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"Il ne s’agit ni de rire, ni de pleurer mais de comprendre”
Spinoza

1 Développement limité d’ordre 1
1.1 Activité

1
1+x

Soit f définie sur R — {—1} par f(x) =
Alors f(0) = 1.

1
On aimerait avoir une valeur approchée de f(0,03) =

1,03

Pour tout x # —1, on sait que 1+ x% = (1 + x)(1 — x + x?)

1 x3 1+ (1+x)(1—-x+x%)
D = = — _ 1
R Tx T+x o

1 2 X 2,2
o ld = — — :1_ -
Dou1+x 1—x+x T x X+ x° 4+ x7] 1+x]

—X
—1-x+x2+22 I — 1 —0

On a donc f(x) x4+ x* + x%e(x) avecxgrbe(x) lim -

* Onditalors que f(x) admet un développement limité a 1’ordre 2 en 0.
* Le polyndme du second degré 1 — x + x> s’appelle la partie réguliere du développe-
ment limité et x%¢(x) s’appelle la partie complémentaire de ce développement limité.

1
x%e(x) = o(x?) d’oﬁm ~ (0,08)% — 0,03 + 1 = 0,9709.

"3 2 2
L=l—x—i-x2—xi:l—x+x(x—1j_x) =1—x+xe(x) otie(x) = x — 1j—x

1+x %+x
lim e(x) = lim x — Y —0donc xe(x) = xo0(1) = o(x).
x—0 x—0 X

* On dit alors que f(x) admet un développement limité & 1’ordre 1 en 0.
* Le polynéme du premier degré 1 — x s’appelle la partie réguliere du développement
limité et xe(x) s’appelle la partie complémentaire de ce développement limité.

~1-0,03~0,97

avec

1
1,03




1.2 Définition

Soit une fonction f définie sur un intervalle I de centre xy sauf peut étre en x.
On dit que f admet en xp un développement limité a 1’ordre n (ot € IN*) en x( lorsqu’il existe
une fonction e définie sur I telle que :

Vx € I—{xo}, f(x) =ao+a1(x —xp) +ao(x — x0)* + - - - +an(x — x0)" + (x — x0)"e(x)

ol ag,ay, - . .., a, sont des coefficients réels avec a, # Oet lim e(x) =0.
X—=X0

On peut écrire (x — x¢)"e(x) = (x — x9)"0(1) = o(x — x0)".

1. Le polyndme ag + a1 (x — xo) + aa(x — x9)% + - - - + an(x — x9)" s’appelle la partie régu-
liere du développement limité

2. (x — xp)"e(x) s’appelle le reste ou la partie complémentaire.

Quand x tend vers xg alors

f(x) ~ ag +ay(x — x0) +ap(x — x0)% + - - - + an(x — xo)"

2 Dérivation
2.1 Définition

On dit que f est dérivable en x lorsque
1. f est définie sur un intervalle centré de centre xg

5 i F00) = F(30)

XX X — Xp

= L ot L est un nombre réel fini.

Ce nombre L se note f’(x() et s’appelle le nombre dérivé de f en x.

2.2 Remarques

1. Si f n’est pas définie en x( alors f n’est pas dérivable en x

2. 5i lim ) —f(x0)

est infinie ou n’existe pas alors f n’est pas dérivable en xp
X— X X — xO



2.3 Propriétés

2.3.1 Lien entre dérivabilité et développement limité d’ordre 1

f dérivable en xy <= f est définie en xj et f admet un développement limité d’ordre 1 au
voisinage de xp.
Dans ce développement limité : ap = f(x) eta; = f'(xp).

Démonstration :
=
Si f est dérivable en x( et de nombre dérivé L = f’(xp)alors :
* f est continue en xg
* De plus, soit la fonction ¢ définie sur un intervalle ouvert épointé de centre x( par :
p(x) = f(x) = flxo) _ L. Alors fx) = flxo) _ ¢(x) + L donc
X — X0 X — X9
f(x) = f(x0) = (x — x0)¢(x) + L(x — x9) donc
f(x) = f(x0) + L(x — x0) + (x — x0)¢p(x). avec xl'i_gcl0 $(x) =0

Car lim f(x) = f(x0)
X—X0 X — Xg
Par conséquent, f admet un développement limité d’ordre 1 au voisinage de xp avec
ap = f(xo) eta; = f'(xp).
—:
Soit f tel que f(xp) existe et f admet au voisinage de xp un développement limité d’ordre 1 :
f(x) =ap+ai(x —xg) + (x — xp)e(x) avec xli}n;o e(x) =0

Alors f(xi:iéxo) _ a0 +a1(x — x9) 4};(—xx—0 xo)e(x) — f(x0) _ o)
Or xliHn; f(x) = ag. Or f est définie en xo donc ay = f(xp).

= L puisque f est dérivable en x

Qlx) = ap +a1(x — xp) + (x — xp)e(x) — ag _ a1(x —xp) + (x — xp)e(x)
X — X0 X — X0

Donc Q(x) = a7 + &(x).

Par conséquent, comme xl}_}n;() e(x) = 0 alors x1'1_>r§10 Q(x) = ay.

Donc f est dérivable en xg et f/(xg) = a1.
2.3.2 Corollaire

Si f est dérivable en xg alors au voisinage de x
f(x) = f(x0) + f'(x0) (x — x0) + (x — x0)e(x) avec lim &(x) =0

F(x) & £(x0) + f'(x0) (x — x0) |

On approche f par une fonction affine x — f(xo) + f/(x)(x — x¢) au voisinage de xo.

d’ot




2.3.3 Interprétation graphique du nombre dérivé

Du Corollaire précédent, on tire une conséquence graphique :
Si f est dérivable en x alors la courbe représentative de f admet au point M(xo, f(xp)) une

tangente (T) : y = f'(x0) (x — x0) + f(x0)

)

deltay

y

MO Jie
delta x

fix0

Courbe de f

tangente (T)

x0 X

La pente ou le coefficient directeur de la droite (MyM) est :
ﬂ _ yM - yM(] _

Ar T x—x tan(a).

Ay _ym—ymy _ f(x) = f(x0)

tend vers f'(x
Ax X — Xp X — Xp vers f'(xo)

Comme f est dérivable en xg alors le quotient

quand x tend vers xj.
Alors la droite (MyM) tend vers une position limite qui est la droite (T) tangente a la courbe
représentative de f en M. Cette droite (T) a donc pour équation y = f'(xo)(x — xg) + f(x0).

2.3.4 Corollaire : lien entre dérivabilité et continuité
I Si f est dérivable en xq alors f est continue en xj.
démonstration :

Comme f est dérivable en xj alors f est définie au voisinage de xq et f(x) = f(xo) + f'(x0)(x —
x0) + (x — xp)e(x) avec xli)n}} e(x) =0
0

donc liHm f(x) = f(xg) donc f est continue en xy.
X= X0

2.3.5 Attention!

La réciproque est fausse : par exemple la fonction valeur absolue abs est continue en 0 mais
n’est pas dérivable en 0.



—10
En effet, lim M = lim . 1 est différente de
x—0t x—0 x—0t X
lim M: lim ;x:fl
x—0~ x—0 x—0— X

2.4 Dérivabilité a droite et dérivabilité a gauche en un point

On dit que f est dérivable a droite en xg lorsque
1. f est définie sur un intervalle de la forme [x¢; xo + k|
2. lim M =L
x>—>x0+ X — X0
Ce nombre L se note f}(xo) et s’appelle le nombre dérivé de f a droite en x.
On dit que f est dérivable & gauche en x( lorsque
1. f est définie sur un intervalle de la forme |xg — &; x¢]
2. lim M =1L
X—Xg X — X0

Ce nombre L se note f(xo) et s’appelle le nombre dérivé de f a gauche en xg

24.1 Exemple

La fonction valeur absolue abs est dérivable a droite en 0.
S .2 e 1 N
En effet, lim = lim = =1
X0+ x—0 x—0+ X
Son nombre dérivé a droite en 0 est f;(0) = 1 La fonction valeur absolue abs est dérivable a
gauche en 0.
[ x| 10] —x

En effet, lim = lim — = -1
x—0~ x—0 x—=0" X
Son nombre dérivé a gauche en 0 est f¢(0) = —1.

Mais comme f;(0) # f4(0) alors la fonction valeur absolue n’est pas dérivable en 0. Sa courbe
n’admet pas de tangentes en 0 mais un point anguleux avec deux demi-tangentes de pentes
différentes.




2.4.2 Théoréme

f est dérivable en xy de nombre dérivé f'(xg) = L <= f est dérivable a gauche en xq et
dérivable a droite en xg et f;(xo) = fg(x0) = L

2.4.3 Points anguleux

Si f est dérivable a droite en xy avec comme nombre dérivé a droite f)(xo) alors la courbe
représentative de f admet au point M(xo, f(xp)) une demi- tangente a droite définie par le
systéme suivant formé d’une équation et d'une inéquation

{ y = f'(x0)(x — x0) + f(x0)

X > X

Si f est dérivable a gauche en xy avec comme nombre dérivé a gauche fé(xo) alors la courbe
représentative de f admet au point M(xo, f(xp)) une demi- tangente a gauche définie par le
y=f(xo)(x—x0)+ f(x0) ¢
x < Xxg
fe(x0) # f;(x0) alors on dit que Mo (xo; f(xo)) est un point anguleux.

systéme suivant formé d’une équation et d'une inéquation {

2.4.4 Demi-tangentes de pente infinie

x) — f(x
Si lim+ w = oo alors f n’est pas dérivable a droite en xo mais Cy admet tout de
X=X — A0

méme une demi-tangente a droite en My(x; f(xo)) parallele a I’axe des ordonnées.
x) — f(x
o 1 F)— F(x)
XXy X —Xp
méme une demi-tangente a gauche en My (xo; f(xo)) parallele a ’axe des ordonnées.

= oo alors f n’est pas dérivable a gauche en xo mais Cy admet tout de

Exemple :
limM:Imﬁ: L:_Hx,
x—0t x—0 x0T X X0t /X

25T

demi-tangente en Olde pente infinie




2.5 Approximations des carrés, cubes, inverses et racines carrées par des

fonctions affines

2.5.1 Approximation de x? au voisinage de 1

Soit la fonction f définie sur R par f(x) = x2. On désirerait étudier des valeurs de f(x) au

voisinage de 1, pour cela on pose x = 1+ h ot h est trés petit.

1. Calculer alors x2

2. Alaide d’une calculatrice, on obtient le tableau suivant :

x 1+102[14+103| 1+107% 1+10°

x> = (1+h)?>| 1,0201 | 1,002001 | 1,00020001 | 1,0000200001
1+ 2h 1,02 1,002 1,0002 1,00002
X 1-102[1-103] 1-107% 1-107°

xZ = (1+h)%Z| 0,9801 [0,998001 | 0,99980001 | 0,9999800001
1+2h 0,98 0,998 0,9998 0,99998

On constate que lorsque | 11 | est assez petit alors (1 + h)? ~ 1+ 2h
3. Lerreur commise est e(h) = (1+ h)? — (1 +2h) = h?

4. Pour xg € Rl'ona (xg +h)? = x% + 2xgh + h2.
Alors lorsque | h | est assez petit alors (xo + h)? ~ x3 + 2xoh

_ )2 — x2 2
5 Ona f(xo +h})1 flxo) _ (xo+h)"—x5 2x0hh+h —oxyh
donc lim flro+h) = f(xo) _ lim 2xp + h = 2x9 = f'(xp)
h—0 h h—0
2.5.2 Approximation de x> au voisinage de 1

1. (14+h)?=1+3n+3n>+Hh.

2. Alors si I'on approxime (1 + k)2 par 1+ 3h alors l'erreur commise est e(h) = (1 +h)3 —
1+43h) =3h% +h3 =h?(3+h)

3. Par conséquent, si | i |[< lalorsh* < let|3+h|<|3 |+ |h|=3+|h|<3+1=4
donc | e(h) |=| K2(3+h) |=| h? || 3+ h |< 4h?

1
2.5.3 Approximation de > au voisinage de 1

A l’aide d’une calculatrice, on obtient le tableau suivant :

h 104 10—° —10~* —107°
—h —10°% —107° 1074 10-°
1—h 0,9999 0,99999 1,0001 1,00001
x=1+h 1,0001 1,00001 0,9999 0,99999
% = % 0,999900009999 | 0,9999900001 | 1,00010001 | 1,0000100001




1
1. On peut donc approximer 137 Par 1 — h avec une erreur

1 C1-QA-m)(1+h) K
eh) =7~ =M= T+ T 1+h
2. S n |h\<11r—1<h<1dn 1—1<1+h<1+1
. Supposons que 5 alors — 5 donc 5 : 5
1 , s 1 . _ 2
donc 5 < 1+hdou2> T+ Par conséquent e(h) = T < 2h
1 _i Xo—xo—h
s ona SO = f(0) Xtk ¥ _ xGoth) _ -k _ -1
’ h h h hxo(xo + h) xo(x0 + h)
- flxo+h) = flxo) _ -1 _ -1
DOHC%EQ) h 7%&% xo(xo+h)  x3 = f (%)
2.54 Approximation de \/x au voisinage de 1
1. Soit xy > 0.
Onaf(xo+h)—f(xo):vxo+h—¢702(vxo+h—m)(vxo+h+¢70): Xo+h—x
h h h(v/xo +h+ /xo) h(v/xo +h+ \/Xo)
h 1
h(Vxo + 1+ /%) Vxo+h+ /%o
- flxo+h)—flxo) _ . 1 1
Alors 1 =1 =
o1 I 0 Vo i+ Vi 2v/E
. 1
2. On va approximer f(xo + h) par f(xo) + 27\/970}[ donc pour xp =1ona:
1 h
14+h)~ f(1)+ —=hdoncv1+h~1+ -.
Fm) = f(1) + S hdone VIT T~ 143
3. Alors l'erreur commise est ’
e(h)=vV1+h—(14+7) = =

h, h'
2VITRE(+) AWVITR14ED)

Soit | h |< lalors —1 <h <1donc—1<hdou0 < 1+h.Onendéduitque0 < 1+h
h
donc1+ﬁ <1+§+\/1+h.

2
A 1 h 1 h, 1 h
Dememe,commf -1 <hhona—§ < Edoncl—i < 1+%dou§ < 1+§.
Par conséquent, 5 < 1+ 5+ Vi+hdoud(v1+h+1+ E) > 2.
h2
On en déduit que | e(h) |< X
En résumé :
Pour le réel | est approché par | avec une erreur inférieure a
heR | (1+h)? 1+2h W2
[h]j<1 | (1+h)3 1+3h 412
T T N
h h
hil<1 1+h 1+ —
7] + +3 5

8



Comment et pourquoi se ramener au voisinage de 1 et ne pas rester au voisinage de
X0 ?
Exemple : Déterminer une valeur approchée de /90002

1
(@) On pourrait procéder ainsi : /xo +h ~ \/Xg + ~—=h d’ou

2\/xg
1
/90002 ~ /90000 + ———2.
2+4/90000 .
Par conséquent, /90002 ~ 300 + =— =~ 300,00333 mais nous ne mafitrisons pas

300
I'erreur.

(b) Par contre pour xy > 0 sil’on décompose

Vi FTi= ,/xo<1+§0> - /@ <1+§0>

on peut alors se ramener au voisinage de 1.

o B B 2 2
D’ott 1/90002 = /90000 + 2 = \/ 90000(1 + g555g) = V900004 / (1 + 55555)

Alors comme vV1+h~1+ g alors

2 1
1+ ——) =1 =1 .
(1+ 90000) * 2(90000) + 90000

1 1
Donc /90002 ~ 300(1 + W) = 300 + 300 300, 00333.
Mais ici nous pouvons maitriser I’erreur qui est inférieure a :

h? 2

300— =300———— ~3,70x 108 <10 x 108 =107
2 (90000)2 x .



3 Fonction dérivée

3.1 Définition de la dérivabilité sur un intervalle

1. Si I est un intervalle ouvert de la forme |4; b[ ou |a; +o0[
ou | — oco; +0o[ ou | — o0; b,
on dit que f est dérivable sur I lorsque f est dérivable en tout x( de I.
On peut alors construire la fonction suivante

f':1—R
x - f(x)
f'(x) = le nombre dérivé de f en x se note aussi % ou %

Cette fonction f’ s’appelle la fonction dérivée de f sur L.

2. SiI est un intervalle de la forme [a; | (resp [a; +o0[)
on dit que f est dérivable sur I lorsque f est dérivable sur 'intervalle ouvert |a; b[ (resp
|a; +00] ) et f est dérivable a droite en a

3. Silestun intervalle de la forme |a; b](resp | — oo; b] )
on dit que f est dérivable sur I lorsque f est dérivable sur l'intervalle ouvert |a; b[ (resp
| —o0;b[) et f est dérivable a gauche en b

4. SiI est un intervalle de la forme [a; ]
on dit que f est dérivable sur I lorsque f est dérivable sur l'intervalle ouvert |a; b et f
est dérivable a droite en a et f est dérivable a gauche en b

3.2 Propriétés des fonction dérivables sur un intervalle ouvert

Soient u et v des fonctions dérivables sur un intervalle ouvert I alors :

1. u + v est dérivable sur I
etl’ona‘VxGI (u+0)(x) :u’(x)—i—v’(x)‘

2. Pour tout réel A, Au est dérivable sur I
etl’on a‘Vx el (M) (x) =M (x) ‘

3. uv est dérivable sur [
etl’on a‘Vx el (uo)(x) =u'(x)o(x) + u(x)o'(x) ‘

1 . s N
4. — est dérivable sur I a condition que v ne s’annule jamais sur I
v

etlona|Vx € I (1), (x) = - 2)

u 2.8 5 ans - .
5. — est dérivable sur I & condition que v ne s’annule jamais sur [
v

etl’'ona|Vx el

(2 = O~

v v2(x)

10



3.3 Composition

¢ Si u est une fonction dérivable sur un intervalle ouvert [
® Si v est une fonction dérivable sur un intervalle |
e Siu<lI>C]

Alors v o0 u est dérivable sur I et 'on a :‘Vx el (vou)(x)=u(x)v(u(x)) ‘

3.3.1 Démonstration :

Soitxg =a€ltelquex =a+heloux—xg=h
comme u est dérivable sur I donc en a alors # admet un développement limité d’ordre 1 en a :
u(a+h) =u(a)+ hu'(a) + hey (h) avec }llil’l’(l) e1(h) =0

—

Soit b = u(a). Soitk telque b+k € u < I >. Comme u < [ >C ] et que v est dérivable sur |
donc
v(b+k) = v(b) + 0 (b)k + kea((k) avec l{irr(l) e2(k) =0

H

Or quand h tend vers 0, u(a + h) tend vers u(a) car u est continue en a puisque u est dérivable
en a donc u(a + h) — u(a) tend vers 0.

Posons k = u(a+ h) — u(a).

On peut prendre & assez petit pour que b+ k € u < I >.

Alors v(u(a) + u(a+h) — u(a)) est de la forme v(b+ k) avec b = u(a) etk = u(a+h) — u(a).
Donc

o(u(a)+u(a+h)—u(a)) =o(u(a))+o' (u(a))(u(a+h) —u(a)) +u(a+h) —u(a)ex(u(a+h) —u(a))
D’ou
o(u(a+h)) =o(u(a)) + o' (u(a))(u'(a)h + hey (h)) 4 (u'(a)h + hey (h))ea (u' (a)h + hey (b))

=v(u(a)) + ' (u(a)) (' (a)h + (o' (u(a))e1 (h) + (u'(a) + e1(h))ea (' (a)h + heq ()

Notons e3(h) = 0/ (u(a))ey (h) + (1 (a) + 1 (h))ea (1 (a)h + hel(h)).
Quand # tend vers 0 alors &1 (h) tend vers 0 donc v/ (u(a))e1(h) tend vers 0 et u’(a)h + hey (h)
tend vers 0.
Or quand y tend vers 0 alors €,(y) tend vers 0 donc ;llirr(l) e3(h) =0.
—>

Donc v(u(a+h)) = v(u(a)) +v'(u(a))(u'(a)h + hes(h) avec %E)rb e3(h) =0

Donc v o u est dérivable ena et (vo u) (a) = o' (u(a))u'(a)

11



3.4 Fonction réciproque

1. Si f est continue sur [ et si f est strictement monotone sur [
alors f réalise une bijection de I sur f < I >
c’est-a-dire tout A de f < I > admet un antécédent unique c dans I pour f
Cest-a-dire VA € f < 1> dlcel  fe)=A
C'est-a-dire que VA € f < I > l'équation A = f(x) d’inconnue x a une solution unique
cdans I

2. De plus, La bijection réciproque f~! existe, est continue sur f < I >, a le méme sens
de variation sur f < I > que le sens de variation de f sur I.

flif<I>—1

y — f1(y) = I'antécédent de y par f dans I

3. Dans un repere orthonormé la courbe représentative de la bijection réciproque est
I'image de la courbe représentative de f par la symétrie orthogonale d’axe D : y = x.

4. Side plus, f est dérivable sur I et f' ne s’annule jamais sur I
alors f~! I'est aussisur f < I >

1

etlona|Vye f<I> (f_l)/(y)zw

5. Posons iy = f(xp).
Lorsque f'(xg) # 0 la courbe de f admet en My(xo, o) une tangente (T) de pente
f'(x0) alors f~1 est dérivable en yj et la courbe de f~! admet en M} (o, xo) une tan-
gente (T") symétrique de (T) par rapport a la droite d’équation y = x.
Lorsque f'(xp) = 0 la tangente en My(xo,¥o) est horizontale alors f~! n’est pas dé-
rivable en yo mais la courbe de f~! admet quad méme en M(yo, x9) une tangente
verticale symétrique de (T) par rapport a la droite d’équation y = x

3.4.1 Démonstration:

Soient y et yo des éléments de f < I > avecy # yo.
Comme f est bijective alors il existe x et xo dans I tels que y = f(x) et yo = f(xo).

S — o) . x—xo 1

Y=Y fx) = fxo) — f(x) = f(x0)

X — X0

Quand y tend vers yg alors comme f ! est continue alors f~!(y) tend vers f~!(yo).
Orx = f(y) etxg = f(yo) donc x tend vers xo.
) =) 1 1 1
Donc lim = lim = —
e Y=Y w0 fx) = flxo) - f'(x0)  f1(F(wo)

X — Xo

12



3.4.2 Exemple1

. . . 1 o
In est dérivable sur ]0; 00| et sa fonction dérivée x — L ne s’annule jamais sur ]0; +co[ donc

exp = (In)~! est dérivable sur R et Vy € R (exp)'(y) = (In"V)(y) = 1

(In)' (exp(y))

v 1
(In)'(e¥) 1
ey
3.4.3 Exemple 2

exp est dérivable sur R et sa fonction dérivée x — exp(x) ne s’annule jamais sur R donc In =

_ L. . . / _ —1\/ _ 1 _
(exp)1 1 estderlvable sur 0; +oo et Vy €]0; +-c0[ (In)'(y) = (exp™1)'(y) = (exp) (exp 1(y))

exp(In(y)) vy

13



3.5 Tableau des formules usuelles de dérivation

Dy f(x) Dy f(x)
R C R 0
R x* (0 € R) R w x*1
& ! & il
X X
R* Vx Rt 1
2y/x
1
R** In(x) R** =
x
R e* R e
R sin(x) R cos(x)
R cos(x) R —sin(x)
1.
R cos(ax + b)aveca # 0 R Eszn(ax +b)+C
) 1
R sin(ax +b)aveca # 0 R —Ecos(ax—i—b) +C
1
R sauf les  + k7 ot k entier relatif R —— =1+ tan®(x) tan(x) +C
2 cos?(x)
-1
R sauf les k7t ot k entier relatif R =1+ cotan®(x) —cotan(x) + C
sin?(x)
X Lo ¥ X — X
R ch(x) = 5 R sh(x) = 5
X _ ,—X X —x
R sh(x) = — R ch(x) = ere
2 2
|—-11] Arcsin(x) |-11] %1
7 7 1 — xz
|—-11] Arccos(x) |—-11] ;1
4 4 1 — x2
R Arctan(x) R 1
1+ x2
14 1
R Argsh(x) = In(x + Vx2 4+ 1) R
x2+1
1
11; +o0[ Argch(x) = In(x + Vx? —1) 11; +o0[ —
2 —
1 1+x 1
-1 th(x) = =1 —-1;1
|11 Argth(x) = 3 n (155 |11 .




f(x) f(x)
D, Au(x) D, A’ (x)
D, N Dy u(x) +o(x) D,y N Dy u'(x) +0'(x)
D, N Dy u(x)lv(x) D, N Dy u'(x)v(x) —/i—(u)(x)v’(x)
B U (x
D, — {x/v(x) =0} o) Dy —{x/v(x) =0} 2(x)
Dy N Dy — {x/v(x) = 0} ’;Eg D, N Dy — {x/v(x) =0} | 2 (x)”(xzzzx”)‘(x)v (*)
{x/x€Dyetu(x) €Dy} | ov(u(x)) {x/x € Dy etu(x) € Dy} u (x)v' (u(x))
{x/u(x) >0} u(x) D, N{x/u(x) >0} 211//%
/ u'(x)
{x/u(x) >0} In(u(x)) D), N Dy e
D, eu(x) Du’ ul(x)g”(x)
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3.6 Dérivées successives- Fonctions de classe C? et de classe C*®

3.6.1 Définition

Soit f une fonction dérivable sur un intervalle ouvert non vide I.

Soit f’ 1a fonction dérivée de f sur I.

Si f' est dérivable sur I alors sa fonction dérivée s’appelle la dérivée seconde de fet se note
£ ou f?). On dit alors que f est 2 fois dérivable sur I.

Si f est n—fois dérivable sur I alors la dérivée d’ordre 1 se note f(").

On dit que f est de classe C° lorsque f est continue sur I. On dit que f est de classe C! lorsque
f est dérivable sur I et que f’ est continue sur I.

On dit que f est de classe C2 lorsque f est dérivable 2 fois sur I et que f(?) est continue sur I.
On dit que f est de classe C" lorsque f est dérivable # fois sur I et que f(") est continue sur I.
On dit que f est de classe C* sur I lorsque f est de classe C" sur I pour tout # € N c’est-a-dire
lorsque f est indéfiniment dérivable sur 1.

3.6.2 Exemples

1. Une fonction polyndme est de classe C* sur R
2. Une fonction rationnelle est de classe C* sur son ensemble de définition
3. La fonction exponentielle exp est de classe C*° sur R

4. La fonction logarithme népérien [ est de classe C* sur R**

3.6.3 Polyndmes dérivés successifs

La fonction polynome de degré ,
n

P:x— Z aixi est indéfiniment dérivable sur IR.
i=0
Pour tout réel x, pour tout entier naturel k non nul , on note P(¥)(x) le nombre dérivé -k en
X.
Par convention, P() (x) est P(x)

1 Vke[|Ln]lona: PW(x) =Y i(i—1)(i—2) - (i —k+1)ax'~*
i=k

2. On en déduit que Vk > n+11ona: PX (x) =0
3. et que Vk € [|0;n|] 'on a: PK)(0) = k! a

b " PO0) .
4. douVx € R P(x) :k;] a

N 71 P(k) (lx)
5. douVx € R Va € R P(X):k;) 7 (x —a)k
C’est la Formule de Taylor-Mac Laurin pour les polynémes
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3.7 démonstration
1. démonstration par récurrence :

n .
Notons pr(k) : P®(x) = Y i(i —1)(i—2) -+ (i —k+1)ax' %
i=k
n ) n )
(a) La propriété est vraie pour k = 1 car P (x) = (P(x))" = (Y aix') =) iajx~1
i=0 i=k

(b) Soit un entier naturel k > 1 supposons que P%) (x) = Y i(i—1)(i—2)--(i—k+ 1)a;x'=*
alors P+ (x) = (P()y
n , n .
=(Yii-1)@i-2) - (i—k+Dax"*) = Y i(i-1)(i—2)- (i —k+1)(i —k)ax' 1
i=k i=k+1

(c) La propriété pr étant initialisée a 1 et étant héréditaire est donc vraie pour tout entier
naturel k > 1

2. démonstration par récurrence initialisée a partir du rang n + 1 évidente
3. évident
4. évident
5. il suffit d’appliquer la propriété précédente a Q(x) = P(x +«)
car Q(x) = P(x+a), Q' (x) =P (x+a),Q"(x) =P (x+a), -

n (k)
01 Q(0) = P(a), Q(0) = P'(a) , Q(0) = P'{a), -+ 0r Q(x) = ) Q(0) x

k!

- P n plh)
donc P(x + &) = 2 P k'(oé)xk dot P(x) = Z PY ()

k=0 : k=0
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3.7.1 Formule de Leibniz

Soient des fonctions f et g dérivables indéfiniment sur R. Alors leur produit fg est aussi
indéfiniment dérivable sur R et

v e N° () = 3 (1) 79 g

i=0

Démonstration :

Notons pr(n) : (fg)" = Y () £ gl=i).

i=0
1. Initialisation : elle est vraieenn = 1 car : )
1 _ 1\ ;i) (-
(fg) = f¢' +fg= <0> FO 10+ ( )f(l U=y (l> F gt
i=0
2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k > 1 c’est-a-dire que:

0 =3 (£) 50 g0,

i=0
k ) ) k ' '
Alors (fg)(kﬂ) = [(fg)(k)]’ = [;) (f) f(’) g(kﬂ)]' — Z(;)[C:) f(l) g(kﬂ)]/~
— ;) (’;) [f(i) g(kfi)]/ — i){(’;) [ f(i+1) g(kfi) + f(i) g(k7i+1)]
k
- (+1) (k=) K\ () (k—i+1)
k+1

_Z<jfl)f()g(k1+1 +Z<> g(k+1 7

en effectuant le changement d’1nd1ce j = i+ 1 dans la premiére somme et j = i dans la
deuxiéme somme.

k k 7k K\, i [k
Done (fg)*+1) — (0) FO) k1) 4 Z[(-_ 1) n (j)] U gl 1) (k> FlD) (0)
1:1

k+1 k+1 k+1
(fg)k+D) :( : ) k) 4 ( ) gk ])+< +1> FlD) G(0)
=

1 ~

Y ( ; ) £ ¢ +1=0) done pr(n + 1) est vraie.

i=0

3. Conclusion : pr étant initialisée en 1 et étant héréditaire est donc vraie pour tout entier
naturel n > 1

Applications :
On vérifie aisément cette formule sur quelques cas particuliers :

L (fe) =f'g+fg

2. (f9)" = (flg+f8) =fl's+fg+fg+fs" =f'g+2f' ¢+ fg"

3' ;f%2(3) — ((fg)ll) fll/g+fllg/+2fllg/+2fl //+fl l/+fgll/ :fll/g+3fl/g/+3flg/l+
g
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3.8 Extrema globaux et locaux

3.8.1 Définitions

Soit I un intervalle. Soit xg € I (xp peut étre une borne de I)
1.

On dit que f présente un maximum relatif ou local en x( lorsqu’il existe un intervalle
ouvert I’ de centre xg tel que Vx € I' 'ona f(x) < f(xp)

. On dit que f présente un minimum relatif ou local en xj lorsqu’il existe un intervalle

ouvert I’ de centre x( tel que Vx € I' 'on a f(x) > f(xo)

. On dit que f présente un extrémum relatif ou local en xg lorsque f présente un maxi-

mum ou un minimum relatif ou local en x

. On dit que f présente un maximum absolu ou global en xq lorsque

Vx eIlona f(x) < f(xo)

. On dit que f présente un minimum absolu ou global en x( lorsque

Vx € Il'ona f(x) > f(xo)

. On dit que f présente un extrémum absolu ou global en x( lorsque f présente un maxi-

mum ou un minimum absolu ou global en xj

3.8.2 Théoréme 1

1.

2. Si xg est un extremum local de f sur I

1.

2. Si xq est un extremum local de f sur I

Si f est dérivable sur I

3. Sixp n’est pas une borne de [

Alors f/(x9) =0

3.8.3 Théoréme 2

Si f est dérivable sur I

3. Si xg est une borne gauche de |

Alors f}j(xp) > 0 dans le cas d'un minimum et f}(xg) < 0 dans le cas d"un maximum

3.8.4 Théoréme 3

1.

2. Si xg est un extremum local de f sur I

Si f est dérivable sur I

3. Si xg est une borne droite de [

Alors fg(x0) < 0 dans le cas d'un minimum et f¢(xp) > 0 dans le cas d'un maximum
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3.8.5 Théoréme 4

1. Si f est dérivable sur I
2. Si f’ s’annule en x( en y changeant de signe

3. Si xg n’est pas une borne de I

Alors f présente en xp un extremum local

Démonstration Théoréme 1
On va supposer que xo n’est pas une borne de I et que f a un maximum en x
¢ A gauche de xg le taux Tf = M >0
X — X0
car x — xp < Oet f(x) < f(xp)
f(x) — f(xo0)
X — X0

¢ A droite de x( le taux Tr = <0

car x — x9 > Oet f(x) < f(xp)
* OrTyet f'(x0) = Xli_gcl T¢ ont méme signe au voisinage de xg
0

e donc f/(x9) < 0et f'(xg) > 0d’ot f'(x9) =0
Démonstration analogue si f a un minimum en xj.
Démonstration Théoréeme 2
On va supposer que X est la borne gauche de I et que f a un maximum en x
¢ A droite de x( le taux Tf = M <0
X — X0
car x — xp > Oet f(x) < f(xp)
* OrTyet f'(xo) = lim+ Tr ont méme signe au voisinage a droite en xg
X_HCO
* donc f/(x9) <0
Démonstration analogue si f a un minimum en x.
Démonstration Théoréme 3
On va supposer que x est la borne droite de I et que f a un maximum en xg
¢ A gauche de xg le taux Tf = M >0
X — X0
car x — xg < Oet f(x) < f(xp)

* OrTyet f'(xo) = lim+ T¢ ont méme signe au voisinage a droite en xg
X—)XO

* donc f/(x9) >0
Démonstration analogue si f a un minimum en x.
Démonstration Théoréeme 4
Supposons que f’(x) < 0 a gauche de xp et f'(x) > 0 a droite de x( et que f’(xp) =0
f(x) = f(xo)

X — X0

e Agauchede xp: f'(x) < 0.Or fé(xo) = lim Ty donc Ty < 0 donc < 0.
X=Xy

Or x — xg < 0 donc f(x) — f(x9) > 0donc f(x) > f(xp)

* Adroitede xg: f'(x) > 0.0r fj(xo) = lim Ty donc Ty > 0 donc f(x) = f(x0) > 0.Or
x—xg X =X
x —xg > 0donc f(x) — f(x9) > 0donc f(x) > f(xg)
* A gauche de xq et a droite de xg ona: f(x) > f(xg) donc f admet en xy un extremum
local
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3.8.6 Remarquel

Le théoreme 4 est une condition suffisante pour avoir un extremum local.
Ce n’est pas une condition nécessaire .
Exemple :

%si0<x§1
f(x) =

2

xcsix >1

3.8.7 Remarque 2
Dans le théoréme 4, il faut absolument que f’(x) change de signe en x.
Exemple : Soit la courbe d’équation y = f(x) = x> alors f est dérivable sur R. De plus,

f'(x) = 3x? s’annule en x = 0 mais n’y change pas de signe donc le point O(0; 0) n’est pas un
extremum.

2,51

W=xM3
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4 Sens de variation d’une fonction numérique

4.1 Définitions

Soit I un intervalle ouvert de R.
1.
2.

On dit que f est constante sur I lorsque pour Vx; € [ Vxy € Il'ona f(x1) = f(x2)
On dit que f est croissante sur I lorsque Vx; € [ Vx, € I l'onasix; < xp alors

f(x1) < f(x2)

. On dit que f est strictement croissante sur [ lorsque Vx; € I Vxp € Il'onasix; < xp

alors f(x1) < f(x2)

. On dit que f est décroissante sur I lorsque Vx; € I Vx, € Il'onasix; < xp alors

f(x1) = f(x2)

. On dit que f est strictement décroissante sur I lorsque Vx; € [ Vx, € I1'onasix; < x

alors f(x1) > f(x2)

4.2 Théoremes sur les variations n’utilisant pas la dérivée

NS Gk wDN

10.

Soient I et des intervalles ouverts de R
1.

Si f et g sont croissantes sur I alors f 4 g est croissante sur [

Si f et g sont décroissantes sur I alors f + ¢ est décroissante sur I
Si f est croissante sur I et si A < 0 alors Af est décroissante sur I
Si f est croissante sur I et si A > 0 alors Af est croissante sur I

Si f est décroissante sur I et si A > 0 alors Af est décroissante sur [
Si f est décroissante sur [ et si A < 0 alors Af est croissante sur I

Si f est croissante sur I, si f < I >C |, si g est croissante sur ] alors g o f est croissante
sur [

Si f est décroissante sur I, si f < I >C ], si g est décroissante sur | alors g o f est
croissante sur I

. Si f est croissante sur I, si f < I >C |, si g est décroissante sur | alors g o f est

décroissante sur |

Si f est décroissante sur I, si f < I >C |, si g est croissante sur | alors g o f est
décroissante sur [
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4.3 Théoréeme de Michel Rolle (1652-1719)

1. Sia < b,
2. Si f est continue sur [a; ]
3. Si f est dérivable sur |a; b|
4. Si fla) = £(b)
Alors
Jc €la;b[tel que f'(c) =0

. Cela veut dire géométriquement qu’il existe au moins un point M(c, f(c)) de la courbe de
f ot la tangente est paralléle a 1’axe des abscisses

fla) = 1)

4.3.1 Démonstration

Comme f est continue sur [g; ] alors f y est bornée et y atteint ses bornes m et M.
Par conséquent , 3¢ € [a;b] 3d € [a;b] tels que f(c) =met f(d) = M.
e oubien f(c) = f(d) donc m = M donc f est constante sur [a;b] donc Ve € [a;b] f'(c) =0
donc Jc €]a; b[ tel que f'(c) = 0. CQFD
e oubien f(c) # f(d) alors forcément ¢ €]a; b[ et d €]a; b[. Mais alors ¢ est un minimum (
et d est un maximum) donc 3c €]a; b[ tel que f'(c) = 0. CQFD

4.3.2 Exemple
Soit f définie par f(x) = x2. f est dérivable sur R et f'(x) = 2x. Alors

* f est continue sur [—1;1]
e festdérivable sur | — 1;1]
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- f(-1)= f() =1
e donc 3c €] — 1;1[ tel que f'(c) = 0icic =0
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4.3.3 Remarques

Les hypotheéses du Théoréme de Rolle sont suffisantes mais ne sont pas pas nécessaires.
Exemple 1

Soit f définie par f(x) = x°. f est dérivable sur R et f'(x) = 3x2. Alors
* f est continue sur [—1;1]
e festdérivable sur | — 1;1]

* f(=1)# (1)

e et pourtant 3¢ = 0 tel que f'(c) =0
Exemple 2
Soit
(2) = 0six=0
Y= 1—xsix €0;1]
e gestdérivable sur ]0;1]

e g(0) =¢(1)

* mais g n’est pas continue sur [0; 1]

Exemple 3

Soit abs définie par abs(x) =| x |. Alors
® abs est continue sur [—1; 1]
® abs(—1) =abs(1) =1
* mais abs n’est pas dérivable sur | — 1;1[ car abs non dérivable en 0

4.3.4 Exercice: Oral CPGE x x %

Soienta et b tels quea < bet f : [a; b] — R une fonction continue sur [a ; b], dérivable sur

la; b[ telle que f(a) = f(b) = 0.
Démontrer que Vr € R 3c €la; b  f'(c) = r(f(c))?

Soitr € R.
Soit
F: [a;b] — R
X
x s F(x) :/ £() dt
a
Soit

g: [a;b] — R
x — g(x) =e " FM f(x)
e ¢ estcontinue sur [a; ] et dérivable sur |a; b[

e g(a) =g(b) =0car f(a) = f(b) =0

® On peut donc appliquer le théoreme de Rolle sur la fonction g :

de€la; b] g'(c)=0
* Org/(x) = —r f(x) e 7 F) fx) + e FO) f1(x) = 7 FIx )( r (f(x)?+ f'(x))
« Donc3c €a; b g/(c) =" F0) (=r (F(r)2 + f1(1) =

e Ore"F) > 0alors3c € )a; b[  f'(c) = r(f(c))?
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4.4 Théoreme des accroissements finis de Lagrange

Sia < b, si f est continue sur [4; b] et dérivable sur ]a; b[ Alors
1.

Jc € ]a;b| tel que f'(c) = w

2. Cela veut dire géométriquement qu’il existe au moins un point M(c, f(c)) de la
courbe de f oul la tangente est parallele a la droite (AB)

3.
Jcela;b[tel que f(b) — f(a) = (b—a)f (c)

4. enposantb =a+h

36 € ]0;1[ tel que f(a + h) — f(a) = hf'(a + 6h)

fb)

fla)

4.4.1 Démonstration

L'équation de la droite (AB) ou A(a; f(a)) et B(b; f(b)) est :
f(b) = f(a) f(b) = f(a)
0L 6y 1 00).

=y
S| ~—

y =108 (v a) 4 f(a) done g(x) = P = f(x) -

1. g(a) = g(b) =0
2. e gestcontinue sur [a;b] et ¢ est dérivable sur |a; b|
e Vx €la;b[ ¢ (x) = f'(x) — fi(b; :i(a)
Alors d’apres le théoréme de Rolle, 3¢ €]a;b[  ¢'(c) =0

Donc f'(c) — L’Z) :Z @) _ g dron f/(c) = L’g :f; @ cqrp

26



4.5 1ere Inégalité des accroissements finis

Sia <b

Si f est continue sur [a; ]

Si f dérivable sur |a; b|

Si 3 (m,M) € R®tel queVx € Ja;b[onam < f'(x) <M

m(b—a) < f(b) — f(a) < M(b —a)

4.6 2éme Inégalité des accroissements finis

L .

Alors

Sia <b

Si f est continue sur [a; ]

Si f dérivable sur |a; b[

SidM e R"telqueVx € Ja;b[ona| f/(x) |< M
Sixy €]a; bl etsixy €]a; b

0 <| f(x2) = f(x1) [ M| x2—x1

4.7 Applications des accroissements finis

4.7.1 Encadrement

. Démontrer que Vn € IN* l'on a:

1 1
——<Vvn+l—-yvn< —
2vn+1 "~ \f_Z\/ﬁ

Trouver une valeur approchée de In(7r) en utilisant I'intervalle [3; 77

! I <In(n+1)—In(n) Sl

Démontrer que Vin € IN* I'on a: .

N

7T

Soient les réels x et Btels que 0 < & < B <

N

Démontrer que Cfsz_(z) < tan(B) — tan(w) < Cfsz_(;)'

En déduire un encadrement de tan(0,78) et de tan(0, 8)

27



1 X 1 x+1
4.7.2 Sens de variation des fonctions x — (1 + x> etde x — <1 + x>

1. Al'aide du théoreme des accroissements finis, démontrer que

==

1
Vx>0 m<ln(x+l)—ln(x)<

2. En déduire le sens de variations et la limite en +co des fonctions f et g définies sur

R par x x+1
flx) = (1 + i) etg(x) = (1 + i)

Comme x >0onposea=xetb=x+1donca<beta—b=x+1—-—x=1.

In est continue sur [x ; x + 1] car In est continue sur |0 ; +oo[et [x; x +1] C0; +oo]
In est dérivable sur |x ; x + 1| car In est dérivable sur |0 ; +oo[ et |x; x +1[C 0; +oof
Donc d’apres le théoréme des accroissements finis on peut dire :

Je€lx; x+1[  In(x+1)—In(x) = (In)'(c) = %

1 1
< - < = donc
c X

1
e Par conséquent, comme x < ¢ < x + 1 alors 1

Rl

1
Vx>0 m<1n(x+1)fln(x)<

X
2+ Soitfasniosur R par () = (141)" —exp [sin (1 1)] < exp o1 (1]

o Vx>0 f(x)=exp[x(In(x+1)—In(x)] =exp[xIn(x+1)—xIn(x)]
o f est dérivable sur R™*
o Vx>0 f’( ) = [xIn(x+ 1) —xIn(x)] exp[x ln(x—I—l) —x In(x)]

£ = TGt 1)+ x g~ 1) - } explx In(x +1) — x In(x)]
£ = [in(x+1) — In(x) +1} explx In(x + 1) — x In(x)]

Fla) = :ln(x—l—l)—ln( )+"xﬁ1] explx In(x +1) — x In(x)]
Fi(x) = :ln(x—i—l)—ln(x)—x_li_J explx In(x+1) — x In(x)]

o Lesignede f'(x) est celui de h(x) = [ln(x +1) —In(x) — car exp[x In(x +

1) —xIn(x)] >0
* h est dérivable sur |0 ; +oo]
* Vx >0ona:

v X2 -1 -1 1 =+ 4+x -1
h(x)_L“_(X+1)2_x(x+l)+(x+1)2_ x(x+1)2  x(x+1)
X
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* Vx > 0onah’(x) < 0donc & est strictement décroissante sur |0 ; +oo[

* Or lim ol ldonc lim In (M) = 0. Comme de plus, lim =0
x—+oco X X—+o00 X x—+oo x +1
alors lim h(x)=0
X—>+o00
* Comme h est strictement décroissante sur |0 ; +oo[ et que Lnf h(x) =0
X (<)
alorsVx >0 h(x) >0
o Par conséquent, Vx > 0 f'(x) = h(x) > 0 donc f est strictement croissante sur
J0; +oo]
o xgrfmf(x) = e car
1\* 1\* 1
* en posant y = 1—1—5 alors I(y) = In 1—1—; = xIn 1+; =
In {1 + 1]
x
1
* 1 In(1+h
* Enposant h = p alors In(y) = %
In(1+h In(1+h)—In(1
* Quand x — +ooalors h — 0 d’out In(y) = ud h+ ) = t 1—:_21_ 1n( )
/ _ . . T _
(In)'(1) = 1 item [x] xl_l}rfooln(y) = }llli%ln(y) = 1donc xl_l)mooy =exp(l) =e
¢ Voici alors le tableau des variations de f :
X 0 +o0
flo | [+
e
f(x) /!
1 x+1 1 1
* Soit ¢ définie sur R™ par ¢(x) = <1 + x) = f(x) (1 + x) = f(x) + ;f(x)
o Comme x — (1 + 1) et que f est dérivable sur |0; +oo[ alors g qui est le produit
des ces deux fonctions est alors dérivable sur |0 ; +oo].
x 1 x+1
o * Vx>0 gx)= 1+; =exp |(x+1)In (1+x)] = exp [(x+1)ln( . )}

g(x) =expl(x+ 1)[In(x+1) —In(x)]] = exp[(x + DIn(x+1) — (x + 1)In(x)]
* Vx>0 ¢(x)=[(x+1)In(x+1)— (x+1)In(x)] exp[(x +1)In(x+1) — (x+
V)in(x
C)om(m)g exp[(x + 1)In(x + 1) — (x + 1)In(x)] > 0 alors le signe de g’(x) est
celui de u/(x) avec u(x) = [(x—l—l)ln(x—l—l) (x —i—ll)ln(x)].
wul(x) = In(e+1) + (x4 1) — —In(x) = (x +1) =
x+1 1

=In(x+1)+1-In(x)—1-= =

w'(x) = In(x+1)+1—In(x) — "

In(x+1) —In(x) — =

1
* Or d’apres la question précédente on sait que In(x + 1) — In(x) < p donc

u'(x) < 0donc ¢'(x) < 0d’ou g est décroissante sur |0 ; +oo|.
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o Comme g(x) = f(x)+ %f(x) et comme JCl_i)IJrrloof(x)

1
=cet lim — =0alors lim g(x)=e
X—+00 X X—+00

¢ On peut alors dresser le tableau des variations de g :

X 0 +o0
g'(x) +
g(x) N\
e
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4.7.3 Génération de fonctions k-lipschitziennes (Rudolf Otto Sigmund Lipschitz 1832-1903)
Définition :

Soit k un réel > 0.

On dit que f est k—lipschitzienne sur I

lorsque Vx1 € [Vxy €lona: | f(xl) —f(XQ) |< k | X1 — X2
k s’appelle le coefficient de Lipschitz.

si0 < k < 1 alors f est dite k—contractante.

Théoréme

I Si f est de classe C! sur un intervalle fermé alors f est lipschitzienne.

Démonstration :

Comme f est de classe C! alors f’ existe et est continue sur I fermé donc f’ est bornée sur I donc
| | est majorée sur I par un réel k > 0 donc d’apres le théoréme des accroissements finis f est
k—lipschitzienne

4.74 Etude d’une suite de la forme u, 1 = f(uy)

Siug el
Si I est stable par f c’est-a-dire que f < I >C I

Si la fonction f a un point fixe a ¢’est-a-dire Ju € I tel que f(a) = a.

L

Sila dérivée f’ est majorée sur I park ot 0 < k < 1
cest-a-direVx € Tona| f/(x) |[< kavec0 < k < 1

Alors
1. On démontre par récurrence que Vi € Nonau, € I
puis que 0 <| w1 —a |[< k| uy, — a | d’apres l'inégalité des acroissements finis.

On démontre par récurrence que Vi € N l'ona 0 <| u, —a [< K" | ug —a |

L

Dou lim u, =«
n——+00

4.7.5 Théoréeme du prolongement de la dérivée a droite en a

1. Si f est continue sur [a; b]
2. Si f est dérivable sur |a; b|

3. Si lim f'(x) = L finie ou infinie
x—at

1. lim f&x) —fla) _ L
x—at X —a

2. Dans le cas ou L est finie , f est dérivable a droite ena et fj(a) = L

3. Dans le cas ot L est infinie , Cy admet au point M(a; f(a)) une demi-tangente verticale.
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Démonstration :

Méthode 1:

D’apres le Théoreme des accroissements finis

30 €10;1[ tel que f(a+h) — f(a) = hf'(a+ 6h).

Par conséquent quand /& — O alors a + 6h — a™. Or lim f'(x) = L donc f’(a+ 6h) — L.Onen

flath)—f@) o

h
Enposantx =a+hona lim f(x) = fla) =L
x—at X—a
Méthode 2 dans le cas L finie
Comme lim+ f'(x) = L alors soit x €]a;a + h| d’apres le théoréme des accroissements finis
X—a
Je € ]a;x[Cla;a + h[ tel que W = f'(c)
Ve>03h0<h<b—atelqueVt€|aa+hlona:L—e< f/(t) < L+e(x)
Ce c est donc un t particulier vérifiant la relation ()
@@

e < fB) - f@)

déduit que lim
h—0

Donc Vx € |a;a+h < L 4+ & donc

X—a X —a

— L < +edonc

\ fx) = fla) L|<e lim fx)=fla) _ L donc f est dérivable a droite en a et f}(a) = L.
X —a x—at X —a

Méthode 2 dans le cas L infinie
Comme lim f'(x) = oo
x—at

alorsVA>03a >0telquea < x <a+a = f'(x) > A.

£ = £ 4 gore tim £ = 5@
X —a x—at X —a

donc C¢ admet au point M(a; f(a)) une demi-tangente verticale.

En appliquant I'inégalité des accroissements finis, on obtient =0
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ATTENTION, la réciproque est fausse! Le taux de variation de f peut admettre une limite
sans que la dérivée f' en admette une.

Exemple :
1
x% sin () six #0
fx) = x) 57
Osix=20
1.(a) g:x+— x2 est dérivable sur R donc sur R*.
. 1 .
(b) i:x— p est dérivable sur R*
1
(c) Vx € R* po € R* donc I'ensemble-image i < R* >=R* C R
(d) sin est dérivable sur R
1
(e) donch =sin oi: x> sin <x) est dérivable sur R*
(f) par conséquent la restriction de f a R* qui est le produit gh est dérivable sur R*

Vx #0 f(x) = 2x sin (i) + x2 (;21) cos (i) = 2x sin (i) — cos (i)

2. Six # 0alors fx) = f(0) = X sin (i) Alors

x—0
1
X sin ()’ <| x|
x

f(x) = f(0) =0car0 <
(b) Donc f est dérivable en O et f/(0) =0

x—0F x—0

. / s . 1y ., ..
(c) et pourtant lim f’(x) n’existe pas car lim cos | — | n’existe pas.
x—0F x—0F X

Voici donc un exemple de fonction dérivable en 0 mais dont la dérivée f’ n’est pas continue
en 0.

f admet bien une dérivée sur R mais f n’est pas de classe C! sur R.
Mieux, le Théoreme de Gaston DARBOUX dit que malgré cela dés qu'une fonction f est

dérivable sur un segment [a ; b] alors méme si sa dérivée f’ n’est pas continue sur [a ; D]
elle vérifie quand méme le théoréme des valeurs intermédiaires sur l'intervalle de bornes

f'(a) et f'(b)
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4.7.6 Théoréme du prolongement de la dérivée a gauche en b

1. Si f est continue sur [a; b]
2. Si f est dérivable sur ]a; b[
3. Si lim f'(x) = L finie ou infinie
x—=b~
Alors
1. lim M =L
xb- X —Db

2. Dans le cas ol L est finie , f est dérivable a gauche en b et fé(b) =L

3. Dans le cas ot L est infinie , Cy admet au point M(b; f (b)) une demi-tangente verticale.

4.7.7 Théoréme du prolongement de la classe C!

1. Si f est continue sur [a; b]
2. Si f est de classe C! sur ]a; b]
3. Si lim f'(x) = L finie

x—at
Alors
1. f est dérivable a droite ena et f(a) = L
2. donc f’ est continue a droite en a
3. festde classe C! sur [a;b]

On peut généraliser le théoreme précédent par récurrence :

4.7.8 Théoréeme du prolongement de la classe C"

1. Si f est continue sur [a; b]
2. Si f est de classe C" sur |a; b]

3.8iVp<n lim f?P)(x) = L, finie
x—at
Alors
1. f estde classe C" sur [a; b]
2.¥p<n fPa)=1L,
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4.7.9 Applications de la dérivation aux variations d’une fonction

Théoréme :

Soit I un intervalle ouvert non vide de R.

Soit f une fonction numérique dérivable sur I.
Alors

1. festcroissantesur [ <= Vx €I f'(x) >0
2. festdécroissantesur [ < Vx eI f'(x) <0
3. festconstantesur [ <= Vx eI f'(x) =0

Démonstration :
—:
Supposons que f soit croissante sur I. Soient xp € [ et x; € I
1. soit x; a gauche de xg donc x; < xg donc x; — xp < 0.
Comme f est croissante alors f(x1) < f(xg) d’out f(x1) — f(x9) <0
fla) = fxo)
X1 —Xxo
2. soit x1 a droite de xg donc x1 > xg donc x1 — xg > 0.
Comme f est croissante alors f(x1) > f(xg) d’ou f(x1) — f(x9) >0
fla) = fxo)

X1 — X0

Par conséquent Ty =

Par conséquent Ty =

3. Au voisinage de x( alors Ty = M > 0donc lim Tr >0

xl — xo X1—Xo
4. doncVx eI f'(x)>0
—:
Supposons que Vx € I f/'(x) > 0.
Soient x; € I et xp € [ avec x1 < Xp
1. f est continue sur [x1; xp] car [x1;x2] C I et que f est continue sur I puisque f est déri-
vable sur I

2. f estdérivable sur |xq; xp[ car |x1; x2[C I et f est dérivable sur I

flx1) = flx2) _

3. Alors d’apres le Théoréme des accroissements finis 3 ¢ € |x1; x| tel que pa—
1— X2

f'(e)
4. OrvVx €1 f'(x) >0donc f'(c) >0

5. Donc w > 0.0r x; — xp < 0car x; < xp. Par conséquent f(x1) — f(xp) <0.
1 X2

On en déduit que f(x1) < f(x2) donc que f est croissante sur I

Attention!!!
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Corollaire

Soit I un intervalle ouvert non vide de R. Soit f une fonction numérique dérivable sur I Alors

1. f est strictement croissante sur [ <= Vx € I f'(x) > 0 sauf éventuellement en des
points isolés de I oit f/(x) s’annule

2. f est strictement décroissante sur I <= Vx € I f'(x) < 0 sauf éventuellement en des
points isolés de [ ou f'(x) s’annule

3. festconstantesur I <= Vx € I f'(x) =0
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5 Regle du Marquis de I’'Hopital ou Regle de Bernouilli

5.1 TAFG Théoreme des acroissements finis généralisés

1. Si f et g sont continues sur [4; b]
2. Si f et g sont dérivables sur |a; b|

)~ f@) £ _,

alors il existe ¢ €]a; b[ tel que 2(b) — 2(a) g'(c)

5.1.1 Démonstration

si f(a) = f(b) et g(a) = g(b) alors ce théoréme est vrai pour tout ¢ €]a; b|
sinon par exemple g¢(a) # g(b) on applique le théoreme de Rolle a la fonction h définie sur [4; b]

par

5.2 Corollaire du TAFG

1. Si f et g sont continues sur [4; b]
2. Si f et g sont dérivables sur |a; b|
. Sig(a) # g(b)

4. SiVx €|a;b[ona g'(x) #0

alors

w

. . 0
5.3 La Regle de Michel de L'Hépital dans le cas 0
. Si f et g sont continues sur un intervalle I contenant x
. Si f et g sont dérivables sur I — {xp}
.SiVxel—{xp}onag'(x)#0
. Si f(xo) = g(x0) =0

=LoulLeR
x

B W N

(€)]
wn
v
é’—..‘
=3
-
=
N—

alors
f(x))

= g(x)
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5.4 Corollaire de la Regle de 1’hopital

—_

. Si f et g sont continues sur un intervalle I

N

. Si f et g sont dérivables sur ]I — {x(}
.SivVxelI—{xp}onag'(x) #0

[68]

!
Silim L) —LouLeR
)

e~

alors

5.4.1 Remarque

La réciproque est fausse!!!
Attention, on peut avoir l’existence de la limite du quotient des fonctions sans que le quo-
tient des dérivées n’aie de limite!!!

Contre-exemple : f(x) = x?sin (i) six#0etf(0) =0etVx eR, g(x) =x

1. f et g satisfont aux hypothéses sur un intervalle I de centre 0
2. Six;«éOOna:M = X sin (1) etlimM =0car —1 < sin (1> <1.
g(x) x x—0 g(x) x

Six > 0alors —x < x sin <x) < x.

. . 1
six < 0alors —x > x sin (x) > X.

f(x)

Comme lim —x = Oet lim x = 0, d’apres le théoreme des gendarmes, on a lim ——= =0
x—0 x—0 x—0 g(x)

/ /
3. Maissix #0Oona: f/(x) = fx) = 2x sin <1> — cos <1) qui n’a pas de limite en 0
9'(x) 1 x x

car cos(—) n’enapasen0
x
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0
5.4.2 Application a la recherche de limites présentant la forme indéterminée 0

Parfois, il faut utiliser plusieurs fois de suite cette régle pour arriver au résultat!!! il faut
bien vérifier les hypothéses sur f et ¢ mais aussi sur f’ et g'!!!

2
X
- — —1
°1imln(1+x>+2 X:Iim1+x+x :lim#:1
x—0 x3 x—0 3x2 x—0 3(x + 1) 3

en appliquant successivement le Corollaire de la Regle de I'hopitala I = [0; a] otra > 0
etal =[g;0lou—-1<a<0

i x3 _1 3x? . 3x

20 sin(x) — x cos(x) x20 cos(x) — cos(x) + x sin(x) x20 sin(x)

en appliquant successivement le Corollaire de la Regle de I'hopital a I = [0; g] et a
s
I=[-%;
[ 2 4 0]
: 7T cos(mx) — 1
e lim sin(rex) = In(x) =lim —— X =147
x—1 x—1 x—0 1

en appliquant successivement le Corollaire de la Regle de I'hopital a I = [% ;

F32]
3 _ ax 2 ax
o lim ~ > lim 3¢ —8Tn3) _ 27 — 27In(3) en appliquant successivement le Corol-
x—3 x—3 x—0 1

laire de la Regle de I'hopitala I = [3;a] otta > 3etal = [a; 3]oua <3
1

o 1imu :limM :limi :limﬁ — ﬁ

e x—e e 1 x=e 2\ /x  x—e 2 2

x
n__ n—1

e lim a+x"-1 = lim nd+ 0" =

x—0 x x—0
I sin(x) — lim 1 — cos(x) — lim sin(x) _1

x—0 x3 x—0  3x2 x—0 6x 6
. lim 1—cos(x) im sin(x) 1

x—0 x2 - x—0 2x 2 ) ) )
o lim Y% c?s(x) — lim 1 — cos(x) + x sin(x) — lim ZSZYZ(X)' + xcos(x) ~ im 3cos(x) — xsin(x) _3

x—0 X —x sin(x)  x—0 1 —cos(x) x—0 sin(x) x—0 cos(x)

. 1 1 . x+x%—sin(x)
e lim———-——=lim—FF——>

x=0sin(x)  x+x2  x-0 (x4 x2)sin(x)

. 1+ 2x — cos(x) _ 2 + sin(x)
= lim . = lim - =1
=0 (14 2x)sin(x) + (x + x2)cos(x) x50 (2 — x — x2)sin(x) + 2(1 + 2x)cos(x)

. x—sin(x) . 1—cos(x) .. sin(x) . cos(x) 1

lim ) iy 2T OO gy SRy SO 2
* x}g(l) x3 xgr(l) . 3x2 xgr(l) 6x xgr(l) 6 6
. lim 1 — cos(x) ~ lim sin(x) — lim cos(x) _1

x—0 x?2 x>0 2x x—=0 2 2
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x — x cos(x) 1 — cos(x) + x sin(x) 2sin(x) + x cos(x) 3cos(x) — x sin(x)

o0 X — sin(x) 0 1 — cos(x) X0 sin(x) X0 cos(x)
, 1 1 . x+x%—sin(x) 1+ 2x — cos(x)
lim —— - —— =lim ~—————2 = lim ,
x—0sin(x)  x+x2  x=0 (x+x2)sin(x)  x—0 (14 2x)sin(x) + (x + x2)cos(x)
. 2 +sin(x)
= lim . =1
20 (2 —x — x2)sin(x) + 2(1 + 2x)cos(x)
cos(2x)—1 . —2sin(2x) . —4cos(2x) 2
m-———~—— = lim =1 =_=
x50 x3 4 5x2 xH013x2 +10x x>0 6x+10 5
limiﬁ_\/é:hm 2y = - ¢ _ ve
voeln(x) =1 x—e 1 2yx  2y/e e
x
Soitn € IN alors :
im FPE) g PO @) g @B
xtoo XM xtoo n xn—l T xtoo n(n —1)x"2 x—too 1!
1 1
lim x—Vx2—x= lim x—/x2(1— = | = lim x—|x|y/1— 5
Xi>+00 x>0 x2 x>0 x2
1-Ji- L
. 1 . 1 . x2
= lim x—x4y/1— 5= lim x({1—4/1—-=-] = lim —————
Xi—-+00 X2 xSt X xi—-Foo 1
X
2h
V12 2
lim LoV VISR
=0 h h—0 1
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5.5 Enoncé généralisé 1

Soienta € Retb € R tels que a < b.
Soient f et g des fonctions numériques dérivables sur ]a; b] et telles que g’ ne s’annule pas sur

|a; b].
!

.. . X X _
Sl)lcgr}lf(x) :0;chgl}lg(x) :0etjlcgl}1£/2x; =leR
Alors lim @ =)

x—a g(x)

5.6 [Enoncé généralisé 2

Soienta € Retb € R tels que a < b.
Soient f et ¢ des fonctions numériques dérivables sur |a; b et telles que ¢’ ne s’annule pas sur

|a; b].
f(x) =

Sl)lcg)r‘llf(x) = —1—00,‘31(13;(?(3() = coet lim 7 leR
Alors lim @ =1
x—a g(x)
5.6.1 Exemple
1
e lim Vx = lim 2vx = lim £:+oo
xrtoo In(x)  xtoo 1 x40 2
. lim sin(x) i S50
x—=0 X x—0
o lim LH0s(®) _
X—=T X — 7T X TT

e Sin € IN* alors lim
x—0

Ly

Attention! Cette régle n’est utilisable qu’en cas d’indétermination de

3x2 +1 6x
—4 =1 lim — =3
3 7 a7
On peut I'utiliser avec une certaine astuce pour les limites du type ” + co x 0”

e lim xe¢f = lim — = limL:O
X —00 x——co 1 x——c0 —1
ex X
e lim x In(sin(x)) = lim Infsin(x))
x—0 x—0 1
X
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6 Exercices

6.1 Dérivée et approximation affine.

L 1 .
1. Démontrer que la fonction inverse x +— p est dérivable en 1.

2. En déduire qu'il existe une fonction ¢ telle que Vh # 0 ﬁ =1—h+h¢(h)avec
lim ¢(h) =0
h—0

o 1
3. (a) Simplifier Toh (1—h)pourh #0

<2

— = <
2°2 3~ 1+h

1 1 2 1
(b) Démontrer que Vh € [— ]
1
(c) En déduire que l'erreur maximale commise quand on remplace TTh par 1 — h est

1 1
inféri ah2sih == 2 =|,
mferieure a S1n € [ > 2}

1
(d) Comparer la valeur donnée pour g 1 I'approximation 1 — k pour h = 3.10~°

a celle fournie par un calcul direct sur la calculatrice.

6.2 Variations de fonctions

En utilisant les fonctions de référence, déterminer les tableaux de variations des fonctions
suivantes :

1. f:x—2(x—12+3
2.g:x»—>xi+3

3. hix—2yx—1+3

6.3 Dérivées n-iémes

On sait que les fonctions sin et cos sont indéfiniment dérivables sur R.
Démontrer par récurrence que :

in(m (x) = si T
1. Vvne N sin\™(x) sm(x—l—nz)

(") (x) = i
2. VneN cos\™ (x) cos(x+n2)
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6.4 Formule de Leibniz

Soient f et g des fonctions numériques de classe C* sur R.
1. e Ecrire (fg)), (f2)®, (f§)®
e Rappeler ce qu’est la formule de Leibniz pour la dérivée nieme de (fg)")

2. On suppose que g(x) = (1+x?)f(x)
e Ou et pourquoi g est-elle de classe CT*?
e Donner alors l’expression simplifiée de g(™) (x)
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6.5 Dérivée et parité

Soit une fonction numérique f d’une variable réelle définie sur un ensemble Dy admettant O
comme centre de symétrie.

1. Démontrer que si f est dérivable sur Dy et que f est paire alors f’ est impaire.

2. Démontrer que si f est dérivable sur Dy et que f est impaire alors f’ est paire.

6.5.1 Corrigé Méthode 1
1. ¢ Sixg € Dyalors —xp € Dy

. floxp) = lim f) = f(=x0) _ . f(¥)+f(xo)

car f est impaire.

X——Xo X — (7.7(0) xX——x9 X — (*XQ)
Par conséquent, en posant X = —xona:
o SEX) = flxo) o f(X) = fxo .
"(—x9) = 1 f(=X) = f(x0) = lim *¥—F—— t .
f'(—xo) aim oS am o car f est paire

Onadonc f'(—xg) = —)g’:mxo Jw = —f'(x0)

* Comme Vxo € Dfona —xg € Dyet f'(—xg) = —f(x0) alors f’ est impaire
2. o Sixy € Df alors —xg € Df
e~ m TE SR ) £ o)

car f est impaire.

x——xg x—(—xp) x—-xg x — (—xp)
Par conséquent, en posant X = —xona:
-X —f(X
f'(—x) = XhmeO um = Xhmeo f(_)gii:o(xo) car f estimpaire .

Onadonc f'(—xg) = Xlgl;o Jw = f'(xp)

* Comme Vxp € Dfona —xg € Dyet f'(—x0) = f'(xo) alors f’ est paire

6.5.2 Corrigé Méthode 2

1. e Sixg € Dyalors —xg € Dy

Soit la fonction g : x — g(x) = f(—x).

— g estla composée de la fonction x — —x et de la fonction f.

— x +— —x est dérivable sur Dy

— Vx€Dyona —x €D

— f est dérivable sur Dy

— Par conséquent, g'(x) = —1(f'(—x))

— Or g(x) = f(x) car f(—x) = f(x) puisque f est paire. Donc ¢'(x) = f'(x)
— Par conséquent, Vx € Dy f'(x) = —f'(—x)

Comme Vxg € Dyona —xg € Dyet f'(—xo) = —f'(xo) alors f’ est impaire
Sixg € Dy alors —xg € Dy

Soit la fonction g : x — g(x) = f(—x).

— g estla composée de la fonction x — —x et de la fonction f.

— x +— —x est dérivable sur Dy

— Vx€Dsona —x €D

— f est dérivable sur Dy

— Par conséquent, ¢'(x) = —1(f'(—x))

N
.
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— Org(x) = —f(x) car f(—x) = —f(x) puisque f est impaire. Donc g’(x) = —f'(x)
— Par conséquent, Vx € Dy f'(x) = f'(—x)
* Comme Vxp € Dfona —xg € Dyet f'(—x0) = f'(xo) alors f’ est paire
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6.6 Dérivée et périodicité

Soit une fonction numérique f d’une variable réelle définie sur un ensemble Dy telle que
T >0 VxeDs x+Te€ Dy

Démontrer que si f est dérivable sur Dy et que f est périodique de période T alors f’ est aussi
périodique de période T..

6.6.1 Corrigé

e Sixg e Dfalorsx0+T € Dy
. £ — i J®) —fo+T) L f(x) = f(x0) sriodi
flxo+T) = xilxl;nJrT Pray P B XHI>1xr51+T ¥ —x—T car f est périodique de

période T.
On effectue le changement de variable suivant X = x — T alorson a:

riode T.

Par conséquent, f'(xo+ T) = Xlim Jw = f("xo)
— X0 — A0

e Comme Vxg € Dyonaxg+ T € Dret f'(xo+T) = f'(xo) alors f’ est périodique de
période T.

car f est périodique de pé-

6.7 Deérivées n—iémes

Calculer les dérivées n—iémes de :
1. x+— ex‘/gsin(x)
2. x +— x cos(x)
2x
1—x2

4. x > x" n(x)

3. x>

6.8 Dérivées de fonctions défies par morceaux

Etudier sur R les fonctions suivantes :
1 sin(x?) six #0
1. f(x) = 22
Osix=20
x+1
2. = A =5
f(x) (x+3x+2) rctan(e™)
.2
six €] —oo;1]
%@ =1
= six €]1;4+00]
X
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6.9 Uniforme continuité

Soit des réels a < b.
1. Soit f une application de classe C! sur [a ; b].
Démontrer que f est uniformément continue sur [a ; b].

2. Soit f une application dérivable sur [a ; b] telle que f(a) = O et JA > 0 Vx €

[a; 0] fi(x) <A f(x).

Démontrer que f est uniformément continue sur [a ; b].
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6.10 Valeurs intermédiaires de la dérivée
6.10.1 Théoréeme de Gaston DARBOUX

Soit des réels a < b.

Soit f une application dérivable sur [a; D] telle f'(a) # f'(b).
Alors f’ prend toute valeur intermédiaire entre f'(a) et f'(b). ’est-a-dire que

VAEf(a);f(B)] Feela; b A= flc)

Ce théoreme formulé en 1875 par Darboux veut dire que :

toute fonction f dérivable sur un intervalle I est telle que f’(I) est un intervalle.

Cela étend le théoréme des valeurs intermédiaires au cas ou f’ existe mais n’est pas conti-
nue.

1. Méthode 1:

(a) oubien f'(a) < f'(b)
Soit A € |f'(a) ; f'(b)]. Posons g(x) = f(x) — A x
* gestdonc dérivable sur [a; D] car f I'est ainsi que x — A x
. (V)x €la; bl ¢(x)=f(x)—Adoncg'(a)=f'(a)—A<0etg'(b)=f'(b)—A >

e Onadoncg'(a) <0< ¢'(b).
* Par conséquent, quand x sera trés proche de a avec a < x on aura g(a) < g(x)
e De méme, quand x sera trés proche de b vec x < b on aura g(x) < g(b)

(b) oubien f'(a) > f'(b)

On se ramene au cas précédent en remplagant f par —f.
2. Méthode 2 : ) @ » )
flx) —f(a) . ) f(b) — f(x) . '
Soient g(x) — g six €la; b] eth(x)={ —p—yx  Si¥E [a; b]
fla)six=a f(b)ysix=b
Démontrer qu'il existe cx €]a ; b[ tel que g(x) = y ou h(x) = y. Conclure.

6.10.2 Valeurs intermédiaires de f’

Soit f dérivable de [a; b] dans R telle que f(a)f(b) < 0.
1. Montrer qu'il existe ¢ €]a ; b tel que f'(c) = 0.

2. En déduire qu'une fonction dérivée possede la propriété des valeurs i,termédiaires.
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6.11 Deug Paris 7 - 1977

Soit f une fonction d'une variable réelle dérivable sur un intervalle [ =|a ; b[ avec a < b telle
que sa dérivée f’ est continue sur I.

Soit xg € I telle que f'(xp) # 0.

Démontrer qu'il existe un intervalle ] =]c; d[C I telle que x( € ] et un intervalle | =]¢’ ; d'
contenant f(xg) tels que f réalise une bijection de J sur J'.

e Comme f'(xg) # 0 et que f’ est continue sur I et que x( € I alors il existe un intervalle
ouvert | de centre xo tel que Vx € | f’(x) # 0.

Sur cet intervalle [ on a f’ qui ne peut changer de signe sinon 3x; € | f'(x1) =0

Par conséquent, f est strictement monotone sur |

De plus f est continue sur | car f est dérivable donc continue sur [ et | C I

Alors f réalise une bijection de ] sur l'intervalle |’ = f < ] >

Comme xy € ] et que f est continue sur | alors f(xo) € J'. ]’ est un intervalle ouvert
|¢"; d'[ car f est strictement monotone sur |

6.12

Soit f dérivable sur [a :; b] telle que f'(a) = f/(b) = 0.
7(0)~ fla)

Démontrer que 3¢ € |a ; D] f'(c) = —

Interprétation géométrique.
6.13

Soit f une application de classe C! sur R telle que f(IR) = [m ; M].
Montrerque 3c € R f(c+1) = f(c) + f'(c)

6.14

Soient f et g des fonctions dérivables deux fois sur [a ; b] avec a < b telles que

f(a) = g(a)

Vxela; bl fr(x) <g"(x)

Démontrer que

vrelai bl g(x) < fx)

6.15

Soit f une fonction dérivable deux fois sur [a ; b] aveca < b.
Démontrer que

Vx €la; b| Jc€la; b  f(x)—f(a) = M(x —a) + wf”(c)
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6.16

On pose f(x) = (cos(2x) — 4cos(x) et g(x) = supf(t) — f(t')/ —x < (t—t < «x
1. Etudier la continuité de g.
2. Etudier la dérivabilité de g.

6.17
Soit f de classe C? de R dans R telle que f, f/, f” soient strictes positives.
1. Démontrer que Vx € R 3!g(x) tel que f(g(x)) = f(x) +1
2. Démontrer que g est de classe C? sur R
3. Etudier les variations de g.
4. Démontrer que le graphe de ¢ ademt une asympyote en +oo.
5. On suppose que f admet une limite finie finie en —oo, que peut-on dire de g en —co?
6.18

Soit f de classe C* de I dans R ot [ est intervalle contenant 0.
On pose

f(x) = (1+ cos(x))!")
1. Déterminer I'ensemble de définition de f.
2. Etudier le comportement de f aux bornes de son ensemble de définition.
3. Etudier les variations de f.

4. Tracer la courbe représentative de f.

6.19

Soit f de classe C*° de I dans R ot [ est intervalle contenant 0.
On pose

f(x) = (14 sin(x)) )
1. Déterminer I'ensemble de définition de f.
2. Etudier le comportement de f aux bornes de son ensemble de définition.
3. Etudier les variations de f.

4. Tracer la courbe représentative de f.
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6.20

Soit f de classe C* de I dans IR ot1 [ est intervalle contenant 0.

On pose
g(x) — f(x);f(O) Six;ﬁo

1. Démontrer que g se prolonge en une fonction de classe C! de I dans R.

2. Démontrer que g se prolonge en une fonction de classe C* de I dans R.
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6.21

Soit f de | — 7r; 7r[ dans R définie par

Vxe{—g;o;a} f(x) == 7

2 . 7T o . _
1. Déterminer f <_E) ; f(O); f (2)
2. Etudier la dérivabiité de f.
3. Démontrer que f est de classe C*° sur son ensemble de définition.

4. Etudier f et tracer sa représentation graphique.
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6.22 Fonction 1—lipschitzienne sur [0 ;1]

Soit f une fonction numérique d’une variable réelle définie sur [0; 1] et vérifiant les propriétés
suivantes :

{ f(0) = f(1)
Vx1 € [[0;1] Vxp € [0;1] ot xq # x2  [f(x1) — f(x2] < |x1 — x3]

Démontrer que Vx; € [0;1] Vxp € [0;1]avec0 <x; <xp <1 ona |f(x1)— f(x2)| <

1
2
6.22.1 Démonstration

Soient x; € [0;1] etxp € [0;1] avec0 < xp < xp < 1.
De deux choses 'une :

1
® oubien | x; —x1 |< =.0r | f(x1) — f(x2 |<| xg —x2 | donc | f(x1) — f(x2 [< E.CQFD.

e oubien | x; —x1 [>

N =N =

. 1
Cela veut dire que xp — x1 < —5ouxz —x > 5

Mais comme x, > x; alors il ne reste qu'un seul cas x, — x1 > 5

D’apres I'inégalité triangulaire, on obtient :

| f(x1) = flxa [<] f(x1) = £O) | ] f(O) = fF(1) | + [ f(1) = f(x2) |
dott | f(x1) = f(x2 |[<|x1 =0 [+ [0+ [1—x |

Donc |f(x1) — f(x2)| <x14+1—x

1 1 1
Orx; —x1 > Edoncxzle—i—id’oﬁ—ng—xl—i.

1
Par conséquent, x1 +1 —xp <x;+1—2x1 — 5

Donc |f(x1) — f(xa] < % CQFD.
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6.23 EMLyon 09 - Ex 1 - Partie 1

Onnote f : R — R définie , pour tout x € R par :

X .
= ex_lszxyéO

1six=0

Rappel : On admet la Formule dite de Taylor-Young :
Si g est de classe C" sur un intervalle de bornes a et a + h et admet une dérivée d’ordre

h h" h
n+1enaalorsg(a+h) = g(a) + 38'(a) +--- + ng (a) + CES) [ (a) + ()] avec
lim e(h) = 0.
h—0

Partie 1

1. (a) Montrer que f est continue sur IR

(b) Justifier que f est de classe C! sur | — co; 0| et sur ]0; +oo] et calculer f’(x) pour tout
X €] — o0;0[ U ]0; +00]

1

lim f/(x) = —=

(c) Montrer que Lim f(x) 5

(d) Etablir que f est de classe C! sur R et préciser f'(0)

2. (a) Etudier les variations de I’application u : R — IR, définie pour tout x € IR par:
u(x) =(1—-x)e* -1
(b) Montrer que
Vx €R, f/(x) <0

(c) Déterminer les limites de f en —co et en +o0.
Dresser le tableau des variations de f.

(d) Montrer que la courbe représentative de f admet une droite asymptote , lorsque la
variable tend vers —oo.

(e) Tracer l’allure de la courbe représentative de f

6.23.1 Corrigé Analyse EMLyon 09

Onnote f : R — R définie , pour tout x € R par:
x .
f) =1 #-1 six#0
1six=0
Partie 1

On peut d’abord remarquer que
Lef-1=0=e"=1<=x=0
2.8 =1>0¢=e" >1+=x<0
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3.6 —-1<0<=e" <l x<0

Donc I’ensemble de définition de f est R car e"%l existe si x # 0 et f(0) existe car f(0) =1

1. (a) 1i. la fonction f est continue sur R* car
¢ la fonction x > x est continue sur R* car elle est continue sur R en tant que
fonction polyndme
e lafonction x — ¥ — 1 est continue sur R* car elle est continue sur R car x > e*
et x — 1 sont continues sur R
¢ ¢* —1ne s’annule jamais sur IR*

ii. la fonction f est continue en 0 car lirr(l)f(x) =1=£(0).
X
eX —1 e* — el
en effet, lim =1 car lim
x50 eX¥ — =0 X x=0 X —

iii. Par conséquent f est continue sur R

(b) la fonction f est de classe C! sur | — 00;0] car
e la fonction x + x est de classe C! sur | — c0;0[ car elle est de classe C! sur R en
tant que fonction polynéme
e la fonction x — e* — 1 est de classe C! sur | — c0;0[ car elle est de classe C! sur R
car x — e* et x — 1 sont de classe C! sur R
e ¢* —1ne s’annule jamais sur | — co; 0]
la fonction f est de classe C! sur ]0; +oo] car
e la fonction x — x est de classe C! sur ]0; +oo car elle est de classe C! sur R en tant
que fonction polyndme
e la fonction x + e* — 1 est de classe C! sur ]0; +oo] car elle est de classe C! sur R
car x — e* et x — 1 sont de classe C! sur R
e ¢* — 1 ne s’annule jamais sur 10; +oo|
Par conséquent, f est de classe C* sur | — co; 0] et sur ]0; +-o0[.
Pour tout x €] —00;0[ U |0; +co[ on a:
(e —1) —xe*  e*—1—xe" u(x)

SO =" —1r = @woip ~wop

. . . . — 0
(c) e Par la méthode directe hrrb f'(x) aboutit aune indétermination du type ”6” car
X

lime* —1—xe* =0etlim(e* —1)> =0
x—0 x—0
* On va lever cette indétermination en considérant d’apres Taylor-Young, un déve-

loppement limité d’ordre 2 de exp au voisinage de 0 car exp est de classe C! au
voisinage de 0 et exp(?) existe au voisinage de 0 puisque exp est de classe C** sur

R: 2 2
au voisinagede 0, e =14 x + = + —-¢(x) avec lime(x) =0
2 2 x—0
* Alors au voisinage de 0 on a donc :
x> X2 x> X2
/ of 1 — xo¥ 1+x+2+28(x)—1—x<1+x+2—i—zs(x))
f(x): x_1\2 5
(er—1) 2 52
1 T e(x)—1
< +x+ > + 2£(x) >
2 2 3 3
LR YR S S
:x+ + —e(x) —x—x 7 2e(x)
2




N\g

|
N %,

+
+ |/
= N‘HN

|
N R,
~——

™M

Puy

=

S~—

2 42
x—l—? 2s(x)>
-1 «x 1 «x -1 «x 1 x
v 73t ) >3+ (33) ()
x2 [1 + g + ;a»:(x)}2 {1 + g + gs(x)r d(x)
. -1 N
Or chli}rbn(x) = et}l{gr(ljd(x) = 1donc 31(13(1)]‘ (x) = ~3

(d) i Comme f estde classe C! sur R*

ii. Comme lim f'(x) = 1
x>0 2

iii. Alors d’apres le théoréme de prolongement de la classe C! on a:
A. f estdérivableen 0

1
!
B. f(0) = —
C. f estde classe C! sur R
2. (a) soitu(x) = (1 —x)e* —1alors
e D,=R
* u est dérivable sur R car
— u estla différence de x — (1 — x)e* etde x — 1
— x +— (1 —x)e* est dérivable sur R car x — 1 — x et x — e* sont toutes deux
dérivables sur R
— x +— 1 est dérivable sur R
e Vx € Ronau(x) = 1e* + (1 — x)e* = —xe* du signe de —x car Vx € Ron a
e* > 0. par conséquent,
— sur | —oo;0[onau'(x) > 0donc u y est strictement croissante
—en0u'(x)=0
— sur |0; +oo[ on a u’(x) < 0 donc u y est strictement décroissante
— Comme u(0) =0
— On en déduit le tableau de variations suivant :

x —00 0 +o00
u'(x) + (0| —
u(x) ZALIRN
(b) On a donc
* u(x)=0<x=0
e Vx #0u(x)>0
e Comme (¢¥ —1)2 >0
e Ornous savons que Vx # Oona f/(x) = m alors

— Vx #0f'(x) <0
—Orfi(0) =5 <0
— doncVx e R f/(x) <0
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. o . _ . x 1 _ . . x _ ot
(c) o xl:)rzloof(x) = +oocar lim x = —ocet lim e —1 1 puisque x.lirgwe 0

X+—>—00 X+——00
; — 0t
. xll)wa(x) =07 car
x 1
— W=
e
X Lo I *
= Jlim, g =0 puisque lim - = oo
. 1 . . "
— XEH}OO 1-— i 1 puisque xgrfoo i 0

On peut donc dresser le tableau des variations de f.

x —00 0 +oc0
, 1
f'(x) | 2|~
+oo
f(x) Nl
N| O

(d) o Comme gT f(x) = 07 alors la courbe représentative de f admet I’axe des abs-
X <)

cisses comme asymptote au voisinage de +co
e Comme lim f(x) = 400 nous allons étudier cette branche infinie :
Xr—r—00

1
lim M = lim —— =-1
X—=—0co X x——o0 ¥ — 1
. . X+ xe¥ —x xe
— Alors lim f(x) = (-2) = lim og ta= Mmooy = im g
car lim xe* =0et lim e*—1= —1car lim ¢ =0
X+—>—00 X+—>—00 X+——00

— Par conséquent, la courbe représentative de f admet la droite D : y = x comme
asymptote au voisinage de —oo.

(e) Voici l'allure de la courbe représentative de f :
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