,
• le même ensemble d’arrivée {0; 1}
• et ∀x ∈ E χA∩B(x) = (χAχB)(x) puisque

— ou bien x ∈ A ∩ B donc x ∈ A et x ∈ B. On a bien χA∩B(x) = 1
et (χAχB)(x) = χA(x)χB(x) = 1× 1 = 1

— ou bien x /∈ A ∩ B donc x /∈ A ou x /∈ B On a bien χA∩B(x) =
0 et (χAχB)(x) = χA(x)χB(x) = 0 car soit (χA)(x) = 0 soit
(χB)(x) = 0

3. χA∪B = χA + χB − χA∩B car elles ont
• le même ensemble de départ E,
• le même ensemble d’arrivée {0; 1}
• et ∀x ∈ E χA∪B(x) = (χA + χB − χA∩B)(x) puisque

— ou bien x ∈ A ∪B donc x ∈ A ou x ∈ B. On a bien χA∪B(x) = 1
Mais alors (χA + χB − χA∩B)(x) = 1 car
— ou bien x ∈ A et x /∈ B donc (χA+χB −χA∩B)(x) = χA(x)+

χB(x)− χA∩B(x) = 1 + 0− 0 = 1
— ou bien x /∈ A et x ∈ B donc (χA+χB −χA∩B)(x) = χA(x)+

χB(x)− χA∩B(x) = 0 + 1− 0 = 1
— ou bien x ∈ A et x ∈ B donc (χA+χB −χA∩B)(x) = χA(x)+

χB(x)− χA∩B(x) = 1 + 1− 1 = 1
— ou bien x /∈ A ∪ B donc x /∈ A et x /∈ B On a bien χA∪B(x) = 0

Mais alors (χA + χB − χA∩B)(x) = χA(x) + χB(x)− χA∩B(x) =
0 + 0− 0

4. Si A et B sont disjoints alors A ∩ B = ∅ . Or χ∅ est la fonction nulle
définie sur E donc χA∪B = χA + χB − χA∩B = χA + χB

5. χE est la fonction constante 1 définie sur E.
Alors 1 = χE = χA∪A = χA+χA−χA∩A = χA+χA−χ∅ = χA+χA−0
donc χA = (1− χA)

6. Comme A\B = A∩B on a donc χA\B = χA∩B = χAχB = χA(1−χB) =
χA − χAχB

7. χA∆B = χ(A∪B)/(A∩B) = χA∪B − χA∪BχA∩B

= (χA + χB − χA∩B)− (χA + χB − χA∩B)χAχB

= χA + χB − χAχB − χ2
AχB − χBχAχB + χAχBχA

= χA + χB − χAχB − χ2
AχB − χAχ

2
B + χ2

AχB

= χA + χB − χAχB − χAχB − χAχB + χAχB = χA + χB − 2χAχB

8. χ(A∆B)∆C = χA∆B + χC − 2χA∆BχC

= χA + χB − 2χAχB + χC − 2χAχC − 2χBχC + 4χAχBχC

= χA + χB + χC − 2χAχB − 2χAχC − 2χBχC + 4χAχBχC

9. Soit g une application de E dans {0; 1}. Soit C = g−1(1) = l’ensemble
des antécédents de 1 dans E par g. Alors χC = g par construction donc
tout élément g de F a au moins un antécédent C dans P(E) donc ϕ est
surjective.
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De plus ϕ est injective car ϕ(A) = ϕ(B) =⇒ χA = χB =⇒ A = B Par
conséquent l’application ϕ de P(E) dans F qui à toute partie A associe
ϕ(A) = χA est surjective et injective donc bijective.

10. En utilisant la bijectivité de ϕ on retrouve :
(a) la distributivité de ∩ par rapport à ∪ car χA∩(B∪C) = χ(A∩B)∪(A∩C)

(b) la distributivité de ∪ par rapport à ∩ car χA∪(B∩C) = χ(A∪B)∩(A∪C)

(c) les lois logiques de Morgan pour les ensembles car
• χA∩B = χA∪B

• χA∪B = χA∩B

11. En changeant A en B,B en C et C en A dans la formule :

χ(A∆B)∆C = χA + χB + χC − 2χAχB − 2χAχC − 2χBχC + 4χAχBχC

on obtient : χ(A∆B)∆C = χ(B∆C)∆A

Par conséquent, comme χX∆Y = χY∆X , on obtient χ(B∆C)∆A = χA∆(B∆C)

d’où on déduit que (A∆B)∆C = A∆(B∆C)

Cette associativité de la différence symétrique s’illustre facilement :
(A∆B)∆C = (A∆B)/C ∪ C/(A∆B)
A∆(B∆C) = (A/(B∆C) ∪ (B∆C)/A
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3.15 Homéomorphisme de R dans ]− 1; 1[

Soit la fonction numérique d’une variable réelle définie par f(x) =
x

1 + |x|
1. Quel est l’ensemble de définition de f ?
2. Etudier la continuité de f sur Df .
3. Etudier la dérivabilité de f sur Df

4. En déduire que f est strictement croissante sur Df

5. Démontrer que f est une application bijective de Df sur un intervalle
J à déterminer

6. Définir la bijection réciproque f−1. (on admet quef−1 est continue)
7. Dessiner les courbes représentatives de f et de f−1 dans un même

repère orthonormé.
f est donc une application bijective et bicontinue donc un homéomorphisme
de R sur ]− 1; 1[.
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3.16 Bijection

Soit la fonction numérique d’une variable réell

f : [3 ; +∞[ −→ [5 ; +∞[
x 7−→ f(x) =

√
x− 3 + 5

1. Démontrer que f est une application bijective de [3 ; +∞[ sur [5 ; +∞[.
2. Définir sa bijection réciproque f−1.
3. Tracer alors la courbe de f−1 dans un repère orthonormé.
4. En déduire le tracé de la courbe de f dans ce même repère orthonormé.

55



3.17 Exercice

Démontrer que l’application

f : Z× Z −→ R
(a, b) 7−→ f((a, b)) = a+ b

√
2

est injective.

3.17.1 Corrigé

Soient (a, b) ∈ Z2, (a′, b′) ∈ Z2 tels que f((a, b)) = f((a′, b′))
Alors a+ b

√
2 = a′ + b′

√
2 donc (a− a′) + (b− b′)

√
2 = 0.

• ou bien b− b′ ̸= 0 donc
√
2 =

a− a′

b− b′
. Or a− a′ ∈ Z et b− b′ ∈ Z∗ donc

√
2 ∈ Q. Impossible.

• ou bien b−b′ = 0 donc a−a′ = 0 d’où a = a′ et b = b′ donc (a, b) = (a′, b′).
Donc (a, b) = (a′, b′) donc f est injective.

56



3.18 Exercice - Ensi 87

Soit ρ une fonction à valeurs réelles de classe C1 sur R et σ la fonction définie
sur R par σ(x) = xρ(x)

3.19 Exercice

L’application

f : R −→ R

x 7−→ f(x) = Sup

(
x+ 10

5
; x− 3

)
est-elle bijective ?
Si oui, déterminer sa bijection réciproque.

3.20 Exercice

L’application
f : R− {2} −→ ]−∞; 0]∪]1; +∞[

x 7−→ f(x) =
x2

x2 − 4

est-elle bijective ? Si oui, déterminer sa bijection réciproque.

3.21 Exercice

L’application

f : R2 −→ R2

(x, y) 7−→ f(x, y = (x+ y ; x− y)

est-elle bijective ?
Si oui, déterminer sa bijection réciproque.
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3.22 Exercice

Soit l’application

f : R2 −→ R
(x, y) 7−→ f(x, y) = x2 − y

1. f est-elle injective ?
2. f est-elle surjective ?

1. f n’est pas injective car il existe (0, 0) ̸= (1, 1) et f(0, 0) = f(1, 1) puisque
f(0, 0) = 02 − 0 = 0 et f(1, 1) = 12 − 1 = 0

2. f sera surjective
si tout élément α ∈ R a au moins un antécédent (x, y) ∈ R2 c’est-à-dire
qu’on peut trouver un couple (x, y) tel que α = f(x, y) = x2 − y.
Or α = x2 − y ⇐⇒ x2 = α+ y.
Comme un carré est positif ou nul il faut que α+ y ≥ 0 dans ce cas

α = x2 − y ⇐⇒ x2 = α+ y ⇐⇒ x = −
√
α+ y ou x =

√
α+ y

Donc en choisissant (x, y) avec
{

y ≥ −α
x =

√
α+ y

on pourra avoir f(x, y) =

α+ y − y = α

3.23 Exercice

Soit l’application

f : R −→ R2

x 7−→ f(x) = (ex , x+ 2)

1. f est-elle injective ?
2. f est-elle surjective ?

1. f est injective car :
∀x ∈ R ∀x′ ∈ R

f(x) = f(x′) =⇒ (ex , x+2) = (ex
′
, x′+2) =⇒

{
ex = ex

′

x+ 2 = x′ + 2
=⇒

{
x = x′

x = x′ =⇒ x = x′

car la fonction exp est bijective de R sur ]0; +∞[

2. f n’est pas surjective car il existe (α, β) avec α ≤ 0 qui ne peut être
l’image d’un réel x car on ne peut avoir α = ex puisque ex > 0 et α ≤ 0
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3.24 Exercice

Soit la fonction
f : R −→ R

x 7−→ f(x) =
ex + 1

ex + 3

1. Démontrer que f n’est pas bijective.
2. Déterminer alors F un sous-ensemble de R tel que

f : R −→ F

x 7−→ f(x) =
ex + 1

ex + 3

réalise une bijection de R sur F .

1. • f est injective car ∀x ∈ R ∀x ∈ R′

f(x) = f(x′) =⇒ ex + 1

ex + 3
=

ex
′
+ 1

ex′ + 3
=⇒ (ex+1)(ex

′
+3) = (ex

′
+1)(ex+3)

=⇒ ex+x′
+3ex+ex

′
+3 = ex

′+x+1ex+3ex
′
+3 =⇒ 2ex = 2ex

′
=⇒ ex = ex

′
=⇒ x = x′

car la fonction exp est bijective de R sur ]0; +∞[.
• ∀x ∈ R f(x) < 0 car ex+1 > 0 et ex+3 > 0 puisque ∀x ∈ R ex >
0.
Par conséquent, il existe y < 0 tel que ∀x ∈ R y ̸= f(x) donc f
n’est pas surjective.

• f étant injective mais n’étant pas surjective ne peut être bijective.
2. • f est dérivable sur R

∀x ∈ R f ′(x) =
ex(ex + 3)− (ex + 1)ex

(ex + 3)2
=

2ex

(ex + 3)2
> 0

• — lim
x→+∞

f(x) = lim
x→+∞

ex + 1

ex + 3
= lim

x→+infty

ex + 1

ex + 3
= lim

x→+∞

1 +
1

ex

1 +
3

ex

= 1

— lim
x→−∞

f(x) =
1

3
car lim

x→−∞
ex + 1 = 1 et lim

x→−∞
ex + 3 = 3 puisque

lim
x→−∞

ex = 0

• On en déduit le tableau de variations suivant :

x −∞ +∞
f ′(x) +

1
↗

f(x)
1

3

• f est continue sur R (car f est dérivable sur R) et strictement crois-

sante sur R donc f réalise une bijection de R sur F =

]
1

3
; 1

[

59


