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1 Développement limité d’ordre 1

1.1 Activité

Soit f définie sur R − {−1} par f (x) =
1

1 + x
.

Alors f (0) = 1.

On aimerait avoir une valeur approchée de f (0, 03) =
1

1, 03
.

Pour tout x ̸= −1, on sait que 1 + x3 = (1 + x)(1 − x + x2)

Donc
1

1 + x
+

x3

1 + x
=

1 + x3

1 + x
=

(1 + x)(1 − x + x2)

1 + x
= x2 − x + 1

D’où
1

1 + x
= 1 − x + x2 − x3

1 + x
= 1 − x + x2 + x2[− x

1 + x
]

On a donc f (x) = 1 − x + x2 + x2ε(x) avec lim
x 7→0

ε(x) = lim
x 7→0

−x
1 + x

= 0

• On dit alors que f (x) admet un développement limité à l’ordre 2 en 0.
• Le polynôme du second degré 1 − x + x2 s’appelle la partie régulière du développe-

ment limité et x2ε(x) s’appelle la partie complémentaire de ce développement limité.

x2ε(x) = o(x2) d’où
1

1, 03
≈ (0, 03)2 − 0, 03 + 1 ≈ 0, 9709.

1
1 + x

= 1 − x + x2 − x3

1 + x
= 1 − x + x(x − x2

1 + x
) = 1 − x + xε(x) où ε(x) = x − x2

1 + x
avec

lim
x 7→0

ε(x) = lim
x 7→0

x − x2

1 + x
= 0 donc xε(x) = xo(1) = o(x).

• On dit alors que f (x) admet un développement limité à l’ordre 1 en 0.
• Le polynôme du premier degré 1 − x s’appelle la partie régulière du développement

limité et xε(x) s’appelle la partie complémentaire de ce développement limité.
1

1, 03
≈ 1 − 0, 03 ≈ 0, 97
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1.2 Définition

Soit une fonction f définie sur un intervalle I de centre x0 sauf peut être en x0.
On dit que f admet en x0 un développement limité à l’ordre n (où ∈ N∗) en x0 lorsqu’il existe
une fonction ε définie sur I telle que :

∀x ∈ I − {x0}, f (x) = a0 + a1(x − x0) + a2(x − x0)
2 + · · ·+ an(x − x0)

n + (x − x0)
nε(x)

où a0, a1, . . . ., an sont des coefficients réels avec an ̸= 0 et lim
x 7→x0

ε(x) = 0 .

On peut écrire (x − x0)
nε(x) = (x − x0)

no(1) = o(x − x0)
n.

1. Le polynôme a0 + a1(x − x0) + a2(x − x0)
2 + · · ·+ an(x − x0)

n s’appelle la partie régu-
lière du développement limité

2. (x − x0)
nε(x) s’appelle le reste ou la partie complémentaire.

Quand x tend vers x0 alors

f (x) ≈ a0 + a1(x − x0) + a2(x − x0)
2 + · · ·+ an(x − x0)

n

.

2 Dérivation

2.1 Définition

On dit que f est dérivable en x0 lorsque

1. f est définie sur un intervalle centré de centre x0

2. lim
x 7→x0

f (x)− f (x0)

x − x0
= L où L est un nombre réel fini.

Ce nombre L se note f ′(x0) et s’appelle le nombre dérivé de f en x0.

2.2 Remarques

1. Si f n’est pas définie en x0 alors f n’est pas dérivable en x0

2. Si lim
x 7→x0

f (x)− f (x0)

x − x0
est infinie ou n’existe pas alors f n’est pas dérivable en x0
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2.3 Propriétés

2.3.1 Lien entre dérivabilité et développement limité d’ordre 1

f dérivable en x0 ⇐⇒ f est définie en x0 et f admet un développement limité d’ordre 1 au
voisinage de x0.
Dans ce développement limité : a0 = f (x0) et a1 = f ′(x0).

Démonstration :
=⇒ :
Si f est dérivable en x0 et de nombre dérivé L = f ′(x0)alors :

• f est continue en x0
• De plus, soit la fonction ϕ définie sur un intervalle ouvert épointé de centre x0 par :

ϕ(x) =
f (x)− f (x0)

x − x0
− L. Alors

f (x)− f (x0)

x − x0
= ϕ(x) + L donc

f (x)− f (x0) = (x − x0)ϕ(x) + L(x − x0) donc
f (x) = f (x0) + L(x − x0) + (x − x0)ϕ(x). avec lim

x 7→x0
ϕ(x) = 0

Car lim
x 7→x0

f (x)− f (x0)

x − x0
= L puisque f est dérivable en x0

Par conséquent, f admet un développement limité d’ordre 1 au voisinage de x0 avec
a0 = f (x0) et a1 = f ′(x0).

⇐= :
Soit f tel que f (x0) existe et f admet au voisinage de x0 un développement limité d’ordre 1 :
f (x) = a0 + a1(x − x0) + (x − x0)ε(x) avec lim

x 7→x0
ε(x) = 0

Alors
f (x)− f (x0)

x − x0
=

a0 + a1(x − x0) + (x − x0)ε(x)− f (x0)

x − x0
= Q(x)

Or lim
x 7→x0

f (x) = a0. Or f est définie en x0 donc a0 = f (x0).

Q(x) =
a0 + a1(x − x0) + (x − x0)ε(x)− a0

x − x0
=

a1(x − x0) + (x − x0)ε(x)
x − x0

Donc Q(x) = a1 + ε(x).
Par conséquent, comme lim

x 7→x0
ε(x) = 0 alors lim

x 7→x0
Q(x) = a1.

Donc f est dérivable en x0 et f ′(x0) = a1.

2.3.2 Corollaire

Si f est dérivable en x0 alors au voisinage de x0
f (x) = f (x0) + f ′(x0)(x − x0) + (x − x0)ε(x) avec lim

x 7→x0
ε(x) = 0

d’où f (x) ≈ f (x0) + f ′(x0)(x − x0) .
On approche f par une fonction affine x 7→ f (x0) + f ′(x0)(x − x0) au voisinage de x0.
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2.3.3 Interprétation graphique du nombre dérivé

Du Corollaire précédent, on tire une conséquence graphique :
Si f est dérivable en x0 alors la courbe représentative de f admet au point M(x0, f (x0)) une
tangente (T) : y = f ′(x0)(x − x0) + f (x0)

La pente ou le coefficient directeur de la droite (M0M) est :
∆y
∆x

=
yM − yM0

x − x0
= tan(α).

Comme f est dérivable en x0 alors le quotient
∆y
∆x

=
yM − yM0

x − x0
=

f (x)− f (x0)

x − x0
tend vers f ′(x0)

quand x tend vers x0.
Alors la droite (M0M) tend vers une position limite qui est la droite (T) tangente à la courbe
représentative de f en M0. Cette droite (T) a donc pour équation y = f ′(x0)(x − x0) + f (x0).

2.3.4 Corollaire : lien entre dérivabilité et continuité

Si f est dérivable en x0 alors f est continue en x0.

démonstration :
Comme f est dérivable en x0 alors f est définie au voisinage de x0 et f (x) = f (x0) + f ′(x0)(x −
x0) + (x − x0)ε(x) avec lim

x 7→x0
ε(x) = 0

donc lim
x 7→x0

f (x) = f (x0) donc f est continue en x0.

2.3.5 Attention !

La réciproque est fausse : par exemple la fonction valeur absolue abs est continue en 0 mais
n’est pas dérivable en 0.
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En effet, lim
x 7→0+

| x | − | 0 |
x − 0

= lim
x 7→0+

x
x
= 1 est différente de

lim
x 7→0−

| x | − | 0 |
x − 0

= lim
x 7→0−

−x
x

= −1

2.4 Dérivabilité à droite et dérivabilité à gauche en un point

On dit que f est dérivable à droite en x0 lorsque

1. f est définie sur un intervalle de la forme [x0; x0 + h[

2. lim
x 7→x+0

f (x)− f (x0)

x − x0
= L

Ce nombre L se note f ′d(x0) et s’appelle le nombre dérivé de f à droite en x0.
On dit que f est dérivable à gauche en x0 lorsque

1. f est définie sur un intervalle de la forme ]x0 − h; x0]

2. lim
x 7→x−0

f (x)− f (x0)

x − x0
= L

Ce nombre L se note f ′g(x0) et s’appelle le nombre dérivé de f à gauche en x0

2.4.1 Exemple

La fonction valeur absolue abs est dérivable à droite en 0.

En effet, lim
x 7→0+

| x | − | 0 |
x − 0

= lim
x 7→0+

x
x
= 1

Son nombre dérivé à droite en 0 est f ′d(0) = 1 La fonction valeur absolue abs est dérivable à
gauche en 0.

En effet, lim
x 7→0−

| x | − | 0 |
x − 0

= lim
x 7→0−

−x
x

= −1

Son nombre dérivé à gauche en 0 est f ′g(0) = −1.
Mais comme f ′d(0) ̸= f ′g(0) alors la fonction valeur absolue n’est pas dérivable en 0. Sa courbe
n’admet pas de tangentes en 0 mais un point anguleux avec deux demi-tangentes de pentes
différentes.
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2.4.2 Théorème

f est dérivable en x0 de nombre dérivé f ′(x0) = L ⇐⇒ f est dérivable à gauche en x0 et
dérivable à droite en x0 et f ′d(x0) = f ′g(x0) = L

2.4.3 Points anguleux

Si f est dérivable à droite en x0 avec comme nombre dérivé à droite f ′d(x0) alors la courbe
représentative de f admet au point M(x0, f (x0)) une demi- tangente à droite définie par le
système suivant formé d’une équation et d’une inéquation{

y = f ′(x0)(x − x0) + f (x0)
x ≥ x0

Si f est dérivable à gauche en x0 avec comme nombre dérivé à gauche f ′g(x0) alors la courbe
représentative de f admet au point M(x0, f (x0)) une demi- tangente à gauche définie par le

système suivant formé d’une équation et d’une inéquation
{

y = f ′(x0)(x − x0) + f (x0)
x ≤ x0

Si

f ′g(x0) ̸= f ′d(x0) alors on dit que M0(x0; f (x0)) est un point anguleux.

2.4.4 Demi-tangentes de pente infinie

Si lim
x 7→x+0

f (x)− f (x0)

x − x0
= ∞ alors f n’est pas dérivable à droite en x0 mais C f admet tout de

même une demi-tangente à droite en M0(x0; f (x0)) parallèle à l’axe des ordonnées.

Si lim
x 7→x−0

f (x)− f (x0)

x − x0
= ∞ alors f n’est pas dérivable à gauche en x0 mais C f admet tout de

même une demi-tangente à gauche en M0(x0; f (x0)) parallèle à l’axe des ordonnées.
Exemple :

lim
x 7→0+

√
x −

√
0

x − 0
= lim

x 7→0+

√
x

x
= lim

x 7→0+

1√
x
= +∞
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2.5 Approximations des carrés, cubes, inverses et racines carrées par des
fonctions affines

2.5.1 Approximation de x2 au voisinage de 1

Soit la fonction f définie sur R par f (x) = x2. On désirerait étudier des valeurs de f (x) au
voisinage de 1, pour cela on pose x = 1 + h où h est très petit.

1. Calculer alors x2

2. A l’aide d’une calculatrice, on obtient le tableau suivant :

x 1 + 10−2 1 + 10−3 1 + 10−4 1 + 10−5

x2 = (1 + h)2 1, 0201 1, 002001 1, 00020001 1, 0000200001
1 + 2h 1, 02 1, 002 1, 0002 1, 00002

x 1 − 10−2 1 − 10−3 1 − 10−4 1 − 10−5

x2 = (1 + h)2 0, 9801 0, 998001 0, 99980001 0, 9999800001
1 + 2h 0, 98 0, 998 0, 9998 0, 99998

On constate que lorsque | h | est assez petit alors (1 + h)2 ≈ 1 + 2h

3. L’erreur commise est e(h) = (1 + h)2 − (1 + 2h) = h2

4. Pour x0 ∈ R l’on a (x0 + h)2 = x2
0 + 2x0h + h2.

Alors lorsque | h | est assez petit alors (x0 + h)2 ≈ x2
0 + 2x0h

5. On a
f (x0 + h)− f (x0)

h
=

(x0 + h)2 − x2
0

h
=

2x0h + h2

h
= 2x0 + h

donc lim
h 7→0

f (x0 + h)− f (x0)

h
= lim

h 7→0
2x0 + h = 2x0 = f ′(x0)

2.5.2 Approximation de x3 au voisinage de 1

1. (1 + h)3 = 1 + 3h + 3h2 + h3 .

2. Alors si l’on approxime (1 + h)3 par 1 + 3h alors l’erreur commise est e(h) = (1 + h)3 −
1 + 3h) = 3h2 + h3 = h2(3 + h)

3. Par conséquent, si | h |< 1 alors h2 < 1 et | 3 + h |<| 3 | + | h |= 3+ | h |< 3 + 1 = 4
donc | e(h) |=| h2(3 + h) |=| h2 || 3 + h |< 4h2

2.5.3 Approximation de
1
x

au voisinage de 1

A l’aide d’une calculatrice, on obtient le tableau suivant :

h 10−4 10−5 −10−4 −10−5

−h −10−4 −10−5 10−4 10−5

1 − h 0, 9999 0, 99999 1, 0001 1, 00001
x = 1 + h 1, 0001 1, 00001 0, 9999 0, 99999

1
x
=

1
1 + h

0, 999900009999 0, 9999900001 1, 00010001 1, 0000100001
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1. On peut donc approximer
1

1 + h
par 1 − h avec une erreur

e(h) =
1

1 + h
− (1 − h) =

1 − (1 − h)(1 + h)
1 + h

=
h2

1 + h

2. Supposons que | h |< 1
2

alors −1
2
< h <

1
2

donc 1 − 1
2
< 1 + h < 1 +

1
2

donc
1
2
< 1 + h d’où 2 >

1
1 + h

. Par conséquent e(h) =
h2

1 + h
< 2h2

3. On a
f (x0 + h)− f (x0)

h
=

1
x0 + h

− 1
x0

h
=

x0 − x0 − h
x0(x0 + h)

h
=

−h
hx0(x0 + h)

=
−1

x0(x0 + h)

Donc lim
h 7→0

f (x0 + h)− f (x0)

h
= lim

h 7→0

−1
x0(x0 + h)

=
−1
x2

0
= f ′(x0)

2.5.4 Approximation de
√

x au voisinage de 1

1. Soit x0 > 0.

On a
f (x0 + h)− f (x0)

h
=

√
x0 + h −√

x0

h
=

(
√

x0 + h −√
x0)(

√
x0 + h +

√
x0)

h(
√

x0 + h +
√

x0)
=

x0 + h − x0

h(
√

x0 + h +
√

x0)
=

h
h(
√

x0 + h +
√

x0)
=

1√
x0 + h +

√
x0

Alors lim
h 7→0

f (x0 + h)− f (x0)

h
= lim

h 7→0

1√
x0 + h +

√
x0

=
1

2
√

x0

2. On va approximer f (x0 + h) par f (x0) +
1

2
√

x0
h donc pour x0 = 1 on a :

f (1 + h) ≈ f (1) +
1

2
√

1
h donc

√
1 + h ≈ 1 +

h
2

.

3. Alors l’erreur commise est

e(h) =
√

1 + h − (1 +
h
2
) =

1 + h − (1 +
h
2
)2

√
1 + h + (1 +

h
2
)
=

−h2

4(
√

1 + h + 1 +
h
2
)

.

Soit | h |< 1 alors −1 < h < 1 donc −1 < h d’où 0 < 1+ h. On en déduit que 0 <
√

1 + h

donc 1 +
h
2
< 1 +

h
2
+
√

1 + h.

De même, comme −1 < h on a −1
2
<

h
2

donc 1 − 1
2
< 1 +

h
2

d’où
1
2
< 1 +

h
2

.

Par conséquent,
1
2
< 1 +

h
2
+
√

1 + h d’où 4(
√

1 + h + 1 +
h
2
) > 2.

On en déduit que | e(h) |< h2

2
.

En résumé :

Pour le réel est approché par avec une erreur inférieure à
h ∈ R (1 + h)2 1 + 2h h2

| h |< 1 (1 + h)3 1 + 3h 4h2

| h |< 1
2

1
1 + h

1 + h 2h2

| h |< 1
√

1 + h 1 +
h
2

h2

2
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Comment et pourquoi se ramener au voisinage de 1 et ne pas rester au voisinage de
x0 ?
Exemple : Déterminer une valeur approchée de

√
90002

(a) On pourrait procéder ainsi :
√

x0 + h ≈ √
x0 +

1
2
√

x0
h d’où

√
90002 ≈

√
90000 +

1
2
√

90000
2.

Par conséquent,
√

90002 ≈ 300 +
1

300
≈ 300, 00333 mais nous ne maîtrisons pas

l’erreur.

(b) Par contre pour x0 > 0 si l’on décompose
√

x0 + h =

√
x0(1 +

h
x0

) =
√

x0

√
(1 +

h
x0

)

on peut alors se ramener au voisinage de 1.

D’où
√

90002 =
√

90000 + 2 =

√
90000(1 +

2
90000

) =
√

90000

√
(1 +

2
90000

)

Alors comme
√

1 + h ≈ 1 +
h
2

alors√
(1 +

2
90000

) ≈ 1 +
2

2(90000)
= 1 +

1
90000

.

Donc
√

90002 ≈ 300(1 +
1

90000
) = 300 +

1
300

≈ 300, 00333.
Mais ici nous pouvons maîtriser l’erreur qui est inférieure à :

300
h2

2
= 300

2
(90000)2 ≈ 3, 70 × 10−8 < 10 × 10−8 = 10−7
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3 Fonction dérivée

3.1 Définition de la dérivabilité sur un intervalle

1. Si I est un intervalle ouvert de la forme ]a; b[ ou ]a;+∞[
ou ]− ∞;+∞[ ou ]− ∞; b[,
on dit que f est dérivable sur I lorsque f est dérivable en tout x0 de I.
On peut alors construire la fonction suivante

f ′ : I → R

x → f ′(x)

f ′(x) = le nombre dérivé de f en x se note aussi
d f
dx

ou
δ f
δx

.

Cette fonction f ′ s’appelle la fonction dérivée de f sur I.

2. Si I est un intervalle de la forme [a; b[ (resp [a;+∞[ )
on dit que f est dérivable sur I lorsque f est dérivable sur l’intervalle ouvert ]a; b[ (resp
]a;+∞[ ) et f est dérivable à droite en a

3. Si I est un intervalle de la forme ]a; b](resp ]− ∞; b] )
on dit que f est dérivable sur I lorsque f est dérivable sur l’intervalle ouvert ]a; b[ (resp
]− ∞; b[ ) et f est dérivable à gauche en b

4. Si I est un intervalle de la forme [a; b]
on dit que f est dérivable sur I lorsque f est dérivable sur l’intervalle ouvert ]a; b[ et f
est dérivable à droite en a et f est dérivable à gauche en b

3.2 Propriétés des fonction dérivables sur un intervalle ouvert

Soient u et v des fonctions dérivables sur un intervalle ouvert I alors :

1. u + v est dérivable sur I
et l’on a ∀x ∈ I (u + v)′(x) = u′(x) + v′(x)

2. Pour tout réel λ, λu est dérivable sur I
et l’on a ∀x ∈ I (λu)′(x) = λu′(x)

3. uv est dérivable sur I
et l’on a ∀x ∈ I (uv)′(x) = u′(x)v(x) + u(x)v′(x)

4.
1
v

est dérivable sur I à condition que v ne s’annule jamais sur I

et l’on a ∀x ∈ I
(

1
v

)′
(x) = − v′(x)

v2(x)

5.
u
v

est dérivable sur I à condition que v ne s’annule jamais sur I

et l’on a ∀x ∈ I
(u

v

)′
(x) =

u′(x)v(x)− u(x)v′(x)
v2(x)

10



3.3 Composition

• Si u est une fonction dérivable sur un intervalle ouvert I
• Si v est une fonction dérivable sur un intervalle J
• Si u < I >⊂ J

Alors v o u est dérivable sur I et l’on a : ∀x ∈ I (v o u)′(x) = u′(x)v′(u(x))

3.3.1 Démonstration :

Soit x0 = a ∈ I tel que x = a + h ∈ I où x − x0 = h.
comme u est dérivable sur I donc en a alors u admet un développement limité d’ordre 1 en a :
u(a + h) = u(a) + hu′(a) + hε1(h) avec lim

h 7→0
ε1(h) = 0

Soit b = u(a). Soit k tel que b + k ∈ u < I >. Comme u < I >⊂ J et que v est dérivable sur J
donc
v(b + k) = v(b) + v′(b)k + kε2((k) avec lim

k 7→0
ε2(k) = 0

Or quand h tend vers 0, u(a + h) tend vers u(a) car u est continue en a puisque u est dérivable
en a donc u(a + h)− u(a) tend vers 0.
Posons k = u(a + h)− u(a).
On peut prendre h assez petit pour que b + k ∈ u < I >.
Alors v(u(a) + u(a + h)− u(a)) est de la forme v(b + k) avec b = u(a) et k = u(a + h)− u(a).
Donc

v(u(a)+u(a+ h)−u(a)) = v(u(a))+ v′(u(a))(u(a+ h)−u(a))+u(a+ h)−u(a)ε2(u(a+ h)−u(a))

D’où

v(u(a + h)) = v(u(a)) + v′(u(a))(u′(a)h + hε1(h)) + (u′(a)h + hε1(h))ε2(u′(a)h + hε1(h))

= v(u(a)) + v′(u(a))(u′(a)h + h(v′(u(a))ε1(h) + (u′(a) + ε1(h))ε2(u′(a)h + hε1(h)))

Notons ε3(h) = v′(u(a))ε1(h) + (u′(a) + ε1(h))ε2(u′(a)h + he1(h)).
Quand h tend vers 0 alors ε1(h) tend vers 0 donc v′(u(a))ε1(h) tend vers 0 et u′(a)h + hε1(h)
tend vers 0.
Or quand y tend vers 0 alors ε2(y) tend vers 0 donc lim

h 7→0
ε3(h) = 0.

Donc v(u(a + h)) = v(u(a)) + v′(u(a))(u′(a)h + hε3(h) avec lim
h 7→0

ε3(h) = 0

Donc v o u est dérivable en a et (v o u)′(a) = v′(u(a))u′(a)
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3.4 Fonction réciproque

1. Si f est continue sur I et si f est strictement monotone sur I
alors f réalise une bijection de I sur f < I >
c’est-à-dire tout λ de f < I > admet un antécédent unique c dans I pour f
c’est-à-dire ∀λ ∈ f < I > ∃!c ∈ I f (c) = λ
c’est-à-dire que ∀λ ∈ f < I > l’équation λ = f (x) d’inconnue x a une solution unique
c dans I

2. De plus, La bijection réciproque f−1 existe, est continue sur f < I >, a le même sens
de variation sur f < I > que le sens de variation de f sur I.

f−1 : f < I >−→ I

y 7→ f−1(y) = l’antécédent de y par f dans I

3. Dans un repère orthonormé la courbe représentative de la bijection réciproque est
l’image de la courbe représentative de f par la symétrie orthogonale d’axe D : y = x.

4. Si de plus, f est dérivable sur I et f ′ ne s’annule jamais sur I
alors f−1 l’est aussi sur f < I >

et l’on a ∀y ∈ f < I > ( f−1)′(y) =
1

f ′( f−1(y))

5. Posons y0 = f (x0).
Lorsque f ′(x0) ̸= 0 la courbe de f admet en M0(x0, y0) une tangente (T) de pente
f ′(x0) alors f−1 est dérivable en y0 et la courbe de f−1 admet en M′

0(y0, x0) une tan-
gente (T′) symétrique de (T) par rapport à la droite d’équation y = x.
Lorsque f ′(x0) = 0 la tangente en M0(x0, y0) est horizontale alors f−1 n’est pas dé-
rivable en y0 mais la courbe de f−1 admet quad même en M′

0(y0, x0) une tangente
verticale symétrique de (T) par rapport à la droite d’équation y = x

3.4.1 Démonstration :

Soient y et y0 des éléments de f < I > avec y ̸= y0.
Comme f est bijective alors il existe x et x0 dans I tels que y = f (x) et y0 = f (x0).

f−1(y)− f−1(y0)

y − y0
=

x − x0

f (x)− f (x0)
=

1
f (x)− f (x0)

x − x0

Quand y tend vers y0 alors comme f−1 est continue alors f−1(y) tend vers f−1(y0).
Or x = f−1(y) et x0 = f−1(y0) donc x tend vers x0.

Donc lim
y 7→y0

f−1(y)− f−1(y0)

y − y0
= lim

x 7→x0

1
f (x)− f (x0)

x − x0

=
1

f ′(x0)
=

1
f ′( f−1(y0))
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3.4.2 Exemple 1

ln est dérivable sur ]0;+∞[ et sa fonction dérivée x 7→ 1
x

ne s’annule jamais sur ]0;+∞[ donc

exp = (ln)−1 est dérivable sur R et ∀y ∈ R (exp)′(y) = (ln−1)′(y) =
1

(ln)′(exp(y))
=

1
(ln)′(ey)

=
1
1
ey

= ey

3.4.3 Exemple 2

exp est dérivable sur R et sa fonction dérivée x 7→ exp(x) ne s’annule jamais sur R donc ln =

(exp)−1 est dérivable sur ]0;+∞[ et ∀y ∈]0;+∞[ (ln)′(y) = (exp−1)′(y) =
1

(exp)′(exp−1(y))
=

1
exp(ln(y))

=
1
y
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3.5 Tableau des formules usuelles de dérivation

D f f (x) D f ′ f ′(x)
R C R 0
R xα (α ∈ R) R α xα−1

R∗ 1
x

R∗ − 1
x2

R+
√

x R+∗ 1
2
√

x

R+∗ ln(x) R+∗ 1
x

R ex R ex

R sin(x) R cos(x)
R cos(x) R −sin(x)

R cos(ax + b)avec a ̸= 0 R
1
a

sin(ax + b) + C

R sin(ax + b)avec a ̸= 0 R −1
a

cos(ax + b) + C

R sauf les
π

2
+ kπ où k entier relatif R

1
cos2(x)

= 1 + tan2(x) tan(x) + C

R sauf les kπ où k entier relatif R
−1

sin2(x)
= 1 + cotan2(x) −cotan(x) + C

R ch(x) =
ex + e−x

2
R sh(x) =

ex − e−x

2

R sh(x) =
ex − e−x

2
R ch(x) =

ex + e−x

2

]− 1; 1[ Arcsin(x) ]− 1; 1[
1√

1 − x2

]− 1; 1[ Arccos(x) ]− 1; 1[
−1√

1 − x2

R Arctan(x) R
1

1 + x2

R Argsh(x) = ln(x +
√

x2 + 1) R
1√

x2 + 1

]1;+∞[ Argch(x) = ln(x +
√

x2 − 1) ]1;+∞[
1√

x2 − 1

]− 1; 1[ Argth(x) =
1
2

ln
(

1 + x
1 − x

)
]− 1; 1[

1
1 − x2
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f (x) f ′(x)
Du λu(x) Du′ λu′(x)

Du ∩ Dv u(x) + v(x) Du′ ∩ Dv′ u′(x) + v′(x)
Du ∩ Dv u(x)v(x) Du′ ∩ Dv′ u′(x)v(x) + u(x)v′(x)

Dv − {x/v(x) = 0} 1
v(x)

Dv′ − {x/v(x) = 0} − v′(x)
v2(x)

Du ∩ Dv − {x/v(x) = 0} u(x)
v(x)

Du′ ∩ Dv′ − {x/v(x) = 0} u′(x)v(x)− u(x)v′(x)
v2(x)

{x/x ∈ Du et u(x) ∈ Dv} v(u(x)) {x/x ∈ Du′ et u(x) ∈ Dv′} u′(x)v′(u(x))

{x/u(x) ≥ 0}
√

u(x) Du′ ∩ {x/u(x) > 0} u′(x)
2
√

u(x)

{x/u(x) > 0} ln(u(x)) D′
u ∩ Dv′

u′(x)
u(x)

Du eu(x) Du′ u′(x)eu(x)
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3.6 Dérivées successives- Fonctions de classe Cp et de classe C∞

3.6.1 Définition

Soit f une fonction dérivable sur un intervalle ouvert non vide I.
Soit f ′ la fonction dérivée de f sur I.
Si f ′ est dérivable sur I alors sa fonction dérivée s’appelle la dérivée seconde de f et se note
f ” ou f (2). On dit alors que f est 2 fois dérivable sur I.
Si f est n−fois dérivable sur I alors la dérivée d’ordre n se note f (n).
On dit que f est de classe C0 lorsque f est continue sur I. On dit que f est de classe C1 lorsque
f est dérivable sur I et que f ′ est continue sur I.
On dit que f est de classe C2 lorsque f est dérivable 2 fois sur I et que f (2) est continue sur I.
On dit que f est de classe Cn lorsque f est dérivable n fois sur I et que f (n) est continue sur I.
On dit que f est de classe C∞ sur I lorsque f est de classe Cn sur I pour tout n ∈ N c’est-à-dire
lorsque f est indéfiniment dérivable sur I.

3.6.2 Exemples

1. Une fonction polynôme est de classe C∞ sur R

2. Une fonction rationnelle est de classe C∞ sur son ensemble de définition

3. La fonction exponentielle exp est de classe C∞ sur R

4. La fonction logarithme népérien ln est de classe C∞ sur R+∗

3.6.3 Polynômes dérivés successifs

La fonction polynôme de degré n,

P : x 7→
n

∑
i=0

aixi est indéfiniment dérivable sur R.

Pour tout réel x, pour tout entier naturel k non nul , on note P(k)(x) le nombre dérivé -kieme en
x.
Par convention, P(0)(x) est P(x)

1. ∀k ∈ [|1; n|] l’on a : P(k)(x) =
n

∑
i=k

i(i − 1)(i − 2) · · · (i − k + 1)aixi−k

2. On en déduit que ∀k ≥ n + 1 l’on a : P(k)(x) = 0

3. et que ∀k ∈ [|0; n|] l’on a : P(k)(0) = k! ak

4. d’où ∀x ∈ R P(x) =
n

∑
k=0

P(k)(0)
k!

xk

5. d’où ∀x ∈ R ∀α ∈ R P(x) =
n

∑
k=0

P(k)(α)

k!
(x − α)k

C’est la Formule de Taylor-Mac Laurin pour les polynômes
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3.7 démonstration

1. démonstration par récurrence :

Notons pr(k) : P(k)(x) =
n

∑
i=k

i(i − 1)(i − 2) · · · (i − k + 1)aixi−k

(a) La propriété est vraie pour k = 1 car P(1)(x) = (P(x))′ = (
n

∑
i=0

aixi)′ =
n

∑
i=k

iaixi−1

(b) Soit un entier naturel k ≥ 1 supposons que P(k)(x) =
n

∑
i=k

i(i − 1)(i − 2) · · · (i − k + 1)aixi−k

alors P(k+1)(x) = (P(k))′

= (
n

∑
i=k

i(i − 1)(i − 2) · · · (i − k + 1)aixi−k)′ =
n

∑
i=k+1

i(i − 1)(i − 2) · · · (i − k + 1)(i − k)aixi−k−1

(c) La propriété pr étant initialisée à 1 et étant héréditaire est donc vraie pour tout entier
naturel k ≥ 1

2. démonstration par récurrence initialisée à partir du rang n + 1 évidente

3. évident

4. évident

5. il suffit d’appliquer la propriété précédente à Q(x) = P(x + α)
car Q(x) = P(x + α), Q′(x) = P′(x + α) , Q′′(x) = P′′(x + α), · · ·

d’où Q(0) = P(α), Q′(0) = P′(α) , Q′′(0) = P′′(α), · · · Or Q(x) =
n

∑
k=0

Q(k)(0)
k!

xk

donc P(x + α) =
n

∑
k=0

P(k)(α)

k!
xk d’où P(x) =

n

∑
k=0

P(k)(α)

k!
(x − α)k
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3.7.1 Formule de Leibniz

Soient des fonctions f et g dérivables indéfiniment sur R. Alors leur produit f g est aussi
indéfiniment dérivable sur R et

∀n ∈ N∗ ( f g)(n) =
n

∑
i=0

(
n
i

)
f (i) g(n−i)

Démonstration :

Notons pr(n) : ( f g)(n) =
n

∑
i=0

(
n
i

)
f (i) g(n−i).

1. Initialisation : elle est vraie en n = 1 car :

( f g)′ = f g′ + f ′g =

(
1
0

)
f (0) g(1−0) +

(
1
1

)
f (1) g(1−1) =

1

∑
i=0

(
1
i

)
f (i) g(1−i)

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k ≥ 1 c’est-à-dire que :

( f g)(k) =
k

∑
i=0

(
k
i

)
f (i) g(k−i).

Alors ( f g)(k+1) = [( f g)(k)]′ = [
k

∑
i=0

(
k
i

)
f (i) g(k−i)]′ =

k

∑
i=0

[

(
k
i

)
f (i) g(k−i)]′.

=
k

∑
i=0

(
k
i

)
[ f (i) g(k−i)]′ =

k

∑
i=0

[

(
k
i

)
[ f (i+1) g(k−i) + f (i) g(k−i+1)]

=
k

∑
i=0

(
k
i

)
f (i+1) g(k−i) +

k

∑
i=0

(
k
i

)
f (i) g(k−i+1)

=
k+1

∑
j=1

(
k

j − 1

)
f (j) g(k−j+1) +

k

∑
j=0

(
k
j

)
f (j) g(k+1−j)

en effectuant le changement d’indice j = i + 1 dans la première somme et j = i dans la
deuxième somme.

Donc ( f g)(k+1) =

(
k
0

)
f (0) g(k+1) +

k

∑
j=1

[

(
k

j − 1

)
+

(
k
j

)
] f (j) g(k+1−j) +

(
k
k

)
f (k+1) g(0)

( f g)(k+1) =

(
k + 1

0

)
f (0) g(k+1) +

k

∑
j=1

(
k + 1

j

)
f (j) g(k+1−j) +

(
k + 1
k + 1

)
f (k+1) g(0)

n+1

∑
i=0

(
n + 1

i

)
f (i) g(n+1−i) donc pr(n + 1) est vraie.

3. Conclusion : pr étant initialisée en 1 et étant héréditaire est donc vraie pour tout entier
naturel n ≥ 1

Applications :
On vérifie aisément cette formule sur quelques cas particuliers :

1. ( f g)′ = f ′g + f g′

2. ( f g)′′ = ( f ′g + f g′)′ = f ′′g + f ′g′ + f ′g′ + f g′′ = f ′′g + 2 f ′g′ + f g′′

3. ( f g)(3) = (( f g)′′)′ = f ′′′g+ f ′′g′+ 2 f ′′g′+ 2 f ′g′′+ f ′g′′+ f g′′′ = f ′′′g+ 3 f ′′g′+ 3 f ′g′′+
f g′′′
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3.8 Extrema globaux et locaux

3.8.1 Définitions

Soit I un intervalle. Soit x0 ∈ I (x0 peut être une borne de I)

1. On dit que f présente un maximum relatif ou local en x0 lorsqu’il existe un intervalle
ouvert I′ de centre x0 tel que ∀x ∈ I′ l’on a f (x) ≤ f (x0)

2. On dit que f présente un minimum relatif ou local en x0 lorsqu’il existe un intervalle
ouvert I′ de centre x0 tel que ∀x ∈ I′ l’on a f (x) ≥ f (x0)

3. On dit que f présente un extrémum relatif ou local en x0 lorsque f présente un maxi-
mum ou un minimum relatif ou local en x0

4. On dit que f présente un maximum absolu ou global en x0 lorsque
∀x ∈ I l’on a f (x) ≤ f (x0)

5. On dit que f présente un minimum absolu ou global en x0 lorsque
∀x ∈ I l’on a f (x) ≥ f (x0)

6. On dit que f présente un extrémum absolu ou global en x0 lorsque f présente un maxi-
mum ou un minimum absolu ou global en x0

3.8.2 Théorème 1

1. Si f est dérivable sur I

2. Si x0 est un extremum local de f sur I

3. Si x0 n’est pas une borne de I

Alors f ′(x0) = 0

3.8.3 Théorème 2

1. Si f est dérivable sur I

2. Si x0 est un extremum local de f sur I

3. Si x0 est une borne gauche de I

Alors f ′d(x0) ≥ 0 dans le cas d’un minimum et f ′d(x0) ≤ 0 dans le cas d’un maximum

3.8.4 Théorème 3

1. Si f est dérivable sur I

2. Si x0 est un extremum local de f sur I

3. Si x0 est une borne droite de I

Alors f ′g(x0) ≤ 0 dans le cas d’un minimum et f ′g(x0) ≥ 0 dans le cas d’un maximum
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3.8.5 Théorème 4

1. Si f est dérivable sur I

2. Si f ′ s’annule en x0 en y changeant de signe

3. Si x0 n’est pas une borne de I

Alors f présente en x0 un extremum local

Démonstration Théorème 1
On va supposer que x0 n’est pas une borne de I et que f a un maximum en x0

• A gauche de x0 le taux Tf =
f (x)− f (x0)

x − x0
≥ 0

car x − x0 < 0 et f (x) ≤ f (x0)

• A droite de x0 le taux Tf =
f (x)− f (x0)

x − x0
≤ 0

car x − x0 > 0 et f (x) ≤ f (x0)
• Or Tf et f ′(x0) = lim

x→x0
Tf ont même signe au voisinage de x0

• donc f ′(x0) ≤ 0 et f ′(x0) ≥ 0 d’où f ′(x0) = 0
Démonstration analogue si f a un minimum en x0.
Démonstration Théorème 2
On va supposer que x0 est la borne gauche de I et que f a un maximum en x0

• A droite de x0 le taux Tf =
f (x)− f (x0)

x − x0
≤ 0

car x − x0 > 0 et f (x) ≤ f (x0)
• Or Tf et f ′(x0) = lim

x→x+0
Tf ont même signe au voisinage à droite en x0

• donc f ′(x0) ≤ 0
Démonstration analogue si f a un minimum en x0.
Démonstration Théorème 3
On va supposer que x0 est la borne droite de I et que f a un maximum en x0

• A gauche de x0 le taux Tf =
f (x)− f (x0)

x − x0
≥ 0

car x − x0 < 0 et f (x) ≤ f (x0)
• Or Tf et f ′(x0) = lim

x→x+0
Tf ont même signe au voisinage à droite en x0

• donc f ′(x0) ≥ 0
Démonstration analogue si f a un minimum en x0.
Démonstration Théorème 4
Supposons que f ′(x) < 0 à gauche de x0 et f ′(x) > 0 à droite de x0 et que f ′(x0) = 0

• A gauche de x0 : f ′(x) < 0 . Or f ′g(x0) = lim
x→x−0

Tf donc Tf < 0 donc
f (x)− f (x0)

x − x0
< 0.

Or x − x0 < 0 donc f (x)− f (x0) > 0 donc f (x) > f (x0)

• A droite de x0 : f ′(x) > 0 . Or f ′d(x0) = lim
x→x+0

Tf donc Tf > 0 donc
f (x)− f (x0)

x − x0
> 0. Or

x − x0 > 0 donc f (x)− f (x0) > 0 donc f (x) > f (x0)
• A gauche de x0 et à droite de x0 on a : f (x) > f (x0) donc f admet en x0 un extremum

local
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3.8.6 Remarque 1

Le théorème 4 est une condition suffisante pour avoir un extremum local.
Ce n’est pas une condition nécessaire .
Exemple :

f (x) =


1
x

si 0 < x ≤ 1

x2 si x > 1

3.8.7 Remarque 2

Dans le théorème 4, il faut absolument que f ′(x) change de signe en x0.
Exemple : Soit la courbe d’équation y = f (x) = x3 alors f est dérivable sur R. De plus,
f ′(x) = 3x2 s’annule en x = 0 mais n’y change pas de signe donc le point O(0; 0) n’est pas un
extremum.
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4 Sens de variation d’une fonction numérique

4.1 Définitions

Soit I un intervalle ouvert de R.

1. On dit que f est constante sur I lorsque pour ∀x1 ∈ I ∀x2 ∈ I l’on a f (x1) = f (x2)

2. On dit que f est croissante sur I lorsque ∀x1 ∈ I ∀x2 ∈ I l’on a si x1 < x2 alors
f (x1) ≤ f (x2)

3. On dit que f est strictement croissante sur I lorsque ∀x1 ∈ I ∀x2 ∈ I l’on a si x1 < x2
alors f (x1) < f (x2)

4. On dit que f est décroissante sur I lorsque ∀x1 ∈ I ∀x2 ∈ I l’on a si x1 < x2 alors
f (x1) ≥ f (x2)

5. On dit que f est strictement décroissante sur I lorsque ∀x1 ∈ I ∀x2 ∈ I l’on a si x1 < x2
alors f (x1) > f (x2)

4.2 Théorèmes sur les variations n’utilisant pas la dérivée

Soient I et des intervalles ouverts de R

1. Si f et g sont croissantes sur I alors f + g est croissante sur I

2. Si f et g sont décroissantes sur I alors f + g est décroissante sur I

3. Si f est croissante sur I et si λ < 0 alors λ f est décroissante sur I

4. Si f est croissante sur I et si λ > 0 alors λ f est croissante sur I

5. Si f est décroissante sur I et si λ > 0 alors λ f est décroissante sur I

6. Si f est décroissante sur I et si λ < 0 alors λ f est croissante sur I

7. Si f est croissante sur I, si f < I >⊂ J , si g est croissante sur J alors g ◦ f est croissante
sur I

8. Si f est décroissante sur I, si f < I >⊂ J , si g est décroissante sur J alors g ◦ f est
croissante sur I

9. Si f est croissante sur I, si f < I >⊂ J , si g est décroissante sur J alors g ◦ f est
décroissante sur I

10. Si f est décroissante sur I, si f < I >⊂ J , si g est croissante sur J alors g ◦ f est
décroissante sur I
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4.3 Théorème de Michel Rolle (1652-1719)

1. Si a < b,

2. Si f est continue sur [a; b]

3. Si f est dérivable sur ]a; b[

4. Si f (a) = f (b)

Alors
∃ c ∈ ]a; b[ tel que f ′(c) = 0

. Cela veut dire géométriquement qu’il existe au moins un point M(c, f (c)) de la courbe de
f où la tangente est parallèle à l’axe des abscisses

4.3.1 Démonstration

Comme f est continue sur [a; b] alors f y est bornée et y atteint ses bornes m et M.
Par conséquent , ∃ c ∈ [a; b] ∃ d ∈ [a; b] tels que f (c) = m et f (d) = M.

• ou bien f (c) = f (d) donc m = M donc f est constante sur [a; b] donc ∀c ∈ [a; b] f ′(c) = 0
donc ∃c ∈]a; b[ tel que f ′(c) = 0. CQFD

• ou bien f (c) ̸= f (d) alors forcément c ∈]a; b[ et d ∈]a; b[. Mais alors c est un minimum (
et d est un maximum) donc ∃c ∈]a; b[ tel que f ′(c) = 0. CQFD

4.3.2 Exemple

Soit f définie par f (x) = x2. f est dérivable sur R et f ′(x) = 2x. Alors
• f est continue sur [−1; 1]
• f est dérivable sur ]− 1; 1[
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• f (−1) = f (1) = 1
• donc ∃c ∈]− 1; 1[ tel que f ′(c) = 0 ici c = 0
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4.3.3 Remarques

Les hypothèses du Théorème de Rolle sont suffisantes mais ne sont pas pas nécessaires.
Exemple 1

Soit f définie par f (x) = x3. f est dérivable sur R et f ′(x) = 3x2. Alors
• f est continue sur [−1; 1]
• f est dérivable sur ]− 1; 1[
• f (−1) ̸= f (1)
• et pourtant ∃c = 0 tel que f ′(c) = 0

Exemple 2

Soit

g(x) =
{

0 si x = 0
1 − x si x ∈]0; 1]

• g est dérivable sur ]0; 1[
• g(0) = g(1)
• mais g n’est pas continue sur [0; 1]

Exemple 3

Soit abs définie par abs(x) =| x |. Alors
• abs est continue sur [−1; 1]
• abs(−1) = abs(1) = 1
• mais abs n’est pas dérivable sur ]− 1; 1[ car abs non dérivable en 0

4.3.4 Exercice : Oral CPGE ⋆ ⋆ ⋆

Soient a et b tels que a < b et f : [a ; b] 7→ R une fonction continue sur [a ; b], dérivable sur
]a ; b[ telle que f (a) = f (b) = 0.
Démontrer que ∀r ∈ R ∃c ∈ ]a ; b[ f ′(c) = r( f (c))2

Soit r ∈ R.
Soit

F : [a ; b] −→ R

x 7−→ F(x) =
∫ x

a
f (t) dt

Soit
g : [a ; b] −→ R

x 7−→ g(x) = e−r F(x) f (x)

• g est continue sur [a ; b] et dérivable sur ]a ; b[
• g(a) = g(b) = 0 car f (a) = f (b) = 0
• On peut donc appliquer le théorème de Rolle sur la fonction g :

∃c ∈]a ; b[ g′(c) = 0
• Or g′(x) = −r f (x) e−r F(x) f (x) + e−r F(x) f ′(x) = e−r F(x) (−r ( f (x))2 + f ′(x)

)
• Donc ∃c ∈ ]a ; b[ g′(c) = e−r F(r) (−r ( f (r))2 + f ′(r)

)
= 0

• Or e−r F(x) > 0 alors ∃c ∈ ]a ; b[ f ′(c) = r( f (c))2
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4.4 Théorème des accroissements finis de Lagrange

Si a < b, si f est continue sur [a; b] et dérivable sur ]a; b[ Alors

1.

∃ c ∈ ]a; b[ tel que f ′(c) =
f (b)− f (a)

b − a

2. Cela veut dire géométriquement qu’il existe au moins un point M(c, f (c)) de la
courbe de f où la tangente est parallèle à la droite (AB)

3.
∃ c ∈ ]a; b[ tel que f (b)− f (a) = (b − a) f ′(c)

4. en posant b = a + h

∃θ ∈ ]0; 1[ tel que f (a + h)− f (a) = h f ′(a + θh)

4.4.1 Démonstration

L’équation de la droite (AB) où A(a; f (a)) et B(b; f (b)) est :

y =
f (b)− f (a)

b − a
(x − a) + f (a) donc g(x) = MP = f (x)−

[
f (b)− f (a)

b − a
(x − a) + f (a)

]
.

1. g(a) = g(b) = 0

2. • g est continue sur [a; b] et g est dérivable sur ]a; b[

• ∀x ∈ ]a; b[ g′(x) = f ′(x)− f (b)− f (a)
b − a

Alors d’après le théorème de Rolle, ∃c ∈]a; b[ g′(c) = 0

Donc f ′(c)− f (b)− f (a)
b − a

= 0 d’où f ′(c) =
f (b)− f (a)

b − a
CQFD
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4.5 1ère Inégalité des accroissements finis

1. Si a < b

2. Si f est continue sur [a; b]

3. Si f dérivable sur ]a; b[

4. Si ∃ (m, M) ∈ R2 tel que ∀x ∈ ]a; b[ on a m ≤ f ′(x) ≤ M

Alors

1.

m ≤ f (b)− f (a)
b − a

≤ M

2.
m(b − a) ≤ f (b)− f (a) ≤ M(b − a)

4.6 2ème Inégalité des accroissements finis

1. Si a < b

2. Si f est continue sur [a; b]

3. Si f dérivable sur ]a; b[

4. Si ∃ M ∈ R+ tel que ∀x ∈ ]a; b[ on a | f ′(x) |≤ M

5. Si x1 ∈]a; b[ et si x2 ∈]a; b[

Alors
0 ≤| f (x2)− f (x1) |≤ M | x2 − x1 |

4.7 Applications des accroissements finis

4.7.1 Encadrement

1. Démontrer que ∀n ∈ N∗ l’on a :
1

2
√

n + 1
≤

√
n + 1 −

√
n ≤ 1

2
√

n
2. Trouver une valeur approchée de ln(π) en utilisant l’intervalle [3; π]

3. Démontrer que ∀n ∈ N∗ l’on a :
1

n + 1
≤ ln(n + 1)− ln(n) ≤ 1

n

4. Soient les réels α et β tels que 0 < α ≤ β <
π

2
.

Démontrer que
β − α

cos2(α)
≤ tan(β)− tan(α) ≤ β − α

cos2(β)
.

En déduire un encadrement de tan(0, 78) et de tan(0, 8)
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4.7.2 Sens de variation des fonctions x 7→
(

1 +
1
x

)x
et de x 7→

(
1 +

1
x

)x+1

1. A l’aide du théorème des accroissements finis, démontrer que

∀x > 0
1

x + 1
< ln(x + 1)− ln(x) <

1
x

2. En déduire le sens de variations et la limite en +∞ des fonctions f et g définies sur
R+∗ par

f (x) =
(

1 +
1
x

)x
et g(x) =

(
1 +

1
x

)x+1

1. • Comme x > 0 on pose a = x et b = x + 1 donc a < b et a − b = x + 1 − x = 1.
• ln est continue sur [x ; x + 1] car ln est continue sur ]0 ; +∞[ et [x ; x + 1] ⊂ 0 ; +∞[
• ln est dérivable sur ]x ; x + 1[ car ln est dérivable sur ]0 ; +∞[ et ]x ; x + 1[⊂ 0 ; +∞[
• Donc d’après le théorème des accroissements finis on peut dire :

∃c ∈]x ; x + 1[ ln(x + 1)− ln(x) = (ln)′(c) =
1
c

• Par conséquent, comme x < c < x + 1 alors
1

x + 1
<

1
c
<

1
x

donc

∀x > 0
1

x + 1
< ln(x + 1)− ln(x) <

1
x

2. • Soit f définie sur R+∗ par f (x) =
(

1 +
1
x

)x
= exp

[
x ln

(
1 +

1
x

)]
= exp

[
x ln

(
x + 1

x

)]
⋄ ∀x > 0 f (x) = exp[x(ln(x + 1)− ln(x)] = exp[x ln(x + 1)− x ln(x)]
⋄ f est dérivable sur R+∗

⋄ ∀x > 0 f ′(x) = [x ln(x + 1)− x ln(x)]′ exp[x ln(x + 1)− x ln(x)]

f ′(x) =
[

1 ln(x + 1) + x
1

x + 1
− 1 ln(x)− x

1
x

]′
exp[x ln(x + 1)− x ln(x)]

f ′(x) =
[

ln(x + 1)− ln(x) +
x

x + 1
− 1
]

exp[x ln(x + 1)− x ln(x)]

f ′(x) =
[

ln(x + 1)− ln(x) +
x − (x + 1)

x + 1

]
exp[x ln(x + 1)− x ln(x)]

f ′(x) =
[

ln(x + 1)− ln(x)− 1
x + 1

]
exp[x ln(x + 1)− x ln(x)]

⋄ Le signe de f ′(x) est celui de h(x) =
[

ln(x + 1)− ln(x)− 1
x + 1

]
car exp[x ln(x +

1)− x ln(x)] > 0
⋆ h est dérivable sur ]0 ; +∞[
⋆ ∀x > 0 on a :

h′(x) =

−1
x2

x + 1
x

− −1
(x + 1)2 =

−1
x(x + 1)

+
1

(x + 1)2 =
−(x + 1) + x

x(x + 1)2 =
−1

x(x + 1)
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⋆ ∀x > 0 on a h′(x) < 0 donc h est strictement décroissante sur ]0 ; +∞[

⋆ Or lim
x→+∞

x + 1
x

= 1 donc lim
x→+∞

ln
(

x + 1
x

)
= 0. Comme de plus, lim

x→+∞

1
x + 1

= 0

alors lim
x→+∞

h(x) = 0

⋆ Comme h est strictement décroissante sur ]0 ; +∞[ et que lim
x→+∞

h(x) = 0

alors ∀x > 0 h(x) > 0
⋄ Par conséquent, ∀x > 0 f ′(x) = h(x) > 0 donc f est strictement croissante sur

]0 ; +∞[
⋄ lim

x→+∞
f (x) = e car

⋆ en posant y =

(
1 +

1
x

)x
alors l(y) = ln

[(
1 +

1
x

)x]
= x ln

[
1 +

1
x

]
=

ln
[

1 +
1
x

]
1
x

⋆ En posant h =
1
x

alors ln(y) =
ln(1 + h)

h

⋆ Quand x → +∞ alors h → 0 d’où ln(y) =
ln(1 + h)

h
=

ln(1 + h)− ln(1)
1 + h − 1

→
(ln)′(1) = 1 item [⋆] lim

x→+∞
ln(y) = lim

h→0
ln(y) = 1 donc lim

x→+∞
y = exp(1) = e

⋄ Voici alors le tableau des variations de f :

x 0 +∞
f ′(x) +

e
f (x) ↗

• Soit g définie sur R+∗ par g(x) =
(

1 +
1
x

)x+1
= f (x)

(
1 +

1
x

)
= f (x) +

1
x

f (x)

⋄ Comme x →
(

1 +
1
x

)
et que f est dérivable sur ]0 ; +∞[ alors g qui est le produit

des ces deux fonctions est alors dérivable sur ]0 ; +∞[.

⋄ ⋆ ∀x > 0 g(x) =
(

1 +
1
x

)x+1
= exp

[
(x + 1)ln

(
1 +

1
x

)]
= exp

[
(x + 1)ln

(
x + 1

x

)]
g(x) = exp[(x + 1)[ln(x + 1)− ln(x)]] = exp[(x + 1)ln(x + 1)− (x + 1)ln(x)]

⋆ ∀x > 0 g′(x) = [(x+ 1)ln(x+ 1)− (x+ 1)ln(x)]′ exp[(x+ 1)ln(x+ 1)− (x+
1)ln(x)]
Comme exp[(x + 1)ln(x + 1) − (x + 1)ln(x)] > 0 alors le signe de g′(x) est
celui de u′(x) avec u(x) = [(x + 1)ln(x + 1)− (x + 1)ln(x)].

⋆ u′(x) = ln(x + 1) + (x + 1)
1

x + 1
− ln(x)− (x + 1)

1
x

u′(x) = ln(x + 1) + 1 − ln(x) − x + 1
x

= ln(x + 1) + 1 − ln(x) − 1 − 1
x

=

ln(x + 1)− ln(x)− 1
x

⋆ Or d’après la question précédente on sait que ln(x + 1) − ln(x) <
1
x

donc

u′(x) < 0 donc g′(x) < 0 d’où g est décroissante sur ]0 ; +∞[.
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⋄ Comme g(x) = f (x)+
1
x

f (x) et comme lim
x→+∞

f (x) = e et lim
x→+∞

1
x
= 0 alors lim

x→+∞
g(x) = e

⋄ On peut alors dresser le tableau des variations de g :

x 0 +∞
g′(x) +

g(x) ↘
e
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4.7.3 Génération de fonctions k-lipschitziennes (Rudolf Otto Sigmund Lipschitz 1832-1903)

Définition :

Soit k un réel > 0.
On dit que f est k−lipschitzienne sur I
lorsque ∀x1 ∈ I ∀x1 ∈ I on a : | f (x1)− f (x2) |< k | x1 − x2 |
k s’appelle le coefficient de Lipschitz.
si 0 < k < 1 alors f est dite k−contractante.

Théorème

Si f est de classe C1 sur un intervalle fermé alors f est lipschitzienne.

Démonstration :
Comme f est de classe C1 alors f ′ existe et est continue sur I fermé donc f ′ est bornée sur I donc
| f ′ | est majorée sur I par un réel k > 0 donc d’après le théorème des accroissements finis f est
k−lipschitzienne

4.7.4 Etude d’une suite de la forme un+1 = f (un)

1. Si u0 ∈ I

2. Si I est stable par f c’est-à-dire que f < I >⊂ I

3. Si la fonction f a un point fixe α c’est-à-dire ∃α ∈ I tel que f (α) = α.

4. Si la dérivée f ′ est majorée sur I par k où 0 < k < 1
c’est-à-dire ∀x ∈ I on a | f ′(x) |< k avec 0 < k < 1

Alors

1. On démontre par récurrence que ∀n ∈ N on a un ∈ I

2. puis que 0 ≤| un+1 − α |≤ k | un − α | d’après l’inégalité des acroissements finis.

3. On démontre par récurrence que ∀n ∈ N l’on a 0 ≤| un − α |≤ kn | u0 − α |
4. D’où lim

n 7→+∞
un = α

4.7.5 Théorème du prolongement de la dérivée à droite en a

1. Si f est continue sur [a; b]

2. Si f est dérivable sur ]a; b[

3. Si lim
x 7→a+

f ′(x) = L finie ou infinie

Alors

1. lim
x 7→a+

f (x)− f (a)
x − a

= L

2. Dans le cas où L est finie , f est dérivable à droite en a et f ′d(a) = L

3. Dans le cas où L est infinie , C f admet au point M(a; f (a)) une demi-tangente verticale.
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Démonstration :
Méthode 1 :
D’après le Théorème des accroissements finis
∃θ ∈ ]0; 1[ tel que f (a + h)− f (a) = h f ′(a + θh).
Par conséquent quand h → 0 alors a + θh → a+. Or lim

x→a+
f ′(x) = L donc f ′(a + θh) → L. On en

déduit que lim
h→0

f (a + h)− f (a)
h

= L.

En posant x = a + h on a lim
x→a+

f (x)− f (a)
x − a

= L

Méthode 2 dans le cas L finie
Comme lim

x→a+
f ′(x) = L alors soit x ∈]a; a + h[ d’après le théorème des accroissements finis

∃c ∈ ]a; x[⊂]a; a + h[ tel que
f (x)− f (a)

x − a
= f ′(c)

∀ε > 0 ∃ h 0 < h < b − a tel que ∀t ∈ ]a; a + h[ on a : L − ε ≤ f ′(t) ≤ L + ε.(∗)
Ce c est donc un t particulier vérifiant la relation (∗)

Donc ∀x ∈ ]a; a + h[ L − ε ≤ f (x)− f (a)
x − a

≤ L + ε donc −ε ≤ f (x)− f (a)
x − a

− L ≤ +ε donc

| f (x)− f (a)
x − a

− L |≤ ε. lim
x→a+

f (x)− f (a)
x − a

= L donc f est dérivable à droite en a et f ′d(a) = L.

Méthode 2 dans le cas L infinie
Comme lim

x 7→a+
f ′(x) = ∞

alors ∀A > 0 ∃α > 0 tel que a < x ≤ a + α =⇒ f ′(x) > A.

En appliquant l’inégalité des accroissements finis, on obtient
f (x)− f (a)

x − a
≥ A donc lim

x→a+

f (x)− f (a)
x − a

= ∞

donc C f admet au point M(a; f (a)) une demi-tangente verticale.
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ATTENTION, la réciproque est fausse ! Le taux de variation de f peut admettre une limite
sans que la dérivée f ′ en admette une.
Exemple :

f (x) =

 x2 sin
(

1
x

)
si x ̸= 0

0 si x = 0

1. (a) g : x 7→ x2 est dérivable sur R donc sur R∗.

(b) i : x 7→ 1
x

est dérivable sur R∗

(c) ∀x ∈ R∗ 1
x
∈ R∗ donc l’ensemble-image i < R∗ >= R∗ ⊂ R

(d) sin est dérivable sur R

(e) donc h = sin ◦ i : x 7→ sin
(

1
x

)
est dérivable sur R∗

(f) par conséquent la restriction de f à R∗ qui est le produit gh est dérivable sur R∗

∀x ̸= 0 f ′(x) = 2x sin
(

1
x

)
+ x2

(
−1
x2

)
cos
(

1
x

)
= 2x sin

(
1
x

)
− cos

(
1
x

)
2. Si x ̸= 0 alors

f (x)− f (0)
x − 0

= x sin
(

1
x

)
Alors

(a) lim
x 7→0+

f (x)− f (0)
x − 0

= 0 car 0 <

∣∣∣∣x sin
(

1
x

)∣∣∣∣ ≤| x |

(b) Donc f est dérivable en 0 et f ′(0) = 0

(c) et pourtant lim
x 7→0+

f ′(x) n’existe pas car lim
x 7→0+

cos
(

1
x

)
n’existe pas.

Voici donc un exemple de fonction dérivable en 0 mais dont la dérivée f ′ n’est pas continue
en 0.

f admet bien une dérivée sur R mais f n’est pas de classe C1 sur R.

Mieux, le Théorème de Gaston DARBOUX dit que malgré cela dès qu’une fonction f est
dérivable sur un segment [a ; b] alors même si sa dérivée f ′ n’est pas continue sur [a ; b]
elle vérifie quand même le théorème des valeurs intermédiaires sur l’intervalle de bornes
f ′(a) et f ′(b)
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4.7.6 Théorème du prolongement de la dérivée à gauche en b

1. Si f est continue sur [a; b]

2. Si f est dérivable sur ]a; b[

3. Si lim
x 7→b−

f ′(x) = L finie ou infinie

Alors

1. lim
x 7→b−

f (x)− f (b)
x − b

= L

2. Dans le cas où L est finie , f est dérivable à gauche en b et f ′g(b) = L

3. Dans le cas où L est infinie , C f admet au point M(b; f (b)) une demi-tangente verticale.

4.7.7 Théorème du prolongement de la classe C1

1. Si f est continue sur [a; b]

2. Si f est de classe C1 sur ]a; b]

3. Si lim
x 7→a+

f ′(x) = L finie

Alors

1. f est dérivable à droite en a et f ′d(a) = L

2. donc f ′ est continue à droite en a

3. f est de classe C1 sur [a; b]

On peut généraliser le théorème précédent par récurrence :

4.7.8 Théorème du prolongement de la classe Cn

1. Si f est continue sur [a; b]

2. Si f est de classe Cn sur ]a; b]

3. Si ∀p ≤ n lim
x 7→a+

f (p)(x) = Lp finie

Alors

1. f est de classe Cn sur [a; b]

2. ∀p ≤ n f (p)(a) = Lp
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4.7.9 Applications de la dérivation aux variations d’une fonction

Théorème :
Soit I un intervalle ouvert non vide de R.
Soit f une fonction numérique dérivable sur I.
Alors

1. f est croissante sur I ⇐⇒ ∀x ∈ I f ′(x) ≥ 0

2. f est décroissante sur I ⇐⇒ ∀x ∈ I f ′(x) ≤ 0

3. f est constante sur I ⇐⇒ ∀x ∈ I f ′(x) = 0

Démonstration :
=⇒ :
Supposons que f soit croissante sur I. Soient x0 ∈ I et x1 ∈ I

1. soit x1 à gauche de x0 donc x1 < x0 donc x1 − x0 < 0.
Comme f est croissante alors f (x1) ≤ f (x0) d’où f (x1)− f (x0) ≤ 0

Par conséquent Tf =
f (x1)− f (x0)

x1 − x0
≥ 0

2. soit x1 à droite de x0 donc x1 > x0 donc x1 − x0 > 0.
Comme f est croissante alors f (x1) ≥ f (x0) d’où f (x1)− f (x0) ≥ 0

Par conséquent Tf =
f (x1)− f (x0)

x1 − x0
≥ 0

3. Au voisinage de x0 alors Tf =
f (x1)− f (x0)

x1 − x0
≥ 0 donc lim

x1 7→x0
Tf ≥ 0

4. donc ∀x ∈ I f ′(x) ≥ 0

⇐= :
Supposons que ∀x ∈ I f ′(x) ≥ 0.
Soient x1 ∈ I et x2 ∈ I avec x1 < x2

1. f est continue sur [x1; x2] car [x1; x2] ⊂ I et que f est continue sur I puisque f est déri-
vable sur I

2. f est dérivable sur ]x1; x2[ car ]x1; x2[⊂ I et f est dérivable sur I

3. Alors d’après le Théorème des accroissements finis ∃ c ∈ ]x1; x2[ tel que
f (x1)− f (x2)

x1 − x2
=

f ′(c)

4. Or ∀x ∈ I f ′(x) ≥ 0 donc f ′(c) ≥ 0

5. Donc
f (x1)− f (x2)

x1 − x2
≥ 0. Or x1 − x2 < 0 car x1 < x2. Par conséquent f (x1)− f (x2) ≤ 0 .

On en déduit que f (x1) ≤ f (x2) donc que f est croissante sur I

Attention ! ! !
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Corollaire

Soit I un intervalle ouvert non vide de R. Soit f une fonction numérique dérivable sur I Alors

1. f est strictement croissante sur I ⇐⇒ ∀x ∈ I f ′(x) > 0 sauf éventuellement en des
points isolés de I où f ′(x) s’annule

2. f est strictement décroissante sur I ⇐⇒ ∀x ∈ I f ′(x) < 0 sauf éventuellement en des
points isolés de I où f ′(x) s’annule

3. f est constante sur I ⇐⇒ ∀x ∈ I f ′(x) = 0
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5 Règle du Marquis de l’Hôpital ou Règle de Bernouilli

5.1 TAFG Théorème des acroissements finis généralisés

1. Si f et g sont continues sur [a; b]

2. Si f et g sont dérivables sur ]a; b[

alors il existe c ∈]a; b[ tel que
∣∣∣∣ f (b)− f (a) f ′(c)
g(b)− g(a) g′(c)

∣∣∣∣ = 0

5.1.1 Démonstration

si f (a) = f (b) et g(a) = g(b) alors ce théorème est vrai pour tout c ∈]a; b[
sinon par exemple g(a) ̸= g(b) on applique le théorème de Rolle à la fonction h définie sur [a; b]
par

h(x) = f (x)− f (a)− f (b)− f (a)
g(b)− g(a)

(g(x)− g(a))

5.2 Corollaire du TAFG

1. Si f et g sont continues sur [a; b]

2. Si f et g sont dérivables sur ]a; b[

3. Si g(a) ̸= g(b)

4. Si ∀x ∈]a; b[ on a g′(x) ̸= 0

alors

∃c ∈]a; b[
f (b)− f (a)
g(b)− g(a)

=
f ′(c)
g′(c)

5.3 La Règle de Michel de L’Hôpital dans le cas
0
0

1. Si f et g sont continues sur un intervalle I contenant x0

2. Si f et g sont dérivables sur I − {x0}
3. Si ∀x ∈ I − {x0} on a g′(x) ̸= 0

4. Si f (x0) = g(x0) = 0

5. Si lim
x→x0

f ′(x)
g′(x)

= L où L ∈ R

alors

lim
x→x0

f (x))
g(x)

= L
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5.4 Corollaire de la Règle de l’hôpital

1. Si f et g sont continues sur un intervalle I

2. Si f et g sont dérivables sur ]I − {x0}
3. Si ∀x ∈ I − {x0} on a g′(x) ̸= 0

4. Si lim
x→x0

f ′(x)
g′(x)

= L où L ∈ R

alors

lim
x→x0

f (x)− f (x0)

g(x)− g(x0)
= L

5.4.1 Remarque

La réciproque est fausse ! ! !
Attention, on peut avoir l’existence de la limite du quotient des fonctions sans que le quo-
tient des dérivées n’aie de limite ! ! !

Contre-exemple : f (x) = x2sin
(

1
x

)
si x ̸= 0 et f (0) = 0 et ∀x ∈ R, g(x) = x

1. f et g satisfont aux hypothèses sur un intervalle I de centre 0

2. Si x ̸= 0 on a :
f (x)
g(x)

= x sin
(

1
x

)
et lim

x→0

f (x)
g(x)

= 0 car −1 ≤ sin
(

1
x

)
≤ 1 .

Si x > 0 alors −x ≤ x sin
(

1
x

)
≤ x.

si x < 0 alors −x ≥ x sin
(

1
x

)
≥ x.

Comme lim
x→0

−x = 0 et lim
x→0

x = 0 , d’après le théorème des gendarmes, on a lim
x→0

f (x)
g(x)

= 0

3. Mais si x ̸= 0 on a :
f ′(x)
g′(x)

=
f ′(x)

1
= 2x sin

(
1
x

)
− cos

(
1
x

)
qui n’a pas de limite en 0

car cos(
1
x
) n’en a pas en 0
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5.4.2 Application à la recherche de limites présentant la forme indéterminée
0
0

Parfois, il faut utiliser plusieurs fois de suite cette règle pour arriver au résultat ! ! ! il faut
bien vérifier les hypothèses sur f et g mais aussi sur f ′ et g′ ! ! !

• lim
x→0

ln(1 + x) +
x2

2
− x

x3 = lim
x→0

1
1 + x

+ x − 1

3x2 = lim
x→0

1
3(x + 1)

=
1
3

en appliquant successivement le Corollaire de la Règle de l’hôpital à I = [0 ; a] où a > 0
et à I = [a; 0] où −1 < a < 0

• lim
x→0

x3

sin(x)− x cos(x)
= lim

x→0

3x2

cos(x)− cos(x) + x sin(x)
= lim

x→0

3x
sin(x)

= 3

en appliquant successivement le Corollaire de la Règle de l’hôpital à I = [0;
π

2
] et à

I = [−π

2
; 0]

• lim
x→1

sin(πx)− ln(x)
x − 1

= lim
x→0

π cos(πx)− 1
x

1
= −1 + π

en appliquant successivement le Corollaire de la Règle de l’hôpital à I = [
1
2

;

F32]

• lim
x→3

x3 − 3x

x − 3
= lim

x→0

3x2 − 3xln(3)
1

= 27 − 27ln(3) en appliquant successivement le Corol-

laire de la Règle de l’hôpital à I = [3 ; a] où a > 3 et à I = [a ; 3] où a < 3

• lim
x→e

√
x −

√
e

x − e
= lim

x→e

1
2
√

x
1
x

= lim
x→e

x
2
√

x
= lim

x→e

√
x

2
=

√
e

2

• lim
x→0

(1 + x)n − 1
x

= lim
x→0

n(1 + x)n−1

1
= n

• lim
x→0

x − sin(x)
x3 = lim

x→0

1 − cos(x)
3x2 = lim

x→0

sin(x)
6x

=
1
6

• lim
x→0

1 − cos(x)
x2 = lim

x→0

sin(x)
2x

=
1
2

• lim
x→0

x − x cos(x)
x − x sin(x)

= lim
x→0

1 − cos(x) + x sin(x)
1 − cos(x)

= lim
x→0

2sin(x) + xcos(x)
sin(x)

= lim
x→0

3cos(x)− xsin(x)
cos(x)

= 3

• lim
x→0

1
sin(x)

− 1
x + x2 = lim

x→0

x + x2 − sin(x)
(x + x2)sin(x)

= lim
x→0

1 + 2x − cos(x)
(1 + 2x)sin(x) + (x + x2)cos(x)

= lim
x→0

2 + sin(x)
(2 − x − x2)sin(x) + 2(1 + 2x)cos(x)

= 1

• lim
x 7→0

x − sin(x)
x3 = lim

x 7→0

1 − cos(x)
3x2 = lim

x 7→0

sin(x)
6x

= lim
x 7→0

cos(x)
6

=
1
6

• lim
x 7→0

1 − cos(x)
x2 = lim

x 7→0

sin(x)
2x

= lim
x 7→0

cos(x)
2

=
1
2
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• lim
x 7→0

x − x cos(x)
x − sin(x)

= lim
x 7→0

1 − cos(x) + x sin(x)
1 − cos(x)

= lim
x 7→0

2sin(x) + x cos(x)
sin(x)

= lim
x 7→0

3cos(x)− x sin(x)
cos(x)

= 3

• lim
x 7→0

1
sin(x)

− 1
x + x2 = lim

x 7→0

x + x2 − sin(x)
(x + x2)sin(x)

= lim
x 7→0

1 + 2x − cos(x)
(1 + 2x)sin(x) + (x + x2)cos(x)

= lim
x 7→0

2 + sin(x)
(2 − x − x2)sin(x) + 2(1 + 2x)cos(x)

= 1

• lim
x 7→0

cos(2x)− 1
x3 + 5x2 = lim

x 7→0

−2 sin(2x)
3x2 + 10x

= lim
x 7→0

−4 cos(2x)
6x + 10

= −2
5

• lim
x 7→e

√
x −

√
e

ln(x)− 1
= lim

x 7→e

1
2
√

x
1
x

=
x

2
√

x
=

e
2
√

e
=

√
e

e

• Soit n ∈ N alors :

lim
x 7→+∞

exp(x)
xn = lim

x 7→+∞

exp(x)
n xn−1 = lim

x 7→+∞

exp(x)
n(n − 1)xn−2 = · · · = lim

x 7→+∞

exp(x)
n!

= +∞

• lim
x 7→+∞

x −
√

x2 − x = lim
x 7→+∞

x −

√
x2
(

1 − 1
x2

)
= lim

x 7→+∞
x − |x|

√
1 − 1

x2

= lim
x 7→+∞

x − x

√
1 − 1

x2 = lim
x 7→+∞

x

(
1 −

√
1 − 1

x

)
= lim

x 7→+∞

1 −
√

1 − 1
x2

1
x

lim
h 7→0

1 −
√

1 − h2

h
= lim

h 7→0

2h√
1 − h2

1
= 0
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5.5 Enoncé généralisé 1

Soient a ∈ R et b ∈ R tels que a < b.
Soient f et g des fonctions numériques dérivables sur ]a; b[ et telles que g′ ne s’annule pas sur
]a; b[.

Si lim
x 7→a

f (x) = 0 ; lim
x 7→a

g(x) = 0 et lim
x 7→a

f ′(x)
g′(x)

= l ∈ R

Alors lim
x 7→a

f (x)
g(x)

= l

5.6 Enoncé généralisé 2

Soient a ∈ R et b ∈ R tels que a < b.
Soient f et g des fonctions numériques dérivables sur ]a; b[ et telles que g′ ne s’annule pas sur
]a; b[.

Si lim
x 7→a

f (x) = +∞ ; lim
x 7→a

g(x) = ∞ et lim
x 7→a

f ′(x)
g′(x)

= l ∈ R

Alors lim
x 7→a

f (x)
g(x)

= l

5.6.1 Exemple

• lim
x 7→+∞

√
x

ln(x)
= lim

x 7→+∞

1
2
√

x
1
x

= lim
x 7→+∞

√
x

2
= +∞

• lim
x 7→0

sin(x)
x

= lim
x 7→0

cos(x)
1

= 1

• lim
x 7→π

1 + cos(x)
x − π

= lim
x 7→π

−sin(x)
1

= 0

• Si n ∈ N∗ alors lim
x 7→0

(1 + x)n − 1
x

= lim
x 7→0

n(1 + x)n−1

1
= n

Attention ! Cette règle n’est utilisable qu’en cas d’indétermination de
f
g

! ! !

−4 = lim
x 7→1

3x2 + 1
2x − 3

̸= lim
x 7→1

6x
2

= 3

On peut l’utiliser avec une certaine astuce pour les limites du type ” + ∞ × 0”

• lim
x 7→−∞

x ex = lim
x 7→−∞

x
1
ex

= lim
x 7→−∞

1
−1
ex

= 0

• lim
x 7→0

x ln(sin(x)) = lim
x 7→0

ln(sin(x))
1
x
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6 Exercices

6.1 Dérivée et approximation affine.

1. Démontrer que la fonction inverse x 7→ 1
x

est dérivable en 1.

2. En déduire qu’il existe une fonction ϕ telle que ∀h ̸= 0
1

1 + h
= 1 − h + h ϕ(h) avec

lim
h→0

ϕ(h) = 0

3. (a) Simplifier
1

1 + h
− (1 − h) pour h ̸= 0

(b) Démontrer que ∀h ∈
[
−1

2
;

1
2

]
2
3
≤ 1

1 + h
≤ 2

(c) En déduire que l’erreur maximale commise quand on remplace
1

1 + h
par 1 − h est

inférieure à h2 si h ∈
[
−1

2
;

1
2

]
.

(d) Comparer la valeur donnée pour
1

1 + h
par l’approximation 1 − h pour h = 3.10−5

à celle fournie par un calcul direct sur la calculatrice.

6.2 Variations de fonctions

En utilisant les fonctions de référence, déterminer les tableaux de variations des fonctions
suivantes :

1. f : x 7→ 2(x − 1)2 + 3

2. g : x 7→ 2
x − 1

+ 3

3. h : x 7→ 2
√

x − 1 + 3

6.3 Dérivées n-ièmes

On sait que les fonctions sin et cos sont indéfiniment dérivables sur R.
Démontrer par récurrence que :

1. ∀n ∈ N sin(n)(x) = sin
(

x + n
π

2

)
2. ∀n ∈ N cos(n)(x) = cos

(
x + n

π

2

)

42



6.4 Formule de Leibniz

Soient f et g des fonctions numériques de classe C∞ sur R.

1. • Ecrire ( f g)(1), ( f g)(2), ( f g)(3)

• Rappeler ce qu’est la formule de Leibniz pour la dérivée nième de ( f g)(n)

2. On suppose que g(x) = (1 + x2) f (x)
• Où et pourquoi g est-elle de classe C+∞ ?
• Donner alors l’expression simplifiée de g(n)(x)
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6.5 Dérivée et parité

Soit une fonction numérique f d’une variable réelle définie sur un ensemble D f admettant O
comme centre de symétrie.

1. Démontrer que si f est dérivable sur D f et que f est paire alors f ′ est impaire.

2. Démontrer que si f est dérivable sur D f et que f est impaire alors f ′ est paire.

6.5.1 Corrigé Méthode 1

1. • Si x0 ∈ D f alors −x0 ∈ D f

• f ′(−x0) = lim
x 7→−x0

f (x)− f (−x0)

x − (−x0)
= lim

x 7→−x0

f (x) + f (x0)

x − (−x0)
car f est impaire.

Par conséquent, en posant X = −x on a :

f ′(−x0) = lim
X 7→x0

f (−X)− f (x0)

−X + x0
= lim

X 7→x0

f (X)− f (x0)

−X + x0
car f est paire .

On a donc f ′(−x0) = − lim
X 7→x0

f (X)− f (x0)

X − x0
= − f ′(x0)

• Comme ∀x0 ∈ D f on a − x0 ∈ D f et f ′(−x0) = − f ′(x0) alors f ′ est impaire

2. • Si x0 ∈ D f alors −x0 ∈ D f

• f ′(−x0) = lim
x 7→−x0

f (x)− f (−x0)

x − (−x0)
= lim

x 7→−x0

f (x) + f (x0)

x − (−x0)
car f est impaire.

Par conséquent, en posant X = −x on a :

f ′(−x0) = lim
X 7→x0

f (−X) + f (x0)

−X + x0
= lim

X 7→x0

− f (X) + f (x0)

−X + x0
car f est impaire .

On a donc f ′(−x0) = lim
X 7→x0

f (X)− f (x0)

X − x0
= f ′(x0)

• Comme ∀x0 ∈ D f on a − x0 ∈ D f et f ′(−x0) = f ′(x0) alors f ′ est paire

6.5.2 Corrigé Méthode 2

1. • Si x0 ∈ D f alors −x0 ∈ D f
• Soit la fonction g : x 7→ g(x) = f (−x).

— g est la composée de la fonction x 7→ −x et de la fonction f .
— x 7→ −x est dérivable sur D f
— ∀x ∈ D f on a − x ∈ D f
— f est dérivable sur D f
— Par conséquent, g′(x) = −1( f ′(−x))
— Or g(x) = f (x) car f (−x) = f (x) puisque f est paire. Donc g′(x) = f ′(x)
— Par conséquent, ∀x ∈ D f f ′(x) = − f ′(−x)

• Comme ∀x0 ∈ D f on a − x0 ∈ D f et f ′(−x0) = − f ′(x0) alors f ′ est impaire

2. • Si x0 ∈ D f alors −x0 ∈ D f
• Soit la fonction g : x 7→ g(x) = f (−x).

— g est la composée de la fonction x 7→ −x et de la fonction f .
— x 7→ −x est dérivable sur D f
— ∀x ∈ D f on a − x ∈ D f
— f est dérivable sur D f
— Par conséquent, g′(x) = −1( f ′(−x))
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— Or g(x) = − f (x) car f (−x) = − f (x) puisque f est impaire. Donc g′(x) = − f ′(x)
— Par conséquent, ∀x ∈ D f f ′(x) = f ′(−x)

• Comme ∀x0 ∈ D f on a − x0 ∈ D f et f ′(−x0) = f ′(x0) alors f ′ est paire
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6.6 Dérivée et périodicité

Soit une fonction numérique f d’une variable réelle définie sur un ensemble D f telle que
∃T > 0 ∀x ∈ D f x + T ∈ D f .
Démontrer que si f est dérivable sur D f et que f est périodique de période T alors f ′ est aussi
périodique de période T..

6.6.1 Corrigé

• Si x0 ∈ D f alors x0 + T ∈ D f

• f ′(x0 + T) = lim
x 7→x0+T

f (x)− f (x0 + T)
x − (x0 + T)

= lim
x 7→x0+T

f (x)− f (x0)

x − x0 − T
car f est périodique de

période T.
On effectue le changement de variable suivant X = x − T alors on a :

f ′(x0 + T) = lim
X 7→x0

f (X + T)− f (x0)

X − x0
= lim

X 7→x0

f (X)− f (x0)

X − x0
car f est périodique de pé-

riode T.

Par conséquent, f ′(x0 + T) = lim
X 7→x0

f (X)− f (x0)

X − x0
= f (′x0)

• Comme ∀x0 ∈ D f on a x0 + T ∈ D f et f ′(x0 + T) = f ′(x0) alors f ′ est périodique de
période T.

6.7 Dérivées n−ièmes

Calculer les dérivées n−ièmes de :

1. x 7→ ex
√

3sin(x)

2. x 7→ x cos(x)

3. x 7→ 2x
1 − x2

4. x 7→ xn−1ln(x)

6.8 Dérivées de fonctions défies par morceaux

Etudier sur R les fonctions suivantes :

1. f (x) =


1
x

sin(x2) si x ̸= 0

0 si x = 0

2. f (x) =
(

x + 3
x + 1
x + 2

)
Arctan(e−x)

3. f (x) =


3 − x2

2
si x ∈]− ∞; 1[

1
x

si x ∈]1;+∞[
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6.9 Uniforme continuité

Soit des réels a < b.

1. Soit f une application de classe C1 sur [a ; b].
Démontrer que f est uniformément continue sur [a ; b].

2. Soit f une application dérivable sur [a ; b] telle que f (a) = 0 et ∃A > 0 ∀x ∈
[a ; b] f ′(x) ≤ A f (x).
Démontrer que f est uniformément continue sur [a ; b].
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6.10 Valeurs intermédiaires de la dérivée

6.10.1 Théorème de Gaston DARBOUX

Soit des réels a < b.
Soit f une application dérivable sur [a ; b] telle f ′(a) ̸= f ′(b).
Alors f ′ prend toute valeur intermédiaire entre f ′(a) et f ′(b). c’est-à-dire que

∀λ ∈ ] f ′(a) ; f ′(b)[ ∃c ∈ ]a ; b[ λ = f ′(c)

Ce théorème formulé en 1875 par Darboux veut dire que :
toute fonction f dérivable sur un intervalle I est telle que f ′(I) est un intervalle.
Cela étend le théorème des valeurs intermédiaires au cas où f ′ existe mais n’est pas conti-
nue.

1. Méthode 1 :

(a) ou bien f ′(a) < f ′(b)
Soit λ ∈ ] f ′(a) ; f ′(b)[. Posons g(x) = f (x)− λ x
• g est donc dérivable sur [a ; b] car f l’est ainsi que x 7→ λ x
• ∀x ∈ ]a ; b[ g′(x) = f ′(x)− λ donc g′(a) = f ′(a)− λ < 0 et g′(b) = f ′(b)− λ >

0 .
• On a donc g′(a) < 0 < g′(b).
• Par conséquent, quand x sera très proche de a avec a < x on aura g(a) < g(x)
• De même, quand x sera très proche de b vec x < b on aura g(x) < g(b)

(b) ou bien f ′(a) > f ′(b)
On se ramène au cas précédent en remplaçant f par − f .

2. Méthode 2 :

Soient g(x) =

 f (x)− f (a)
x − a

si x ∈]a ; b]

f ′(a) si x = a
et h(x) =

 f (b)− f (x)
b − x

si x ∈ [a ; b[

f ′(b) si x = b
Démontrer qu’il existe cx ∈]a ; b[ tel que g(x) = y ou h(x) = y. Conclure.

6.10.2 Valeurs intermédiaires de f ′

Soit f dérivable de [a ; b] dans R telle que f (a) f (b) < 0.

1. Montrer qu’il existe c ∈]a ; b[ tel que f ′(c) = 0.

2. En déduire qu’une fonction dérivée possède la propriété des valeurs i,termédiaires.
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6.11 Deug Paris 7 - 1977

Soit f une fonction d’une variable réelle dérivable sur un intervalle I =]a ; b[ avec a < b telle
que sa dérivée f ′ est continue sur I.
Soit x0 ∈ I telle que f ′(x0) ̸= 0.
Démontrer qu’il existe un intervalle J =]c ; d[⊂ I telle que x0 ∈ J et un intervalle J′ =]c′ ; d′[
contenant f (x0) tels que f réalise une bijection de J sur J′.

• Comme f ′(x0) ̸= 0 et que f ′ est continue sur I et que x0 ∈ I alors il existe un intervalle
ouvert J de centre x0 tel que ∀x ∈ J f ′(x) ̸= 0.

• Sur cet intervalle J on a f ′ qui ne peut changer de signe sinon ∃x1 ∈ J f ′(x1) = 0
• Par conséquent, f est strictement monotone sur J
• De plus f est continue sur J car f est dérivable donc continue sur I et J ⊂ I
• Alors f réalise une bijection de J sur l’intervalle J′ = f < J >
• Comme x0 ∈ J et que f est continue sur J alors f (x0) ∈ J′. J′ est un intervalle ouvert

]c′ ; d′[ car f est strictement monotone sur J

6.12

Soit f dérivable sur [a :; b] telle que f ′(a) = f ′(b) = 0.

Démontrer que ∃c ∈ ]a ; b] f ′(c) =
f (c)− f (a)

c − a
.

Interprétation géométrique.

6.13

Soit f une application de classe C1 sur R telle que f (R) = [m ; M].
Montrer que ∃c ∈ R f (c + 1) = f (c) + f ′(c)

6.14

Soient f et g des fonctions dérivables deux fois sur [a ; b] avec a < b telles que
f (a) = g(a)

f (b) = g(b)

∀x ∈ [a ; b] f ”(x) ≤ g”(x)

Démontrer que
∀x ∈ [a ; b] g(x) ≤ f (x)

6.15

Soit f une fonction dérivable deux fois sur [a ; b] avec a < b.
Démontrer que

∀x ∈]a ; b[ ∃c ∈]a ; b[ f (x)− f (a) =
f (b)− f (a)

b − a
(x − a) +

(x − a)(x − b)
2

f ”(c)
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6.16

On pose f (x) = (cos(2x)− 4cos(x) et g(x) = sup f (t)− f (t′)/ − x < (t − t′ < x

1. Etudier la continuité de g.

2. Etudier la dérivabilité de g.

6.17

Soit f de classe C2 de R dans R telle que f , f ′, f ” soient strictes positives.

1. Démontrer que ∀x ∈ R ∃!g(x) tel que f (g(x)) = f (x) + 1

2. Démontrer que g est de classe C2 sur R

3. Etudier les variations de g.

4. Démontrer que le graphe de g ademt une asympyote en +∞.

5. On suppose que f admet une limite finie finie en −∞, que peut-on dire de g en −∞ ?

6.18

Soit f de classe C∞ de I dans R où I est intervalle contenant 0.
On pose

f (x) = (1 + cos(x))tan(x)

1. Déterminer l’ensemble de définition de f .

2. Etudier le comportement de f aux bornes de son ensemble de définition.

3. Etudier les variations de f .

4. Tracer la courbe représentative de f .

6.19

Soit f de classe C∞ de I dans R où I est intervalle contenant 0.
On pose

f (x) = (1 + sin(x))cos(x)

1. Déterminer l’ensemble de définition de f .

2. Etudier le comportement de f aux bornes de son ensemble de définition.

3. Etudier les variations de f .

4. Tracer la courbe représentative de f .
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6.20

Soit f de classe C∞ de I dans R où I est intervalle contenant 0.
On pose

g(x) =
f (x)− f (0)

x
si x ̸= 0

1. Démontrer que g se prolonge en une fonction de classe C1 de I dans R.

2. Démontrer que g se prolonge en une fonction de classe C∞ de I dans R.

51



6.21

Soit f de ]− π ; π[ dans R définie par

∀x ∈
{
−π

2
; 0 ;

π

2

}
f (x) =

1
sin(x)

− 1
tan(x)

1. Déterminer f
(
−π

2

)
; f (0) ; f

(π

2

)
.

2. Etudier la dérivabiité de f .

3. Démontrer que f est de classe C∞ sur son ensemble de définition.

4. Etudier f et tracer sa représentation graphique.
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6.22 Fonction 1−lipschitzienne sur [0 ; 1]

Soit f une fonction numérique d’une variable réelle définie sur [0; 1] et vérifiant les propriétés
suivantes : {

f (0) = f (1)
∀x1 ∈ [[0 ; 1] ∀x2 ∈ [0; 1] où x1 ̸= x2 | f (x1)− f (x2| < |x1 − x2|

Démontrer que ∀x1 ∈ [0 ; 1] ∀x2 ∈ [0 ; 1] avec 0 ≤ x1 < x2 ≤ 1 on a | f (x1)− f (x2)| ≤
1
2

6.22.1 Démonstration

Soient x1 ∈ [0 ; 1] et x2 ∈ [0 ; 1] avec 0 ≤ x1 < x2 ≤ 1.
De deux choses l’une :

• ou bien | x2 − x1 |< 1
2

. Or | f (x1)− f (x2 |<| x1 − x2 | donc | f (x1)− f (x2 |< 1
2

. CQFD.

• ou bien | x2 − x1 |≥ 1
2

Cela veut dire que x2 − x1 ≤ −1
2

ou x2 − x1 ≥ 1
2

.

Mais comme x2 > x1 alors il ne reste qu’un seul cas x2 − x1 ≥ 1
2

D’après l’inégalité triangulaire, on obtient :
| f (x1)− f (x2 |≤| f (x1)− f (0) | + | f (0)− f (1) | + | f (1)− f (x2) |
d’où | f (x1)− f (x2 |≤| x1 − 0 | + | 0 | + | 1 − x2 |
Donc | f (x1)− f (x2)| ≤ x1 + 1 − x2

Or x2 − x1 ≥ 1
2

donc x2 ≥ x1 +
1
2

d’où −x2 ≤ −x1 −
1
2

.

Par conséquent, x1 + 1 − x2 ≤ x1 + 1 − x1 −
1
2

Donc | f (x1)− f (x2| ≤
1
2

. CQFD.
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6.23 EMLyon 09 - Ex 1 - Partie 1

On note f : R 7→ R définie , pour tout x ∈ R par :

f (x) =


x

ex − 1
si x ̸= 0

1 si x = 0

Rappel : On admet la Formule dite de Taylor-Young :
Si g est de classe Cn sur un intervalle de bornes a et a + h et admet une dérivée d’ordre

n + 1 en a alors g(a + h) = g(a) +
h
1!

g′(a) + · · ·+ hn

n!
g(n)(a) +

hn+1

(n + 1)!
[g(n+1)(a) + ε(h)] avec

lim
h 7→0

ε(h) = 0.

Partie 1

1. (a) Montrer que f est continue sur R

(b) Justifier que f est de classe C1 sur ]− ∞; 0[ et sur ]0;+∞[ et calculer f ′(x) pour tout
x ∈]− ∞; 0[ ∪ ]0;+∞[

(c) Montrer que lim
x 7→0

f ′(x) = −1
2

(d) Etablir que f est de classe C1 sur R et préciser f ′(0)

2. (a) Etudier les variations de l’application u : R 7→ R, définie pour tout x ∈ R par :

u(x) = (1 − x)ex − 1

(b) Montrer que
∀x ∈ R, f ′(x) < 0

(c) Déterminer les limites de f en −∞ et en +∞.
Dresser le tableau des variations de f .

(d) Montrer que la courbe représentative de f admet une droite asymptote , lorsque la
variable tend vers −∞.

(e) Tracer l’allure de la courbe représentative de f

6.23.1 Corrigé Analyse EMLyon 09

On note f : R 7→ R définie , pour tout x ∈ R par :

f (x) =

{ x
ex − 1

si x ̸= 0

1 si x = 0

Partie 1

On peut d’abord remarquer que

1. ex − 1 = 0 ⇐⇒ ex = 1 ⇐⇒ x = 0

2. ex − 1 > 0 ⇐⇒ ex > 1 ⇐⇒ x < 0
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3. ex − 1 < 0 ⇐⇒ ex < 1 ⇐⇒ x < 0

Donc l’ensemble de définition de f est R car
x

ex − 1
existe si x ̸= 0 et f (0) existe car f (0) = 1

1. (a) i. la fonction f est continue sur R∗ car
• la fonction x 7→ x est continue sur R∗ car elle est continue sur R en tant que

fonction polynôme
• la fonction x 7→ ex − 1 est continue sur R∗ car elle est continue sur R car x 7→ ex

et x 7→ 1 sont continues sur R

• ex − 1 ne s’annule jamais sur R∗

ii. la fonction f est continue en 0 car lim
x 7→0

f (x) = 1 = f (0).

en effet, lim
x 7→0

x
ex − 1

= 1 car lim
x 7→0

ex − 1
x

= lim
x 7→0

ex − e0

x − 0
= (exp)′(0) = 1.

iii. Par conséquent f est continue sur R

(b) la fonction f est de classe C1 sur ]− ∞; 0[ car
• la fonction x 7→ x est de classe C1 sur ]− ∞; 0[ car elle est de classe C1 sur R en

tant que fonction polynôme
• la fonction x 7→ ex − 1 est de classe C1 sur ]− ∞; 0[ car elle est de classe C1 sur R

car x 7→ ex et x 7→ 1 sont de classe C1 sur R

• ex − 1 ne s’annule jamais sur ]− ∞; 0[
la fonction f est de classe C1 sur ]0;+∞[ car
• la fonction x 7→ x est de classe C1 sur ]0;+∞[ car elle est de classe C1 sur R en tant

que fonction polynôme
• la fonction x 7→ ex − 1 est de classe C1 sur ]0;+∞[ car elle est de classe C1 sur R

car x 7→ ex et x 7→ 1 sont de classe C1 sur R

• ex − 1 ne s’annule jamais sur ]0;+∞[
Par conséquent, f est de classe C1 sur ]− ∞; 0[ et sur ]0;+∞[.
Pour tout x ∈]− ∞; 0[ ∪ ]0;+∞[ on a :

f ′(x) =
1(ex − 1)− xex

(ex − 1)2 =
ex − 1 − xex

(ex − 1)2 =
u(x)

(ex − 1)2

(c) • Par la méthode directe lim
x 7→0

f ′(x) aboutit àune indétermination du type ”
0
0

” car

lim
x 7→0

ex − 1 − xex = 0 et lim
x 7→0

(ex − 1)2 = 0

• On va lever cette indétermination en considérant d’après Taylor-Young, un déve-
loppement limité d’ordre 2 de exp au voisinage de 0 car exp est de classe C1 au
voisinage de 0 et exp(2) existe au voisinage de 0 puisque exp est de classe C+∞ sur
R :

au voisinage de 0 , ex = 1 + x +
x2

2
+

x2

2
ε(x) avec lim

x 7→0
ε(x) = 0

• Alors au voisinage de 0 on a donc :

f ′(x) =
ex − 1 − xex

(ex − 1)2 =

1 + x +
x2

2
+

x2

2
ε(x)− 1 − x

(
1 + x +

x2

2
+

x2

2
ε(x)

)
(

1 + x +
x2

2
+

x2

2
ε(x)− 1

)2

=
x +

x2

2
+

x2

2
ε(x)− x − x2 − x3

2
− x3

2
ε(x)(

x +
x2

2
+

x2

2
ε(x)

)2
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=

−x2

2
− x3

2
+

(
x2

2
− x3

2

)
ε(x)(

x +
x2

2
+

x2

2
ε(x)

)2

=

x2
[
−1
2

− x
2
+ (

1
2
− x

2
)ε(x)

]
x2
[
1 +

x
2
+

x
2

ε(x)
]2 =

−1
2

− x
2
+

(
1
2
− x

2

)
ε(x)[

1 +
x
2
+

x
2

ε(x)
]2 =

n(x)
d(x)

.

Or lim
x 7→0

n(x) =
−1
2

et lim
x 7→0

d(x) = 1 donc lim
x 7→0

f ′(x) = −1
2

(d) i. Comme f est de classe C1 sur R∗

ii. Comme lim
x 7→0

f ′(x) = −1
2

iii. Alors d’après le théorème de prolongement de la classe C1 on a :
A. f est dérivable en 0

B. f ′(0) = −1
2

C. f est de classe C1 sur R

2. (a) soit u(x) = (1 − x)ex − 1 alors
• Du = R

• u est dérivable sur R car
— u est la différence de x 7→ (1 − x)ex et de x 7→ 1
— x 7→ (1 − x)ex est dérivable sur R car x 7→ 1 − x et x 7→ ex sont toutes deux

dérivables sur R

— x 7→ 1 est dérivable sur R

• ∀x ∈ R on a u′(x) = 1ex + (1 − x)ex = −xex du signe de −x car ∀x ∈ R on a
ex > 0. par conséquent,
— sur ]− ∞; 0[ on a u′(x) > 0 donc u y est strictement croissante
— en 0 u′(x) = 0
— sur ]0;+∞[ on a u′(x) < 0 donc u y est strictement décroissante
— Comme u(0) = 0
— On en déduit le tableau de variations suivant :

x −∞ 0 +∞
u′(x) + 0 −
u(x) ↗ 0 ↘

(b) On a donc
• u(x) = 0 ⇐⇒ x = 0
• ∀x ̸= 0 u(x) > 0
• Comme (ex − 1)2 > 0

• Or nous savons que ∀x ̸= 0 on a f ′(x) =
u(x)

(ex − 1)2 alors

— ∀x ̸= 0 f ′(x) < 0

— Or f ′(0) = −1
2
< 0

— donc ∀x ∈ R f ′(x) < 0
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(c) • lim
x 7→−∞

f (x) = +∞ car lim
x 7→−∞

x = −∞ et lim
x 7→−∞

ex − 1 = −1 puisque lim
x 7→−∞

ex = 0+

• lim
x 7→+∞

f (x) = 0+ car

— f (x) =
x
ex

1

1 − 1
ex

— lim
x 7→+∞

x
ex = 0+ puisque lim

x 7→+∞

ex

x
= +∞

— lim
x 7→+∞

1 − 1
ex = 1 puisque lim

x 7→+∞

1
ex = 0+

On peut donc dresser le tableau des variations de f .

x −∞ 0 +∞

f ′(x) − −1
2

−
+∞

f (x) ↘ 1
↘ 0

(d) • Comme lim
x 7→+∞

f (x) = 0+ alors la courbe représentative de f admet l’axe des abs-

cisses comme asymptote au voisinage de +∞
• Comme lim

x 7→−∞
f (x) = +∞ nous allons étudier cette branche infinie :

— lim
x 7→−∞

f (x)
x

= lim
x 7→−∞

1
ex − 1

= −1

— Alors lim
x 7→−∞

f (x)− (−x) = lim
x 7→−∞

x
ex − 1

+ x = lim
x 7→−∞

x + xex − x
ex − 1

= lim
x 7→−∞

xex

ex − 1
= 0

car lim
x 7→−∞

xex = 0 et lim
x 7→−∞

ex − 1 = −1 car lim
x 7→−∞

ex = 0

— Par conséquent, la courbe représentative de f admet la droite D : y = x comme
asymptote au voisinage de −∞.

(e) Voici l’allure de la courbe représentative de f :
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