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"Il ne s’agit ni de rire, ni de pleurer mais de comprendre"
Spinoza

1 Notion de Fonction

1.1 Définition

On dit que f est une fonction d’un ensemble E vers un ensemble F' lorsque f
est une relation de I’ensemble E vers ’ensemble F' telle que tout élément x
de E a au plus(c’est-a-dire 0 ou 1 image ) dans F On écrit :

f+ E — F

Attention, il ne faut pas confondre f la fonction et f(z) qui est 'image de x

par f.
Si on appelle y 'image de x par f, on dit aussi que x est un antécédent de y

par f
1.2 Ensemble de définition d’une fonction

Soit f une fonction de E vers F'. Alors certains éléments de E peuvent ne pas
avoir d’image et d’autres en ont une seule. On appelle ensemble de définition
de f , I'ensemble des éléments = de £ qui ont une image. On note Dy, cet
ensemble de définition. Par conséquent Dy = {x € E/ f(x)existe}

1.3 Ensembles de définition de fonctions numériques

On appelle fonction numérique d’une variable réelle toute fonction de R dans
R. Voici quelques ensembles de définition classiques & connaitre :

Si f(x) est alors son ensemble de définition D; est :
un polynéme R
M x n(x) existe et d(x) existe et d(x
o (o € R/n(z) existe et d(z) eviste et d(z) # 0}
r(z) {zx € R/r(x) existe et r(z) > 0}
In(g(z)) {z e R/g(z) existe et g(x) > 0}
exp(h(z)) {z € R/h(x) existe}
(gof)(x) = glf (z)] {z € R/[f(z) existe et f(z) € Dy}




1.4 Exercice

Déterminer les ensembles de définition des fonctions numériques d’une variable
réelle définies par :
T+ 2
1. =
HOBRVERS:
vao+2
2. g(z) =
va+3
3. h(z) = In(z? + 5z + 6)
4. i(z) = In(z + 2) + In(z + 3)
5. h(z) = In(z? + 2z + 1)
6. h(z) =In(z? +z+1)

2 Notion d’Application

2.1 Deéfinition

On dit que f est une application d’un ensemble E vers un ensemble F' lorsque
f est une relation de ’ensemble E vers I’ensemble F' telle que :
tout élément =z de E a 1 et 1 seule image dans F

2.2 Propriétés

1. Si f est une application de E vers F alors f est une fonction de F
vers F'.

2. La réciproque est fausse mais si f est une fonction de F vers F' alors
f n’est pas forcément une application de E vers F. Par contre, la
restriction de f & son ensemble de définition qu’on note f/D; est une
application de Dy vers F'.

Par exemple x — — est une fonction de R dans R mais n’est pas une
x
application de R dans R.

x — — est une application de R* dans R
x

2.2.1 Exemples particuliers

1. On appelle application identique de E l’application

Ildg: E —» E
x +— Idg(z)=1=

2. Soit A un sous-ensemble de E.
On appelle Indicatrice de A 'application
xa: E — {0;1}

lsizeA
w > e = Osiz¢g A
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2.3 [Egalité d’applications

Deux applications f et g sont dites égales lorsqu’elles ont méme ensemble de
départ E , méme ensemble d’arrivée F' et que Vo € F on a f(z) = g(x)

2.4 Ensemble Image d’une partie

Soit f une application de E dans F.
Si A est une partie de E on appelle ensemble-image de A par f le sous-
ensemble de F noté f < A > formé des images des éléments de A par f.

f<A>={f(x)/z e A}

2.5 Ensemble image réciproque d’une partie

Soit f une application de E dans F.

Si B est une partie de F' on appelle ensemble-image réciproque de B par f le
sous-ensemble de E noté f~! < B > formé des antécédents des éléments de
B par f.

f!<B>={ze€E/f(z) € B}

Sur notre schéma, f~! < B > est I'ensemble formé des 3 éléments des zones
bleues



2.6 Opérations sur les applications

2.6.1 Somme

Soient f et g des applications de F dans R.
On appelle somme des applications f et g ’application

f+g: E — R
r — (f+9)(x) =f(z)+g(z)

2.6.2 Produit

Soient f et g des applications de F dans R.
On appelle produit des applications f et g 'application

fg: E — R
r — (fg)(x) =f(z)g(x)

2.6.3 Multiplication d’une application numérique par un réel

Soient A € R et f une application de E dans R.
On appelle multiplication de ’applications f par le réel A 'application

\f: E — R
z — (M) =Af(2)

2.7 Composée d’applications

2.7.1 Deéfinition

Soient f une application de E dans F' et g une application de F' dans G
On appelle composée de f suivie de g ’application

gof: E — G
z — (gof)x) =g(f(z))

2.8 Remarques et Propriétés

1. Attention! il se peut bien que I'on puisse créer g o f mais que 'on ne
puisse pas créer f o g

2. Si l’on peut créer g o f et f o g , ces deux applications ne sont pas
forcément égales donc la loi 0 de composition d’applications n’est pas
commutative.

3. Par contre, cette loi est associative, c’est-a-dire que
e si f une application de E dans F
e si g une application de F' dans G
e si h une application de G dans H
[ ]

alors (hog)o f=ho(go f)




2.9 Restriction et prolongement d’une application

2.9.1 Définitions

1. Si f est une application de E vers F' et si A est une partie de E , alors
I’application suivante notée

f/A: A — F
z — (f/A)) =f(2)

s’appelle la restriction de f a A.

2. Si f est une application de A dans F et si A est une partie de £, On
appelle prolongement de f sur E toute application

g: E — F
z — g(z)

telle que pour tout « de A l'on a g(z) = f(x)

2.9.2 Exemple

1_

f définie par f(z) = ¢ est une application de R* dans R .

1. f est continue sur R* car
e r — e” — 1 est continue sur R donc sur R*
e 1z — x est continue sur R donc sur R*
e r — x ne s’annule jamais sur R*
2. f n’est pas définie en 0 donc n’est pas continue en 0
xr
e’ —1

T

g(x):{ fla) siz#0

lsixz=0

1

Comme l'on sait que lim
z—0

Soit g définie par

g prolonge f sur R.
Comme
e ¢ coincide avec f sur R* alors g y est donc continue car f lest sur R*
xr

e lim g(z) = lim £ - 1= g(0) donc g est continue en 0
x—0 x—0 x€X

e Par conséquent g est continue sur R.
On dira alors que g prolonge f par continuité en 0

2.9.3 Remarque

si f est une fonction de E vers F alors f/Dy est une application de Dy vers
F



2.10 Application injective

2.10.1 Deéfinitions équivalentes de l’injectivité

Soit f une application d’un ensemble E vers un ensemble F'.
On dit que f est injective lorsque I'une des définitions équivalentes suivantes
est vérifiée
1. définition 1 :
Deux éléments quelconques différents de F ont deux images différentes
dans F'.
Ce qui se traduit par :
VeeE Vi'eE z#a = f(x)# f(2))
2. définition 2 (qui est la contraposée de la définition 1)
VeeE Vi'eE f(z)=f(a))=z=2a
3. définition 3 ( en terme d’équation)
pour tout y de F, Péquation y = f(z) d’inconnue x dans E admet au
plus 1 (c’est-a-dire 0 ou 1) solution dans FE

2.10.2 Définition de la non-injectivité

Soit f une application d’un ensemble E vers un ensemble F'.

On dit que f est non-injective lorsqu’il existe au moins deux éléments de F
qui ont la méme image dans F'.

JreEd'eE f(x)=f(«)etx#a




2.10.3 Exemples

1. Ex 1 : toute fonction affine
f: R — R
x — f(z) =azx+b

ol a # 0 est injective.

e Une fonction affine étant définie sur R est bien une application de R
dans R

e Utiliser la définition 1 avec les différences est concluante :
Soient x et =’ des réels avec x # x’ alors ax # az’ donc ax+b # ax’+b
donc f(z) # f(z'). CQFD.

e Mais il est conseillé d’utiliser la définition 2 car il est plus facile d’uti-
liser les égalités que les différences :
Soient z et 2’ des réels. Supposons f(z) = f(z') donc ax+b = az’+b
d’ott ax = az’ donc a(x — z’) = 0 . Par conséquent comme a # 0 on
obtient x = z’. CQFD.

2. Ex 2 : la fonction carré
g: R R
T

—
— gl) =a?

n’est pas injective
e La fonction g étant définie sur R est bien une application de R dans
R
e mais elle n’est pas injective car 4 # —4 et pourtant g(4) = g(—4) = 16
3. Ex 3 : la restriction h de la fonction carré & Rt c’est a dire
h: Rt — R

r — h(z) =2?

est injective .
En effet, soient x et z’ des réels positifs . Supposons que h(z) = h(z')
donc 2?2 = 2’2 donc 22 — 22 = 0. D’ott (z — 2/)(x + 2’) = 0 donc = = 2’
ou z = —z’. Or il est impossible d’avoir © = —z’ sauf si z = 2/ = 0 car
x et o’ sont positifs. Donc on a x = z’. CQFD.

4. Ex 4 : 'application

f: R={-2} — R-{2}

T — f(z) = 20 11

T+ 2

est injective
e Utiliser la définition 1 avec les différences n’est pas concluante .
En effet, soient = et x’ des réels avec x # 2’ alors 2x # 2z’ donc

2z + 1 # 22’ + 1. De méme, x + 2 # 2’ + 2 mais on ne peut conclure
4

2

que f(x) # f(2'). Par exemple, 2 # 4 et 3 # 6 mais 3 %
o Il faut donc utiliser la définition 2 : Soient et ' des réels de R—{—2}.
Supposons f(z) = f(z') donc 2o+l 20041

P B z 242
donc 2z + 1)(2' +2) = (22" + 1)(z + 2)
donc 2zz’ + 4z + 2’ + 2 = 2z’ + 42’ + x + 2 donc 3z = 32’ dou
z =12'. CQFD.




2.11 Application surjective

2.11.1 Définitions équivalentes de la surjectivité

Soit f une application d’un ensemble E vers un ensemble F'.
On dit que f est surjective lorsque I'une des définitions équivalentes suivantes
est vérifiée
1. définition 1 :
Tout élément de F' a au moins un antécédent dans FE.

2. définition 2 :
Vye FIdzreE y= f(x)
3. définition 3 ( en terme d’équation)

Pour tout y de F, ’équation y = f(x) d’inconnue = dans F admet au
moins 1 solution dans E

2.11.2 Définition de la non-surjectivité

Soit f une application d’un ensemble E vers un ensemble F'.
On dit que f est non-surjective lorsque 'une des définitions équivalentes sui-
vantes est vérifiée
1. définition 1 :
Il existe au moins un élément de F' qui n’a pas d’antécédent dans FE.

2. définition 2 :
JyeFVeeE y# f(x)

2.11.3 Exemples

1. La fonction carré
R

g: R —»
r — g(x) =a2a?

n’est pas surjective
e La fonction g étant définie sur R est bien une application de R dans
R
e mais elle n’est pas surjective car ¢ < R >= R™ donc un réel y < 0
n’a pas d’antécédent pour g dans R
2. L’application
i: R — RT

r — i(r) =22

est surjective .

Vy € RT I'équation y = i(x) d’inconnue = dans R.
sy=1ls’-y=0c2"-()?=0s (- Y+, =0&
T=\youx=—/y

Tout y de R a donc deux antécédents (/y et —,/y dans R donc i est
surjective.



2.12 Application bijective

2.12.1 Définitions équivalentes de la bijectivité

Soit f une application d’un ensemble E vers un ensemble F'.
On dit que f est bijective lorsque I'une des définitions équivalentes suivantes
est vérifiée
1. définition 1 :
Tout élément de F' a un et un seul antécédent dans E.
2. définition 2 :
Yye Flxe Ey= f(z)
3. définition 3 ( en terme d’équation)
Pour tout y de F, 'équation y = f(z) d’inconnue = dans F admet 1
et 1 seule solution dans E

Une application bijective s’appelle aussi une bijection.

2.12.2 Définition de la bijection réciproque

Si f est une bijection de F sur F'

f+ E — F

alors on peut créer ’application suivante :

f71 - F— E
¥ f*l(y) = l'antécédent de y par f

f~1 est elle aussi bijective et s’appelle la bijection réciproque de f

2.12.3 Propriétés

1. f_l o f=1dg
2. fo fil = Idp
3. Si f est une bijection de E sur F' et g une bijection de F' sur G

alors g o f est une bijection de E sur Get (go f)"'=flog™!

4. Si f est une application de E dans F
Si g est une application de F' dans E

Si
go f=1Idg
fog=1Idp
Alors f est bijective et f~! =g

Cette propriété est trés utile pour démontrer que certaines applications sont
bijectives, par exemple, la symétrie centrale, la symétrie orthogonale, la trans-
lation, I’homothétie.




2.12.4 Condition suffisante de bijectivité d’une fonction numérique

Soit f est une fonction numérique d’une variable réelle.
Si f est continue et si f est strictement monotone sur un intervalle 1
Alors f réalise une bijection de I sur l'intervalle J = f < I >.

f7l: J — 1
y +—— f~Y(y) =Tantécédent de y par f

est telle que la courbe représentative de f~! est I’image de la courbe repré-
sentative de f par la symétrie orthogonale d’axe la droite d’équation y = x
dans un repére orthonormé.

De plus,

1. Comme f est continue sur I alors f~! est continue sur f < I >.
2. si f est dérivable sur I et si /' ne s’annule jamais sur I alors
7! est dérivable sur f < I > et

wef<I> (fY(y) = m

3. f~! a le méme sens de variations sur f < I > que f sur I.

B e = R LT TRy

F---F=---

10



2.12.5 Exemples

1. Toute fonction affine

f: R R
X

—

—  f(z) =ax+0b
ou a # 0 est bijective.

Yy € R l'on a : 'équation y = f(x) d’inconnue x € R

<:>y:ax+b<:>ax:y—b<:>a::y_ car a # 0.

Tout y de R admet donc un antécédent unique 4 dans R donc f est

bijective.
fl: R — R
_ y—b
y o ) =

La fonction affine f est représentée graphiquement par la droite (D)
d’équation y = ax + b de pente a et d’ordonnée & 'origine b.
/i R — R
r—b 1 b

r — f i) = =T

est elle aussi une fonction affine représentée graphiquement par la droite
1 b b
(D') d’équation y = —x — — de pente — et d’ordonnée a Vorigine —.
a a a

(D) et (D') sont symétriques par rapport a la droite d’équation y = x.

Programme en scilab

function y=f(x)
y=2*x +1
endfunction
function y=g(x)
V=X
endfunction
function y=h(x)
y=(1/2)*x-(1/2)
endfunction
clf
quadrillage
orthonorme
x=linspace(-10,10,50)
plot(x,f,"r")
x=linspace(-20,20,50)
plot(x,g,"b",x,h,"g")

11



R e |
1 | 1
1 | 1
1 | 1
1 | 1
L _L____41
1 [ 1
1 | 1
1 | 1
1 | 1
1 | 1
[ B |
1 | 1
1 | 1
1 | 1
1 | 1
L
1 | 1
1 | 1
1 | 1
1 | 1
I I |
=20 -15 =1
v [ 1 L
1 | 1 1
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1 | 1 1 | 1 | 1
1 | 1 1 | 1 | 1
1 i 1 1 | 1 | 1
1 | ' | 1 | 1
[ e I___'].'E'_ _____ L - - -7 [ |
| 1 1 | 1 | 1
| 1 1 | 1 | 1
| 1 1 | 1 | 1
1 1 1 | 1 | 1
R --—15—---- 4= - J-—-——— F-—-==1
1 1 | 1 | 1
1 1 | 1 | 1
1 1 | 1 | 1
1 | 1 | 1
________ R i I 1 e e I S |

. La fonction carré
g: R — R

r — g(x) =a2a?

n’est pas bijective car g n’est pas injective.

g n’est pas surjective non plus car g < R >= R donc un réel y < 0 n’a
pas d’antécédent pour g dans R

. L’application

h: RY — R

r +— h(x) =2?

n’est pas bijective .

En effet, on a vu précédemment qu’elle était injective mais elle n’est pas
surjective car h < RT >= R* donc un réel y < 0 n’a pas d’antécédent
pour h dans R*

. L’application

n’est pas bijective .

En effet, ¢ n’est pas injective car 1 # —1 et pourtant (1) = i(—1)
. L’application

j: Rt — RT

r — jlr) =22

est bijective .

Vy € RT I’équation y = j(z) d’inconnue x dans R™.
sy=’sr’-y=0s2"—(/)? =05 (z— ) (z+y) =0
T=\youx=—/y

La solution = —,/y ne peut étre acceptée que pour y = 0 (alors z = 0)
et a rejeter pour y > 0 car alors —,/y <0 .

12



R+
— )

—

R*

Y

e e e e

N

13

it

f(x)
g(x)

linspace(0,15,50)

linspace(0,4,50)
plot(x,h,"g")

sqrt(x)
plot(x,f,"r")

=X*X
endfunction
function y

=X
endfunction

y
y

plot(x,g,"b")

quadrillage
orthonorme

clf
X

Tout y de RT a donc un seul antécédent /gy dans RY donc j est bijective.
X

Alors
programme en scilab

function y
endfunction
function y=h(x)

a-==d-

10—+ ----a--o--
S S U

14 +----
12 +----



6. L’application

f: R={-2} — R-{2}

- R @) :2x+1

T+ 2

est bijective

(a)

Méthode 1 :
. 2z +
Soit y e R— {2}, y=f(a) <= y= ) < yr+2y=2x+1
x
—ay-2)=1-2y<=ar=—"cary #2.
1-2
Résolvons pour cela ’équation 2y = -2,
y—
1—2y . .
> =-2<=1-2y=—-2y+4<=1=4 impossible
y—

Donc l'antécédent de y qui est dest bien un élément de R—{—2}

Par conséquent, f est bien une application bijective de R —{—2} dans
R — {2} et

7l R—{2) — R-{-2}
y o ) ::%;;

Méthode 2 :

i. Dy =R —{-2} =] — 00; —2[U] — 2; +00]
ii. f est une fonction fraction rationnelle donc f est dérivable donc
continue sur son ensemble de définition

3
iii. Ve € Dy lon a: f'(x) = ——= donc f/'(x) > 0. Par conséquent
f f(z) e f(z) q
f est strictement croissante sur | — co; —2[ et f est strictement
croissante sur | — 2; +00]

iv. Comme f est une fonction rationnelle alors les limites & ’infini sont
les limites & l'infini du rapport des termes de plus haut degré. Par

conséquent,
2 1 2
A. lim s — Iim Z—o
z——00 I + 2 r——00 I

Par conséquent, Cy admet au voisinage de —oo une asymptote
horizontale d’équation y = 2
2z +1 2z
B. lim + = lim — =2
rz—+oo T + 2 r—+00 I
Par conséquent, C'y admet au voisinage de +oo une asymptote

horizontale d’équation y = 2

v. A. Quand x — —27 alors 2 +1 - -3 et x +2 — 0~ donc

f(x) = +o0
Par conséquent, C'; admet au voisinage de —27~ une asymptote
verticale d’équation x = —2

14



B.

Quand z — —27 alors 2z +1 — —3 et z +2 — 0T donc
flx) =» —o0

Par conséquent, Cy admet au voisinage de —2% une asymptote
verticale d’équation x = —2

vi. Voici donc le tableau de variations de f

vil. A.

D.

Comme f est continue et strictement croissante sur | — co; —2]
alors f réalise une bijection de | — oo0; —2[ sur f <] — co; —2[>
qui est |2; +o0[

Comme f est continue et strictement croissante sur | — 2; 00|
alors f réalise une bijection de | — 2; +o0[ sur f <] — 2; +o0[>
qui est | — 00; 2]

De plus f(z) = 2 <=
1 = 4 impossible

par conséquent f < R — {—2} > est R — {2} et f est une
application bijective de R — {—2} sur R — {2}

20+ 1

=2<=2x+4+1=2r+4 <
+ 2

viii. D’ou le tableau de variations suivant :

X —00 —2 400
f'(z) + I +
+oo | | 2
f(z) / I S
2 | | —oc0

Voici la courbe

représentative de f qui est une hyperbole de centre Q(—2;2) et

d'axes Dy :y=2et Dy:x=—2

Les courbes de
Yy =2x.

f et de f~! sont symétriques par rapport a la droite d’équation

La courbe représentative de f~! est aussi une hyperbole de centre '(2; —2) et
d’axes D] :x=2et D)1y = -2

Q' est le symétrique de Q) par rapport a la droite d’équation y = x.

D est le symétrique de Dy par rapport a la droite d’équation y = x.

D), est le symétrique de Do par rapport a la droite d’équation y = x.

15
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Courbes représentatives de f et de f~!
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2.13 Bijections et Involutions

2.13.1 Un lemme intéressant & savoir redémontrer en cas de besoin

Soit f une application de ’ensemble F dans I’ensemble F' et soit g une appli-
cation de ’ensemble F' dans l’ensemble E.
Démontrer quesi g o f = Idg et si f o g = Idp alors f est bijectiveet f~' =g

2.13.2 Bijections géométriques

1. Soit Ty la translation plane de vecteur . Déterminer T; o T_z puis
T_z o Tgz. en déduire que toute translation est bijective et déterminer
sa bijection réciproque.

2. Soit Sa la symétrie orthogonale plane d’axe A. Déterminer Sa o Sa .
En déduire que toute symétrie orthogonale est bijective et déterminer
sa bijection réciproque.

3. Soit Sq la symétrie centrale plane de centre €2. Déterminer Sq o Sq .
En déduire que toute symeétrie centrale est bijective et déterminer sa
bijection réciproque.

4. Soit R(£,0) la rotation plane de centre et d’angle de mesure 6.
Déterminer R(2,0) o R(Q, —0) puis R(Q2, —0) o R(£, §). En déduire que
toute rotation est bijective et déterminer sa bijection réciproque.

5. Soit H(Q,k) '’homothétie plane de centre 2 et de rapport k #
1 1
0.Déterminer H (2, k)o H (€, E> puis H (2, E)OH(Q’ k). En déduire que

toute homothétie est bijective et déterminer sa bijection réciproque.

2.13.3 Cas particulier de I’involution

Une application de F dans E est dite involutive lorsque f o f = Idg.
D’aprés le lemme précédent, toute involution est bijective et f~1 = f.

2.13.4 Exemples d’involutions

1. Toute symétrie orthogonale plane est involutive.
2. Toute symétrie centrale plane est involutive.
3. Déterminer deux sous-ensembles F et F' les plus grands possibles de R
tels que la fonction
f+ E — F
T+ 2

ro— f@) =

définisse une bijection de E vers F. Déterminer ensuite la bijection
réciproque de f. Que remarquez-vous ?

17



Démonstration du lemme
Supposons que go f = Idg et si fog=Idp.

Pour démontrer que f est bijective, nous allons démontre que tout élément y € F

a un antécédent unique = dans F.
e Existence de antécédent :
Soit y € F.
Alors y = idp(y) = (f o 9)(y) = fla(y)].
Org(y) € E.
Donc y a au moins un antécédent dans E c’est g(y). CQFD.
e Unicité de 'antécédent :
Supposons que y a deux antécédents x et ' dans E pour f.
Alors y = f(z) = f(2).
Donc @ = idp(z) = (g ° f)(x) = glf(@)] = glf (")
— (g0 f)(@') = ide(@’) =
Par conséquent, y a un antécédent unique dans E pour f
Alors
e f est bijective
e f a donc une bijection réciproque définie ainsi :

ft: F — E
y +— f~Y(y) = lantécédent de y par f = g(y)

e Donc f7l=g
Bijections géométriques
1. Soit T3 la translation plane de vecteur @
o Tﬂf e} T,a‘ = T,{[Jrg = T(-)' = ’Ldp
o I _zoly=Tz 5="T5=1idp
e En conclusion toute translation T} est bijective et [T5]7! = T_

I

2. Soit Sa la symétrie orthogonale plane d’axe A.

e Spo0SA =1idp

e Sho0SA =1idp

e Donc toute symétrie orthogonale Sa est bijective et [Sa]™! = Sa
3. Soit Sq la symétrie centrale plane de centre ).

° SQ o SQ = idp

e SqgoSqg=1idp

e Donc toute symétrie centrale Sq est bijective et [Sq]™! = Sq.

4. Soit R(£2,0) la rotation de centre 2 et d’angle de mesure 0.

o R(Q,0)0 R(Q2,—0) = R(Q,—0+0) = R(Q,0) = idp

o R(Q,—0)o R(Q,0)=R(Q,0—0)=R(Q,0) =1idp

e Donc toute rotation R(2,6) est bijective et |71 = R(£2, —0).
. Soit H(, k) 'homothétie de centre €2 et de rapport k # 0.

. H(Q,k)oH<Q,]1€> :H(Q]lC xk) — H(Q,1) = idp

(@31

. H(Qllf) oH(Q,k:):H(Q,kx i) — H(Q,1) = idp

e Donc toute homothétie H (€2, k) est bijective et [H (2, k)]™! = H (Q,
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Cas particulier de 1’involution
Une application de F dans F est dite involutive lorsque fo f = Idg. D’aprés le
lemme précédent, toute involution est bijective et f~! = f.

Exemples d’involutions

1. Toute symétrie orthogonale est involutive car
e Sa est bijective
. [S A]71 =5a
2. Toute symétrie centrale est involutive car
e Sq est bijective
(] [SQ]_l = Sq

3. Ondésire que la fonction

fi E — F
T+ 2
z—1

x — f(z)=

définisse une bijection de E vers F.
e Il faut donc prendre £ =R — {1}
e Soit y € F. l'équation y = f(z) d’inconnue z admet-elle une seule
solution x € F
x4+ 2
oy=f(zr) = y=_— = yle—1)=x+2
S oyr—y=x+2 <= zly—1=y+2
o En prenant F = R — {1} alors y # 1 et alors
y—2
y—1
o Tout y € F admet donc un unique antécédent L_l mais cet

y=f(z) <= zly—-1=y+2 < z =

antécédent est-il dans £ ? Oui car

y—2
(p): F:1<:>y72:y71<:>2:1 (q)

On ap <= ¢ qui est vraie . Mais la proposition (q) est fausse
-2
donc la proposition p est fausse. Donc Vy # 1 Ll #1
Y

e o f réalise une bijection de E =R — {1} sur F =R — {1}
¢ Sa bijection réciproque est
[t F= — E=R-{1}

1 :y+2
y — fTy) -1

o f est bijective avec ici f~! = f donc f est une involution.
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2.14 Les fonctions trigonométriques inverses

2.14.1 La fonction Arcsinus

Soit f la restriction de sin & I = [—g; g}
e f est continue sur [
e f est strictement croissante sur
e alors f réalise une bijection de I sur l'intervalle J = f < I >=[—1;1]

Ce qui entraine I’existence d’une bijection réciproque f~! notée

Arcsin: [-1;1] = I = [—=; =]

y+— f~1(y) = lantécédent de y par sin dans [—g; g]

Aresin(—1) = fg car sin(fg) =-1
Arcsin(—\gg) = —g car sin(—%) = —g
Arcsin(—?) = —% car sin(_g) = _g
Arcsin(—%) = —% car sin(—%) = —%

Arcesin(0) = 0 car sin(0) =0

Aresin(

S el

Aresi == in(-) =
resin(—) 3 car sm(3)

2
):f

Aresin(1 5 car sin(g) =1
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y=aresin(x)
pif2 y=x

y=sin(x)

08

il

-pif2

2.14.2 La fonction Arccosinus

Soit f la restriction de cos a I = [0;7].

e f est continue sur [

e f est strictement décroissante sur [

e alors f réalise une bijection de I sur Uintervalle J = f < T >=[—1;1]
Ce qui entraine l’existence d’une bijection réciproque f~! notée

Arccos : [-1;1] — I = [0; 7]

y+— f~1(y) = l'antécédent de y par cos dans [0;7].

Arccos(—1) = m car cos(m) = —1
V3 o 5T V3
Arccos(—T) =5 car COS(F) =5
2 3 3 2
Arccos(—g) = Zﬂ- car cos(%) = —g
1 2 1
Arccos(—i) = g car cos(g) =3

Arccos(0) = g car cos(g) =0
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Arccos(
Arccos(

Arccos(—) = % car cos(

Arccos(1) = 0 car cos(0) =1

pi

24

y . y=arccos(x)

0B

08 08

0.8]

24
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2.14.3 La fonction Arctangente

Soit f la restriction de tan a I =] — g; g[
e f est continue sur [
e f est strictement croissante sur [
e alors f réalise une bijection de I sur lintervalle J = f < I >=| —
oo0;00[=R
Ce qui entraine l’existence d’une bijection réciproque f~! notée

Arctcm:R—)I:]—g;g[

y+— f~1(y) = Pantécédent de y par tan dans | — g; g[

lim Arctan(z) = —

T——00 5

T T
Arctan(—+/3) = —g car tan(—g) =3
Arctan(—1) = f% car tan(f%) =-1

V3 T T V3
Arctom(—?) =g car tan(—g) =—3

Arctan(0) = 0 car tan(0) =0

Arctan(—) = T car tan(%) =
Arctan(1) =
Arctan(V/3) =

7r
lim Arct =
Jm  Arc an(z) 5
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pif2
08

-pif2 | ! pij2

T T T +
48 4 2 24 18 08 08 16 24 32 4 48
081

-pif2

2.14.4 Propriétés des fonctions circulaires réciproques

1. Arcsin est impaire car :
L4 vy € DArcsin ona—yec DATcsin pUiSque DArcsin = [_17 1]

e soit y € [—1;1] alors Jz € [—g,g} tel que y = sin(z). Cet x est
Aresin(y).
Mais comme y = sin(z) alors —y = —sin(x) = sin(—zx).
Or —x € [fz' z] uisque z € [*z' E]

272/ P 272
Donc —z = Aresin(—y) d’ou Arcsin(—y) = —x = —Aresin(y).
CQFD
2. Arccos n’est ni paire ni impaire car
e bien que Vy € D Aresin On a RS D Aresin PUiSque D Aresin = [_17 1]

e on a Arccos(—1) # Arccos(1) et Arccos(—1) # —Arccos(1) .
En effet, Arccos(—1) = —m puisque cos(—m) = —1 et Arccos(l) =0
puisque cos(0) =1
3. Arctan est impaire car :
hd Vy € D Arctan OD & —yE D Arctan pUiSque D Arctan = R
e soit y € Ralors 3z €]— E; g[ tel que y = tan(z). Cet x est Arctan(y).

2
Mais comme y = tan(z) alors —y = —tan(z) = tan(—x).
T o T
Or —z €] — 5 5[ puisque = €] — Bk =
Donc —x = Arctan(—y) d’ou Arctan(—y) = —x = —Arctan(y).
CQFD
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(=}

10.

11.

) ‘Vy € [-1;1] sin(Aresin(y)) = y‘

) ‘Vy € [-1;1] cos(Arccos(y)) = y‘

. ‘Vy € R tan(Arctan(y)) =y

. Vz € R Arcsin(sin(z)) = la mesure « située dans [—g; g] telle que

sin(a) = sin(x)

x — 2k six € [—g+2kw;g+2kw]

Arcsin(sin(z)) =
T—x+2kw siz € [g+2k7‘r;3§+2kﬂ]

. Vz € R Arccos(cos(x)) = la mesure « située dans [0; 7] telle que
cos(a) = cos(x)

x —2km st x € [0+ 2km; 7 + 2k7]
21 — x4 2kw si x € [ + 2km; 2w + 2k

Arccos(cos(x)) = {

.v:ceR—{ngkw/keZ}

Arctan(tan(x)) = la mesure « située dans | — g; %[ telle que tan(a) =
tan(x)
x — 2k7 si x €] —%+2k7r;g+2k7r[
Arctan(tan(z)) =
) m 3m
x—m—2km szx€]§+2kw;?+2kw[aveck7€0
Yy € [-1;1] sin(Arccos(y)) = /1 — y?

Vy € [—1;1] sin?(Arccos(y)) = 1 — cos*(Arccos(y)) =1 — y?
donc sin(Arccos(y)) = £+/1 — y2.

Mais comme Arccos(y) € [0; 7] alors

sin(Arccos(y)) > 0 donc sin(Arccos(y)) = /1 — y?

Yy € [-1;1] cos(Arcsin(y)) = /1 —y?
Vy € [—1;1] cos?(Aresin(y)) = 1 — sin?(Aresin(y)) = 1 — y?
donc cos(Aresin(y)) = £+/1 — y2.

T
——; =] alors

2°2
cos(Aresin(y)) > 0 donc cos(Arcsin(y)) = /1 — y?

Mais comme Arcsin(y) € |
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12.

13.

14.

15.

16.

Yy € [-1;1] Aresin(y) + Arccos(y) = =
vy € [=1;1]

sin(Arcsin(y)+Arccos(y)) = sin(Arcsin(y))cos(Arccos(y))+sin(Arccos(y))cos(Arcsin(y))

=yy+VI-y?V/1l-y? =y +1-y’=1.

Or —g < Aresin(y) < g et 0 < Arceos(y) <7

3
donc —g < Aresin(y) + Arccos(y) < ?ﬂ-
3
Or la seule mesure d’angle située dans [fg; %} et dont le sinus vaut 1
T
t —.
est
Par conséquent, Arcsin(y) + Arccos(y) = =
1
Arcsin est dérivable sur | —1; 1[et Vy €] —1; 1[ (Aresin)'(y) = Ninar
-y
f la restriction de sin a]— g; g[ y est dérivable et y admet pour nombre
deérivé cos(x) qui ne s’y annule jamais car cos(z) > 0 sur | — 5 5[
Donc Aresin est dérivable sur | — 1;1[ et Yy €] — 1;1[ (Aresin)'(y) =
1 1 1
sin'(Arcsin(y)) — cos(Arcsin(y)) /1 — 2
1
Arccos est dérivable sur | —1; 1[et Vy €] —1; 1[ (Arccos) (y) = T
-y
f la restriction de cos a ]0;7[ y est dérivable et y admet pour nombre
dérivé —sin(x) qui ne s’y annule jamais car —sin(z) < 0 sur ]0;7[ .
Donc Arccos est dérivable sur | — 1;1[ et Yy €] — 1;1]
(Arccos)'(y) = L = 1 - _
¥/ = cos'(Arccos(y))  —sin(Aresin(y)) /1 — 2
Autre méthode : - -
Yy € [-1;1] Aresin(y)+Arccos(y) = 5 donc Arccos(y) = E—Arcsin(y)
T\’ 1 1
Arccos'(y) = (7) — Aresin’(y) =0 — =
W= =0~ = s
1
Arctan est dérivable sur R et Vy € R (Arctan) (y) = o2
Y
f la restriction de tan a ] — g g[ y est dérivable et y admet pour nombre
dérivé 1 + tan?(z) qui ne s’y annule jamais car 1 + tan?(z) > 0 sur
] - 55 5[ :
Donc Arctan est dérivable sur R et
1 1 1
Vy e R Arctan)' (y) = - _
Y (Aretan)’(y) tan’(Arctan(y)) 1+ tan?(Arctan(y)) /T+ 42

Y(z,y) € R? tels que zy # —1 arctan(x) — arctan(y) = arctan (

rT—y
1+2y

)
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2.15 Les fonctions hyperboliques inverses

1 1
Soient les fonctions f et g définies sur R par f(z) = 56“" et g(z) = ie*z

2.15.1 Etude de la fonction sh

Soit la fonction sinus hyperbolique sh définie sur R par

er —e ”
h =
shia) = <
1. Dy, =R donc Vx € Dy, on a —x € Dgy,.
Alors sh(—z) = % = —sh(x) donc sh est impaire

2. Comme la courbe de sh admet O comme centre de symétrie, il suffit
d’étudier sh sur RT.
sh est la différence de f et de g qui sont toutes deux dérivables sur R
donc sh est dérivable sur R donc sur RT.
Vo € Rt sh/(z) = ch(z) > 0 donc sh est strictement croissante sur R

ona lim sh(x)=+occcar lim e” =+4ocoet lim e * =0
T——+00 T +00 400

On en déduit le tableau de variations suivant en utilisant la symétrie de
la courbe de sh :

—00 0 —+00
1 (x) + 1]+
400
/
f(x) 0
/
—00
. . e’ )

3. Comme Tll)ar_loo sh(z) — f(z) = zgr}_loo 5 = 0 alors la courbe représen-
tative Csp, de sh admet comme asymptote au voisinage de +o0o la courbe
Cy

4. Comme Yz € R l'on a sh(z) — f(z) = —62 < 0 alors Cy), est en dessous
de Cf

5. Posons k(z) = —62

la courbe représentative Cy;, de sh admet comme asymptote au voisinage
de —oo la courbe Cj,

: . €
. Comme mgrzloo sh(z) — k(x) = wl}rzloo 5 = 0 alors

x

6. Comme Vz € R l'on a sh(z) — k(z) = % > 0 alors Cjj, est au dessus de
Cr

7. La tangente en 0 & Cy, est la droite d’équation y = sh/(0)(z — 0) + sh(0)
c’est-a-dire la droite d’équation y = z.
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2.15.2 Etude de la fonction ch

Soit la fonction cosinus hyperbolique ch définie sur R par

et +e "

ch(z) = 5

1. D., =R donc Vx € D, on a —x € Dy,
e ¥ 4 e”
Alors | ch(—x) = —
2. Comme la courbe de ch admet ’axe des ordonnées comme axe de symé-
trie, il suffit d’étudier ch sur RT.
ch est la somme de f et de g qui sont toutes deux dérivables sur R donc
ch est dérivable sur R donc sur RT.
Vo € RT ch/(z) = sh(xz) > 0 . ch/(x) ne s’annule qu’en 0 alors ch est
strictement croissante sur R™

ona lim ch(x)=4ococar lim e =-+ooet lim e =0
T—too r—>—400 T—>—400

On en déduit le tableau de variations suivant en utilisant la symétrie de
la courbe de ch :

= ch(z) donc ch est paire

z —00 0 400
f'(x) — 10+
+00 +00
f(x) pY /
1
3. Comme lim ch(z)— f(z) = lim = 0 alors la courbe représenta-
T——400 T——to0
tive C.p, de ch admet comme asymptote au voisinage de 4oo la courbe

Cy

4. Comme Yz € R l'on a ch(z) — f(z) = 62 > 0 alors C,, est au dessus
de Cf

x
5. Comme lim ch(z)—g(z) = lim € — 0 alors la courbe représenta-
T —00 z>—o00 2

tive Cy, de sh admet comme asymptote au voisinage de —oo la courbe
Cy
x

6. Comme Va € R l'on a ch(x) — g(z) = % > 0 alors C.p, est au dessus de
Cy

7. La tangente en 0 & Cyp, est la droite d’équation y = ch/(0)(z — 0) + ch(0)
c’est-a-dire d’équation y = 1.
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exp(x)/2

y=exp(-x)/2

-48

32

24

y=sh(x)

29

y=-exp(-x}/2

24

32

48



2.15.3 Etude de la fonction th

Soit la fonction tangente hyperbolique th définie sur R par

1. th est le quotient de sh et de ch qui ne s’annule jamais sur R donc

Dy, =R.

sh(—x —sh(z
Vo € Dy, = Ron a —x € Dy, et th(—z) = ché—xi = ch(fz:)) = th(z)
donc th est impaire. Sa courbe admet donc O comme centre de symétrie.
Comme sh et ch sont dérivables sur R avec en plus ch qui ne s’annule

jamais sur R alors th est dérivable sur R.

ch(x)ch(z) — sh(z)sh(z) 1
V. R th' = — 0
Te (@) ch?(x) ch?(z) ~
Donc th est strictement croissante sur R.
2x o 1
. CQE — 1 € 1 621) 1 —_ eﬁ
lim th(z) =1 car th(z) = = =
oo e+l g 1 1+ L
e 1 + eT:C 62:”

1
z—+oo e+
On en déduit le tableau de variations suivant en utilisant la symétrie de

la courbe de th :

T —00 0 400
th'(x) + +
+1
A
0
a
th(z) | —1

2.15.4 Fonctions hyperboliques inverses

1. Comme la restriction de ch & RT y est continue et strictement crois-
sante alors elle réalise une application bijective de RT sur D’intervalle
J =[1;4+00] . On appelle argument cosinus hyperbolique que I’on notera
argch sa bijection réciproque.

2. les courbes représentatives de la restriction de la fonction ch & RT et de
argch sont symétriques par rapport a la droite d’équation y = x. Comme
1 a pour antécédent 0, comme la tangente au point d’abscisse 0 de C,, a
pour équation y = 1 alors la tangente au point d’abscisse 1 de la courbe
de argch a pour équation z = 1 . Cette tangente est verticale et Argch
n’est pas dérivable en 1
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3.

4.

e Méthode 1 :
Soit y € [1; +oo[a10rs

ch(in(y++/y? —
1
(v+Vy?— +eacpln )))

) 7}(y+ y 172 +1

(y? + 9> —1+2y\/y — +1 ) .y
y+\/y -

Donc In(y + v/y? — 1) est 'antécédent de y par ch donc

argch(y n(y + Vy? —

/\/\/\

N)M—l l\')\H w\»—t

e Méthode 2 :
Soit y € [1; +o0[
On sait que ch2 (argch(y)) — sh?(argch(y) =
Donc sh?(argch(y)) = ch?(argch(y)) — 1 = y2 1
Or y > 1 donc argch(y) > 0 donc sh(argch(y)) = 1—y?
Or sh(x) = ch(z) —e™*
donc ch(argch(y)) — e~ 9"Y) = sh(argch(y)) = /32 — 1.
Comme ch(argch(y)) =y alors y — e~ 279¢h(W) = | /42 — 1
Loty — /P =T = e-oroeh(s)

On en déduit que In(y — /92 — 1) = In(e~979°(®))
donc argeh(y) = —ln(y—/y?> — 1) =In <

Par conséquent,

2 _

y—Vy?—1

Y

argch(y n(y + Vy? —

Comme ch’ = sh ne s’annule jamais sur ]0; +o0[ alors argch est dérivable
sur |1; 4-o0].

2y

+7
2yl

Alors Vy > 1 (argch) (y) =In'(y + /y? —
R

VP —1+y _ 1
VP DWVED VPl

Vy>1 (argeh) (y) =

Comme sh est continue et strictement croissante sur R alors elle réa-
lise une application bijective de R sur R . On appelle argument sinus
hyperbolique que ’on notera argsh sa bijection réciproque.

Les courbes représentatives de sh et de argsh sont symétriques par raport
a la droite d’équation y = z. Comme 0 a pour antécédent 0, comme la
tangente au point d’abscisse 0 de C¢, a pour équation y = x alors la
tangente au point d’abscisse 0 de la courbe de argsh a pour équation
Yy==x.
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. Soit y € R alors

sh(ln(y+vy? + 1 (exp (In(ly++y*+ 1)) —exp(—in(y + Vy? + 1 )

y+Vy2+1) —erp(in(———
< y+vy+ >

i) 1 C 1l (y+Vyr+1)2 -1

1 2\/ 1-1
:2<(y Yt A1 2V ):ydoncln(y—i—\/yQ—l—l)es‘c

M\H 1\3\

y+Vy2+1

I’antécédent de y par ch donc

argch(y n(y++vy?>+1 ‘

. Comme sh’/ = ch ne s’annule jamais sur R alors argsh est dérivable sur

_l’_i
02
R. Alors (argsh)' (y) =In'(y +/y> + 1) 2vy i1

N
argsh) (y) = JyP+1ty = !
R ) = (AT Vi
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08 y=argch(x) =In{x + sqrt(xA2-1))
48 32 24 46 08 08 16 24 32 Y
X
081
y = argsh(x) =In(x + sqrt(xA2+1))
-1 61
24
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9. Comme th est continue et strictement croissante sur R, comme lim t¢h(z) =1
T —00

et lirf th(z) =1 alors la fonction th est une application bijective de
TH+00

R sur l'intervalle | — 1; 1] .On appellera argument tangente hyperbolique
que 'on notera argth la bijection réciproque de la fonction th

1 1
10. On démontre que pour tout y € | — 1;1[ l'on a th (zln (1+y>> =y
)
donc

1 1+
argth(y) = §ln <(1 — Z)

11. argth est dérivable sur R car th’ ne s’annule jamais sur R.

gy = (3 (124)) = 11

24 i

y=argth(x)

16 i

v §

=1 i
Y 08 ; y=th{x)

32 24 A8 08 08 | 16 24 a2 4
! x

08 |

y=-1_1!

4, i

24

34



2.15.5 Quelques propriétés

On démontre les formules suivantes pour tous réels a et b ’'on a :
1.

| ch(a+b) = ch(a)ch(b) + sh(a)sh(b) |

| sh(a +b) = sh(a)ch(b) + sh(b)ch(a) |

th(a) + th(b)
thia +b) = 5 )

On en déduit les formules de multiplication des arcs :

ch(2a) = ch(a + a) = ch?(a) + sh*(a) = 2ch?*(a) — 1 = 1 + 2sh*(a)
car ch?(a) — sh?(a) =1

‘ sh(2a) = 2sh(a)ch(a) ‘

et
2th(a))
th(2a) = ——=+—
(20) =02 ()
Démontrer alors que
1+¢2
ch(z) = T avec t = th (£>
1—1t2 2
2t T
sh(z) = T avec t=th (5)
et
2t T
th(a:) = m avec t = th (5)

1. 1 .
1. Au voisinage de +00 on a ch(z) ~ 561 et sh(z) ~ 567“

1 1
2. Au voisinage de —oco on a ch(x) ~ ie*x et sh(z) ~ —56795

3. La fonction « — sh(z) — x est dérivable sur R et a pour dérivée z +—
ch(z) — 1. Par conséquent comme Vo € R on a 1 < ch(x) alors la dérivée
est positive donc la fonction est croissante sur R donc sur RT. Or elle
vaut 0 en & = 0 donc pour tout réel > 0, on a : sh(z) —x > 0 donc
x < sh(x)

22
4. (a) soit m(z) = ch(x) — (1 + ?) Alors m/(z) = sh(z) — x donc pour
tout réel z > 0 'on a m/(z) > 0. Donc m est croissante sur RT. Or
m(0) = 0. Donc pour tout réel x > 0 on a m(x) > 0 donc pour tout

2
réel x > 0 on a 1+%§ch(m).
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(b)

3 2
soit n(z) = sh(z) — (z + %) Alors n/(x) = ch(z) —1— % donc pour
tout réel x > 0 lon a n/(x) > 0 d’aprés la question précédente. Donc
n est croissante sur RT. Or n(0) = 0. Donc pour tout réel z > 0 on a

3
n(xz) > 0 donc |z + % < sh(x)

5. Sur [0;1] on a :

(a)

la fonction p définie par p(z) = 2z — sh(x) qui est dérivable et qui a
pour nombre dérivé 2 — ch(x).

Or Vz € [0;1] on a : 1 < ch(z) < ch(l) = 1,54 donc Vx € [0;1]
on a: 2 — ch(zx) > 0. La fonction p est donc croissante sur [0;1] et
par conséquent p(x) > p(0) avec p(0) = 0 donc 2x > sh(x) donc

sh(x) <2z |.

la fonction ¢ définie par ¢(z) = 1+ 22 — ch(z) qui est dérivable et qui
a pour nombre dérivé 2z — sh(x).
Or Vz € [0;1] on a : 2z > sh(x) donc Vz € [0;1] on a : ¢'(x) > 0. La
fonction ¢ est donc croissante sur [0; 1] et par conséquent g(z) > ¢(0)
avec q(0) = 0 donc 14 22 — ch(z) > 0 donc | ch(z) < 1+ 22

3
Soit la fonction r définie par r(z) = = + L sh(z). Alors r est

3
dérivable sur [0;1] de nombre dérivé r'(z) = 1+ 22 — ch(x) > 0
donc r est croissante sur [0;1] donc r(z) > r(0). Or r(0) = 0 donc

3
sh(z) <z + %

z?2 2t

Soit la fonction s définie par s(z) = 1 + >t ch(zx). Alors s
3

est dérivable sur [0; 1] de nombre dérivé s'(x) = z + L sh(xz) >0

donc s est croissante sur [0;1] donc s(z) > s(0). Or s(0) = 0 donc

z? ozt
hiz) <14+ —+ —
ch(z) <1+ 7 13
2?2 at
7. Comme, Vx € [0;1], ch(z) <1+ 2% et ch(x) < 1+ 5 + 1 alors
z? xt 1
< -1+ =)< =< —
0<ch(z)— 1+ 2)_1 <35
23
Comme, pour tout réel x compris entre 0 et 1, x+ 5 < sh(z) et sh(z) <
3 3 3 3
x+%alorsOSsh(x)—(x+%)§%—%donc
z3 3 1
0 < sh(x) — —) < —< =
<sh()— @@+ 5y < <o
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3 Exercices

3.1 6 ensembles de définition classiques

Compléter le tableau suivant :

Si f est unefonction de R dans R telle que f(x) est : | alors Dy est :
un polynéme de variable x

2]
d(z)
\/ r(z)
In(g(x))
exp(g(x))
(go f)(z)
si f(x) est alors Dy est :
un polynome R
Zég {z € R/n(z) existe et d(x) existe et d(z) # 0}
\/1" (x) {z € R/r(x) existe et r(x) > 0}
In(g(x)) {z € R/g(z) existe et g(x) > 0}
exp(h(z)) {z € R/h(x) existe}
(gof)(x) {x e R/f(z) existe et f(x) € Dy}

3.2 Recherche d’ensembles de définition

Déterminer les ensembles de définition des fonctions numériques d’une variable
réelle x définies par :

1. f(x)=2%2+2x-3
g(z) = 2%+ 52+ 6

h(z) = In(z? + 5z + 6)
i(x) =In(x + 2) + In(x + 3)
j(z) = In(2? + 22 + 1)
k(z) =In(z* +z+1)

2 & N

3.3 Recherche d’ensembles de définition

1. Dessiner un triangle équilatéral ABC dont le c6té mesure a € RT*.
Par un point M de [AB] on construit les segments [M N] et [M P] tels
que (MN)//(BC),N € [AC],(MP)//(AC), P € [BC]

2. On pose ¢ = AM et f(z) = AN+ NM + MP + PB.
(a) Quel est 'ensemble de définition Def de f 7
(b) Pour tout x € Def, simplifier f(x).

(c¢) Conclure.
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3.4 Une fonction homographique particuliére QOQ

1. Démontrer que ’application

f: R—{-2} - R-{2}
2+ 1
T+ 2

xT

est bijective.
2. Déterminer alors la bijection réciproque f~1.

3. Dessiner Cy et Cy-1 dans un méme repére orthonormé.

L’application

f: R={-2} — R-{2}

2z +1
— =
: fa) =2
est bijective
1. Méthode 1 :
. 2z + 1
Soit ye R—{2}, y=f(z)—=y= ) —yr+2y=2x+1
T
—aly—-2)=1-2y <= z=— 2‘ycary7é2.
1-2
Résolvons pour cela 1’équation 2y = -2
y—
1—-2y . .
5 =-2<=1-2y=-2y+4<=1=4 impossible
y—

1—
Donc l'antécédent de y qui est Y est bien un élément de R — {-2}

Par conséquent, f est bien une application bijective de R — {—2} dans
R — {2} et
7t R—{2} — R-{-2}
2y +1

y o [y = T

2. Méthode 2 :

(a) Dy =R —{-2} =] — 00; —2[U] — 2; 400]
(b) f est une fonction fraction rationnelle donc f est dérivable donc conti-
nue sur son ensemble de définition

(c) Vo € Dy Tona: f'(x) = ﬁ

est strictement croissante sur | —oo; —2[ et f est strictement croissante
sur | — 2; 400

donc f'(z) > 0. Par conséquent f

(d) Comme f est une fonction rationnelle alors les limites a l'infini sont
les limites & l'infini du rapport des termes de plus haut degré. Par
conséquent,
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20 +1 2x

i. lim = lim — =2.

z——0c0 I+ 2 T——00 I
Par conséquent, C'y admet au voisinage de —oo une asymptote
horizontale d’équation y = 2

2x+1_ . 2z

ii. lim = lim — =2

x—+oco0 1+ 2 r—+oo I
Par conséquent, C'y admet au voisinage de 400 une asymptote

horizontale d’équation y = 2

. Quand x — —27 alors 2z +1 — —3 et z +2 — 0~ donc f(z) —
+00
Par conséquent, C; admet au voisinage de —2~ une asymptote
verticale d’équation x = —2

ii. Quand z — —2% alors 22 +1 — —3 et x +2 — 0 donc f(z) —

—00
Par conséquent, Cy admet au voisinage de —2% une asymptote
verticale d’équation x = —2

(f) Voici donc le tableau de variations de f

(2)

i

ii.

iii.

. Comme f est continue et strictement croissante sur | — oo; —2]
alors f réalise une bijection de | — co; —2[ sur f <] — co; —2[> qui
est ]2; +oo]

Comme f est continue et strictement croissante sur | — 2;4o00[
alors f réalise une bijection de | — 2; +oo[ sur f <] — 2; +oo[> qui
est | — o0; 2|

20+ 1

De plus f(z) =2 <= 2:2<:>2:c+1:2x+4<:>1:4

impossible

iv. par conséquent f < R—{—2} > est R—{2} et f est une application

bijective de R — {—2} sur R — {2}

(h) D’ou le tableau de variations suivant :

X —00 -2 +o00
f'(z) + [ +
+oo | | 2
f(@) / I /
2 [| | —o0

Voici la courbe représentative de f qui est une hyperbole de centre Q(—2;2) et
d'axes Dy :y=2et Dy:x= -2
Les courbes de f et de f~! sont symétriques par rapport a la droite d’équation

Y=z

La courbe représentative de f~! est aussi une hyperbole de centre Q'(2; —2) et
d’axes D] :x=2et D)1y = -2

Q' est le symétrique de 2 par rapport a la droite d’équation y = x.

D} est le symétrique de Dy par rapport a la droite d’équation y = x.

D), est le symétrique de Do par rapport a la droite d’équation y = x.
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3.5 Double et moitié

1.

D

Soit ’application
f+r R - R
T = 2
Démontrer que f est bijective et déterminer sa bijection réciproque.

I’application
g: N — N
r = 2z

est —elle bijective 7 oui ou non ? pourquoi ?

h: N — N
z si X est un entier pair
x +— hz)=
0 sinon
est —elle bijective 7 oui ou non ? pourquoi ?
Déterminer I'application h o g
Déterminer I'application g o h
Déterminer de fagon précise 'application h o h

Déterminer de fagon précise ’application h o h o h
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3.6 Fonctions et applications

1. On associe & un élément quelconque = de N les éléments y de R tels
que £ = y2 . A - t-on créé ainsi une application de N dans R ? Justifier.

2. On voudrait associer son inverse a un élément de R . Peut-on créer ainsi
une application de R dans R 7 une fonction de R dans R 7 Justifier

3. Pour chacune des 6 applications suivantes , indiquez si elle est injective,
surjective , bijective. Justifier. On donne A = {a;b; ¢;d} et B = {1;2;3}

[ )
fli A — B
a — 1
b — 1
c — 2
d —~ 3
[ ]
fo: A — B
a — 1
b — 1
c = 2
d — 2
[ )
f3: B — A
1 — a
2 = b
3 = c
[ ]
f42 B — A
1 — a
2 = a
3 — b
[ )
f: A = A
a — a
b — a
c — c
d — d
[ )
f(;: A — A
a — c
b — d
c = a
d — b

4. Pour chacune des 4 applications suivantes, indiquez si elle est injective,
surjective , bijective Justifier.

.
g: R —- R
r — z?

.
g2: R — RF
z = z?
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g3

g4 :

RT

RT

43

&4

&AL



3.7

—_

Composée de surjections et d’injections OQQ

Soient E, F' et G trois ensembles non vides. Soit f une application de E vers
F et g une application de F' vers G. Démontrer que

si f et g sont injectives alors g o f est injective

si f et g sont surjectives alors g o f est surjective

si g o f est injective alors f est injective

si g o f est surjective alors g est surjective

si g o f est injective et que f est surjective alors g est injective

si g o f est surjective et g est injective alors f est surjective

. Soient x € E et 2’ € E.

Supposons que (g0 £)(z) = (g0 f)(x).

Alors g(f(x)) = g(f(a')):

On en déduit que f(x) = f(a') car g est injective.

Comme 'on a f(xz) = f(z') et que f est injective alors z = 2’ CQFD.
On a ainsi démontré que g o f est injective

Soit z € G.

Comme g est surjective alors Jy € F z = g(y).

Mais l’on sait que f est surjective, alors cet y € F' a au moins un antécé-
dent x € E clest-a-dire Ix € E y = f(x).

Par conséquent 3z € E z=g(y) =g(f(x)) = (go f)(z).

On a ainsi démontré que Vz € G Jzx € E z=(go f)(xz). CQFD.
On a ainsi démontré que g o f est surjective.

Soient z € E et 2’ € E.

Supposons que f(x) = f(a')

alors g(f(x) = g(f(2')). Donc g(f(x)) = g(f(z")).Mais go f est injective.
Donc z = z’. CQFD. On a ainsi démontré que f est injective.

Soit z € G.

Comme g o f est surjective alors 3z € E z = (go f)(x).

Onadoncdzx € E z=(go f)(z)=g(f(x)).

Or y = f(x) € F on peut conclure que 3y € F z = g(y).

On a ainsi démontré que g est surjective

Soient y € F et y' € F.

Supposons que g(y) = g(y').

Or f est surjective donc cet y € F' a donc un antécédent x € E par f.
De méme ¢’ € F a aussi un antécédent 2’ € E par f.

On a done g(f(z)) = g(f(2') cest-adire (g f)(z) = (g0 f)(a').

Mais g o f est injective donc z = =’ d’ou f(z) = f(a').

On obtient donc y = y”. CQFD. On a ainsi démontré que g est injective
Soit y € F.

Alors z = g(y) € G Comme g o f est surjective alors tout élément z de
G a au moins un antécédent x dans E par g o f.

Donc 3z € E g(y) =(go f)(z). Onadonc Iz € E  ¢(y) = g(f(x)).
Mais g est injective donc y = f(x).

On a ainsi prouvé que 3z € £ y = f(x).

Par conséquent, f est surjective
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3.8 Exercice QQQ

Soit f une application de F dans FE telle que f o f o f=f.
Démontrer que : f est injective <= f est surjective.

3.8.1 Corrigé

1. =
Supposons que f est injective.
Pour démontrer que f est surjective, nous allons démontrer que

VyeE JxeE y=f(x)

Soit y € F alors comme f o f o f= f onobtient f(f(f(y))) = f(y).
Or f est injective donc f(f(y)) =y doncy = f(f(y))donc Jx = f(y) € E
tel que y = f(x) donc f est surjective.

2. «—:
Supposons que f est surjective.
Pour démontrer que f est injective, nous allons démontrer que

VeeE Vi'eE f(z)=f@)=x=1

Soient x € E et o’ € E. Supposons que f(z) = f(z').

On ax € E. or f est surjective donc Ja € E  z = f(«).

On a2’ € E. or f est surjective donc 38 € E ' = f(B)

Comme f(x) = £(a') alors f(f(a)) = £(/(5)) donc F(£((a)) = F(F(F(5)))-
Orf o f o f=fdone f(a) = f(F(f() = F(F(F(A) = F(5):

Par conséquent, f(«a) = f(B) d’ou x = 2’. CQFD.
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3.9 Images et Images réciproques d’ensembles

Soit f une application de ’ensemble F dans I’ensemble F'.

1. Soient A et B des parties (ou des sous-ensembles ) de E.
On appelle ensemble image de A par f (qu'on note f < A >)
I’ensemble des images des éléments de A par f

(a) Démontrer que

f<AUB>= f<A>U[f<B>
(b) Démontrer que

f<ANB>C f<A>nNf<B>

Exhiber un contre-exemple prouvant que la réciproque est fausse.

(c) Démontrer que si f est injective alors
f<ANB>= f<A>Nf<B>

2. Soient A’ et B’ des parties (ou des sous-ensembles ) de F.
On appelle ensemble image réciproque de A’ par f
(quon note f~! < A’ >) I’ensemble des antécédents des éléments de
A’ par f

3. (a) Démontrer que
ffl<AUB >= ffl<A>Uf'<B>
(b) Démontrer que

fl<AnNB >= fl<A>nf't<B>

1. Soient A et B des parties (ou des sous-ensembles ) de E.
On appelle ensemble image de A par f (qu'on note f < A >)
I’ensemble des images des éléments de A par f

(a) e Démontrons que f < AUB>C f<A>Uf<B>:

Démontrons que f < A>U f<B>C f<AUB>:

e On a donc prouvé que f < AUB>= f<A>Uf<B>

Démontrons que f < ANB>C f<A>Nf<B>
La réciproque est fausse. Voici un contre-exemple :

=
~
[ ]

—
o
~
[ ]

Démontrons que si f est injective alors f < A >N f < B >C<
ANB>
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e Comme l'on sait déja que f< ANB>C f<A>Nf<B>
e Onauradonc f < ANB>: f<A>nNf< B> a condition
que f soit injective.

2. Soient A’ et B’ des parties (ou des sous-ensembles ) de F.
On appelle ensemble image réciproque de A’ par f
(qu’on note f~! < A’ >) l’ensemble des antécédents des éléments de A’

par f
3. (a) Démontrer que

ffl<AUB >= f'<A>Uf't<B >
(b) Démontrer que

fl<AnNB >=f1<A>nf't<B >
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3.10

Soit un ensemble E et soit A une partie de F telle que A # () et A # E.
Soit les applications

f: PE) — P(E)
X o fX)=XUA
“ g: PE) — P(E)

X = f(X)=XUA
Démontrer que f n’est pas injective.
Démontrer que g n’est pas injective.

Démontrer que f n’est pas surjective.

= 8N =

Démontrer que g n’est pas surjective.

3.10.1 Corrigé
1. flA)=AUA=Aet f(0)=0UA=A.
Par conséquent, A # (J et pourtant f(A) = f(0) donc f n’est pas injective.
2. g(A)=ANA=Aetg(E)=EUA=A.
Par conséquent, A # FE et pourtant g(A) = g(E) donc g n’est pas injec-
tive.

3. 0 n’a aucun antécédent dans P(E) pour f car il n’existera aucun X tel
que ) = f(X) puisque f(X) = X U A contient au moins A # (.
Par conséquent, f n’est pas surjective.

4. F n’a aucun antécédent dans P(E) pour g car il n’existera aucun X
tel que E = ¢g(X) puisque g(X) = X N A C A # E. Donc pour tout
X € P(E) g(X) # E Par conséquent, g n’est pas surjective.

3.11
Démontrer que 'application suivante est surjective
f: N — N
n . .
= si n pair
B P
noe f) =

n—1
2

si n impair

3.11.1 Corrigé

Soit y € N. Alors de 2 choses 1'une :

4k
ou bien y est pair donc 3k € Ny = 2k alors f(4k) = 5= 2k =1y

ou bien y est impair donc Ik e N y =2k +1

dk+3—-1 4k+2
alors f(4k 4+ 3) = + = 2+ =2%k+1=y
Dans tous les cas, tout y € N a au moins un antécédent par f dans N donc f

est surjective.

48



3.12 Exercice

Soit I'application

fiOR R?
(m,y) = f(x,y) = (_‘Tvx +yay)

Soit 'application

g: R3 — R2
(xaywz) = g(x7yaz> = ($+2y, —y—I—Z)

1. Démontrer que f est injective, non surjective
2. Démontrer que g est surjective et non injective
3. (a) Déterminer g o f

(b) Démontrer que g o f est bijective

(c) Déterminer alors I’application (g o f)~!

3.12.1 Corrigé

Soit I'application

(xvy) = f(:c,y) = (—x,m+y,y)

Soit I'application

1. (a)

(b)

()

2. (a)

(b)

qg: R3 — R?
(m,y,z) = g(ac,y,z):(x—i—Qy, _y+2>

f est injective car : soit (z,y) € R? et (2/,y') € R?

f(xvy) = f(xlvy/) = (_x’x + yvy) = (—l'/, z' + y/a y/) = v =1et
y=vy = (z,y) = (=,y)

f n’est pas surjective car la résolution du systéme suivant n’aboutit
pas toujours & au moins une solution en (z,y) :

en effet soit (a, 3,7) € R3

(,8,7) = f(z,y) = (0, 8,7) = (v, 2t y,y) &= T =aety =7
etrt+y=0<=r=aecty=veta+y=7.

Or il existe des triplets («, 3,7) tels que o + v # [ par exemple
(0,1,0).

Ces triplets n’auront donc pas d’antécédent (z,y) dans R?. Par consé-
quent f n’est pas surjective.

f est injective et non surjective donc f n’est pas bijective.

g est non injective car (0,0,0) # (—2,1,1) et pourtant g(0,0,0) =
(0,0) et g(~2,1,1) = (0,0

g est surjective car la résolution du systéme suivant aboutit toujours
a au moins une solution en (z,y, z) :

en effet soit (o, 3) € R?

(a7ﬁ) = g($7y72) — (O‘7ﬂ) = (:L‘—|—2y7 -y + Z) —z+2y=aet
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b=—y+z<=ar=a—-2yetz=0+yetyeR
Donc il existe une infinité de triplets (z,y, z) solutions

(¢) g est non injective et surjective donc g n’est pas bijective.

3.(a) go f:R?— R? tellle que

V(z,y) € R? g o f(z,y) = g(f(2,y)) = 9((—2,2 +y,y)) = (= +
20z +y),—(r+y) +y) = (¢ +2y, —x)

(b) g o f est bijective car
soit (o, B) € R?
(a,8) = g(f(z,y)) <~ (a,?) =(r+2y,—2) <= v+2y =aet
ﬁ:—x@)x:—ﬂetyzi(a—f—ﬁ)
Donc il existe un seul couple (x,y) solution

(c) Alors I'application (g o f)~1 : R? = R? telle que : V(a, B) € R? (g o f) "o, B) =

1
(6, 5(a+5)
3.13 Deug Paris 7 - 1977

Soit f une fonction d’une variable réelle dérivable sur un intervalle I =Ja ; b[
avec a < b telle que sa dérivée f’ est continue sur I.

Soit xg € I telle que f'(zq) # 0.

Démontrer qu’il existe un intervalle J =|c¢ ; d[C I telle que zp € J et un
intervalle J' =]¢’ ; d'[ contenant f(zg) tels que f réalise une bijection de .J
sur J'.

e Comme f’(zg) # 0 et que f’ est continue sur I et que xg € I alors il
existe un intervalle ouvert J de centre zg tel que Vo € J  f/(x) # 0.

e Sur cet intervalle J on a f/ qui ne peut changer de signe sinon Jdz; €
J f/(lﬂl) =0

e Par conséquent, f est strictement monotone sur J

e De plus f est continue sur J car f est dérivable donc continue sur I et
JcI

e Alors f réalise une bijection de J sur l'intervalle J' = f < J >

e Comme zy € J et que f est continue sur J alors f(zg) € J'. J' est un
intervalle ouvert |¢ ; d'[ car f est strictement monotone sur J
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3.14 Fonction caractéristique

Soit un ensemble non vide F.
Soit F l’ensemble des applications de E dans {0;1}.
Soient A et B des parties de F.
On appelle fonction caractéristique de la partie A ’application suivante notée
x4 définie par :
xa:E — {0;1}

{ lsize A
T .
0 sinon

1. Démontrer que x4 = xa
2. Démontrer que xanB = XAXB
3. Démontrer que xaup = X4 + XB — XAnB
4. Que se passe-t-il si A et B sont disjoints ?
5. Démontrer que x5 = (1 — xa)
6. Démontrer que x4\ = xa(1 — xB) = X1 — XAXB
7. Démontrer que XAAB = X4 + XB — 2XAXB
8. Démontrer que
X(AaB)AC = XA+ XB + Xc — 2xXaXxB — 2xaXxc — 2xBXCc + 4xaxBXC
9. Démontrer que Papplication ¢ de P(E) dans F qui & toute partie A

associe ¢(A) = x4 est bijective.

10. En utilisant les fonctions caractéristiques, retrouver :
(a) la distributivité de N par rapport a U
(b) les lois logiques de Morgan pour les ensembles.

(¢) (AAB)AC = AA(BAC)

3.14.1 Corrigé

Soit un ensemble non vide F.
Soit F l’ensemble des applications de E dans {0;1}.
Soient A et B des parties de FE.
On appelle fonction caractéristique de la partie A 'application suivante notée
x4 définie par :
xa:E—{0;1}

{lsimeA
T = .
0 sinon

On utilisera le résultat suivant : 2 applications f et g sont égales lorsqu’elles
ont :
e le méme ensemble de départ F,
e le méme ensemble d’arrivée F'
e et Vo € Ef(x) = g(x)
1.
X4 E— {0;1}

I1xl=1sizecA
= xa(r)xalr)) = 0x0=0 sinon
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donc x4 = x4 car elles ont
e le méme ensemble de départ F,
e le méme ensemble d’arrivée {0;1}
o et Vr € E x4 (x) = xa(z)
2. xXAanB = XxaXxB car elles ont
e le méme ensemble de départ F,
e le méme ensemble d’arrivée {0;1}
e et Vo € E xanp(z) = (xaxs)(z) puisque
— oubien z € AN B donc « € A et x € B. On a bien xanp(xz) =1
et (xaxn)(®) = xa(@)xp(z)=1x1=1
— oubien z ¢ AN B donc x ¢ Aoux ¢ B On a bien xang(z) =
0 et (xaxs)(®) = xa(z)xs(z) = 0 car soit (xa)(z) = 0 soit
(xs)(x) =0
3. XAuB = X4 + XB — XanB car elles ont
e le méme ensemble de départ F,
o le méme ensemble d’arrivée {0;1}
e et Vo € E xaup(z) = (Xa + XB — Xanp)(z) puisque
— oubien z € AUB donc x € Aouz € B. On a bien xaup(z) =1
Mais alors (xa + xB — Xans)(z) =1 car
— oubienx € Aet z ¢ B donc (xa+x5—XxanB) (@) = xa(z)+
xB(7) = Xanp(z) =14+0-0=1
— oubienx ¢ Aetxz € Bdonc (xa+x5—xans)(@) = xa(z)+
xB(x) — xanB(z) =0+1-0=1
— oubienx € Aet x € B donc (xa+ x5 —XxanB)(®) = xa(z)+
xB(@) —xanp(x)=1+1-1=1
— oubien x ¢ AUB donc z ¢ A et x ¢ B On a bien xaup(z) =0
Mais alors (xa + X5 — XanB)(z) = xa(2) + xB(z) — Xanp(z) =
04+0-0
4. Si A et B sont disjoints alors AN B = ( . Or g est la fonction nulle
définie sur £ donc xaup = X4 + XB — XanB = XA + XB
x e est la fonction constante 1 définie sur E.
Alors 1= Xp = Xaua = XA+ X2~ Xarz = XA TXz— X0 = X4+ X750
donc x7 = (1 — xa)
6. Comme A\B = AN B on a donc XA\B = XanE = XaX5 = xa(l—xB) =
XA — XAXB

7. XAAB = X(AUB)/(ANB) = XAUB — XAUBXANB

= (xa+xB —XxanB) — (Xa + XB — XAnB)XAXB

= XA+ XB — XAXB — XaXB — XBXAXB + XAXBXA

= XA+ XB — XAXB — XaXB — XaXB + X4XB

= XA+ XB— XAXB — XAXB — XAXB + XAXB = XA + XB — 2XAXB
8. X(aAB)AC = XAAB + XC — 2XaaBXC

=Xa+xB —2Xxaxs +Xc — 2Xaxc — 2xBXxc +4xaxsxc

= XA+ XB +Xc — 2xaXB — 2xaXc — 2xBXc +4xaxBXC

o

9. Soit g une application de E dans {0;1}. Soit C = g~1(1) = I'ensemble
des antécédents de 1 dans E par g. Alors xy¢o = ¢ par construction donc
tout élément g de F a au moins un antécédent C dans P(E) donc ¢ est
surjective.
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De plus ¢ est injective car ¢p(A) = ¢(B) = x4 = xp =— A = B Par
conséquent application ¢ de P(F) dans F qui a toute partie A associe
@(A) = x4 est surjective et injective donc bijective.

10. En utilisant la bijectivité de ¢ on retrouve :
(a) la distributivité de N par rapport & U car X an(Buc) = X(AnNB)U(ANC)
(b) la distributivité de U par rapport & N car x au(Bnc) = X(AUB)N(AUC)
(c) les lois logiques de Morgan pour les ensembles car
® X4AnB = XauB
® XAUB = XanB
11. En changeant A en B,B en C et C en A dans la formule :
X(AAB)AC = XA+ XB + XC — 2xaXB — 2XAXC — 2XBXC +4XAXBXC

on obtient : x(4AB)AC = X(BAC)AA
Par conséquent, comme x xay = Xyax,onobtient x(pgac)aa = Xaa(Bac)
d’ott on déduit que (AAB)AC = AA(BAC)

Cette associativité de la différence symétrique s’illustre facilement :
(AAB)AC = (AAB)/CUC/(AADB)
AA(BAC) = (A/(BAC)U (BAC)/A

A
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3.15 Homéomorphisme de R dans | — 1;1]

Soit la fonction numérique d’une variable réelle définie par f(z) =

Quel est ’ensemble de définition de f7?
Etudier la continuité de f sur Dy.
Etudier la dérivabilité de f sur Dy

En déduire que f est strictement croissante sur Dy

SO

Démontrer que f est une application bijective de Dy sur un intervalle
J a déterminer

6. Définir la bijection réciproque f~!. (on admet quef—! est continue)

7. Dessiner les courbes représentatives de f et de f~! dans un méme
repére orthonormé.

f est donc une application bijective et bicontinue donc un homéomorphisme
de R sur | — 1;1].
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3.16 Bijection

Soit la fonction numérique d’une variable réell

fi Bitoo[ — [ 5 +ool
x —  f(z)=vVz—-3+5
Démontrer que f est une application bijective de [3 ;+oo[ sur [5 ; +o00].
Définir sa bijection réciproque f~1.

Tracer alors la courbe de f~! dans un repére orthonormé.

= 8 =

En déduire le tracé de la courbe de f dans ce méme repére orthonormé.
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3.17 Exercice

Démontrer que I'application

f: ZxZ — R
(avb) = f((avb)):a+b\@

est injective.

3.17.1 Corrigé

Soient (a,b) € Z?,(a’, ') € Z? tels que f((a,b)) = f((a’,V))
Alors a + by/2 = a’ +b'/2 donc (a —a’) + (b — b')V/2 = 0.
Y,
e ou bien b — b’ # 0 donc 2 = (Z Z/ .Ora—d €Zetb—b € Z* donc
V2 e Q. Impossible.
e oubien b—b' =0donca—a’ =0d’ota = d et b =1V donc (a,b) = (a’, V).
Donc (a,b) = (a’,b") donc f est injective.
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3.18 Exercice - Ensi 87

Soit p une fonction & valeurs réelles de classe C! sur R et o la fonction définie
sur R par o(x) = zp(x)

3.19 Exercice

L’application
f: R — R

r — f(x)zSup(x—;lo ; :c—3>

est-elle bijective 7
Si oui, déterminer sa bijection réciproque.

3.20 Exercice

L’application
f: R={2} — ]—o00;0]U]L;+o0]
2
22 —4

est-elle bijective 7 Si oui, déterminer sa bijection réciproque.

T —  f(z) =

3.21 Exercice

L’application
f: R — R?
(z,y) — fley=@+y;z—y)

est-elle bijective 7
Si oui, déterminer sa bijection réciproque.
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3.22 Exercice

Soit 'application
f: R — R
(zy) — flz,y)=2—y
1. f est-elle injective ?

2. f est-elle surjective ?

1. f n’est pas injective car il existe (0,0) # (1,1) et f(0,0) = f(1,1) puisque

f(0,0)=0>-0=0¢et f(1,1)=12-1=0

2. f sera surjective

si tout élément o € R a au moins un antécédent (z,y) € R? c’est-a-dire

qu’on peut trouver un couple (z,y) tel que a = f(x,y) = 22 —y.

2

Ora=2a22—y < 22 =a+y.

Comme un carré est positif ou nul il faut que a + y > 0 dans ce cas

a:mz—y — :172:a+y <~ r=—yatyouxr=+a+t+y

Yz -«

Donc en choisissant (x,y) avec { T — JaTy on pourra avoir f(z,y) =

aty-—y=a
3.23 Exercice

Soit 'application

fr R — R?
x

1. f est-elle injective ?

2. f est-elle surjective ?

1. f est injective car :
VreR Vi'eR

x

e’ =€

fx) = f(@') = (", 2+2) = (eml , 2 42) = {

car la fonction exp est bijective de R sur ]0; +o0|

’
x

x+2=a"+2

2. f n’est pas surjective car il existe (o, ) avec @ < 0 qui ne peut &tre
I'image d’un réel x car on ne peut avoir a = e puisque e¢* >0 et a« <0
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3.24 Exercice

Soit la fonction

f: R — R
e’ +1
et +3

x — f(x)=

1. Démontrer que f n’est pas bijective.

2. Déterminer alors F' un sous-ensemble de R tel que
f: R — F

e’ +1

e*+3

x — f(x)=

réalise une bijection de R sur F'.

1. e f estinjective car Ve € R Vz e R’

e’”—l—l_e"l—l—l
e*+3 ¥ +3

= (e"+1)(e” +3) = (e” +1)(e"+3)
= " 437 46" +3 = " TP 416" +3e" 43 => 26" = 2% = " =¥ = x =1’
car la fonction exp est bijective de R sur ]0; +oo].
eVzeR f(z)<Ocare®+1>0ete”+3>0puisqueVz €R e* >
0.
Par conséquent, il existe y < 0 tel que Vo € R y # f(z) donc f
n’est pas surjective.
e f étant injective mais n’étant pas surjective ne peut étre bijective.

2. e f est dérivable sur R
e’(e” 4+ 3) — (e” + 1)e” 2e”

VeeR f = = >0
relt S (o ¥ 37 (o + 37
1+ *1
e +1 e’ +1 x

1
— lim f(zx)=ccar lim e*+1=1et lim e®+ 3 =3 puisque
T——00 3 T——00 T——00

e On en déduit le tableau de variations suivant :

T —00 +00o
f'(@) +
1
X e
f(z) 3

e f est continue sur R (car f est dérivable sur R) et strictement crois-

sante sur R donc f réalise une bijection de R sur F = } -1 [
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