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"En mathématiques, nous sommes d’avantage des serviteurs que des maitres."
Hermite

Une fonction numérique peut s’étudier en 10 points sauf dans les cas suivants ou ’on peut dessiner
sans étude la courbe C; dans un repére R = (0; ¢, j ) :

1. La fonction affine z - ax +botiaeRetbeR:
la courbe représentative est une droite d’équation y = ax + b.
Pour tracer cette droite, il suffit de déterminer deux de ces points . Pour cela 2 méthodes possibles :
e Méthode 1 :
— Placer le point ordonnée a Porigine B(0;b) puisqu’en faisant @ = 0 on obtient y = a(0) + b =1
— Puis en utilisant la pente a, en partant du point B et en avancant d’une unité de longueur
parallélement a I’axe des abscisses puis on monte ou descend de la pente a parallélement & ’axe
des ordonnées, placer le point A(1;b+ a)
En effet, pourx =lonay=a(l)+b=a+b
e Méthode 2 : Déterminer les points d’intersection de cette droite avec les deux axes :
— Le point d’intersection avec I’axe des ordonnées on obtient ’'ordonnée a l'origine B(0; b) puisqu’en
faisant z = 0 on obtieny y = a(0) + b =15
— Dans le cas ou la pente a # 0 alors le point d’intersection avec ’axe des abscisses est le point

b b
A(—f;()) puisque y =0 <= ax+b=0 < == ——
a a

— Dans le cas oul la pente a = 0 la droite a pour équation y = b et est donc paralléle a 'axe des
ordonnées.

2. La fonction partie entiére z — [z] = le plus grand entier relatif précédant x qui est une fonction
en escalier définie sur R, continue sur chaque segment ouvert |n;n + 1[ ott n € Z et continue a droite
en tout n € Z

ax+b

cr+d

la courbe représentative est une hyperbole d’équation y =

3. La fonction homographique = — ouc#0etad—>bc#0:

ayant pour asymptotes les droites
cr+d

) . d a o . .. .
d’équation x = —— et y = — et pour centre de symétrie le point d’intersection de ces 2 asymptotes :
c

o2
CcC C

4. La fonction trinéme z — ax? + bz +cotta #0 :

b A
sa courbe représentative est une parabole de sommet 2 (—2—; —4—) ol A = b? — 4ac et d’axe de
a a
b
symétrie la droite D : x = o
a

5. les 4 fonctions circulaires © — sin(z), © — cos(z) , ¢ — tan(z) et x — cotan(x)

6. la fonction f = —g:
si I’on connait C, alors C; est I'image de Cy par la symétrie d’axe ’axe des abscisses.

7. la fonction f = |g| :

si I'on connait C, alors Cy coincide avec C, pour tout x tel que g(x) > 0 et Cy coincide avec C_, pour
tout z tel que g(z) < 0.






3 PARITE, IMPARITE,PERIODICITE

1 Ensemble de définition

Déterminer I’ensemble de définition de f s’il n’est pas donné directement par ’énoncé.

2 Simplification éventuelle de f(z)

Simplifier si cela est possible f(z).
Attention, il ne faut jamais simplifier avant d’avoir cherché ’ensemble de définition..
2

A

-1
Exemple, pour f(x) = p— onaDy=R—-{l}etVxeD; f(z)=x+1

3 Parité, imparité,périodicité

Une fonction f est paire dans un repére R = (O, 7, 7) lorsque les 2 conditions suivantes sont réalisées :
1. Dy est centré en 0 c’est-a-dire Dy admet O comme centre de symétrie c’est-a-dire Vo € Dy, ona —x € Dy
2. Vz € Dy,ona f(—z) = f(x)
Lorsque f est paire dans un repére R = (O,
y = 0 comme axe de symétrie.

- =
i, j ) alors Cradmet I’axe des ordonnées, la droite d’équation

)

Une fonction f est impaire dans un repére R = (O, ¢, j ) lorsque les 2 conditions suivantes sont réalisées :
1. Dy est centré en 0 c’est-a-dire Dy admet O comme centre de symétrie c’est-a-dire Vo € Dy, ona —x € Dy
2. Vz € Dy, ona f(—z) = —f(z)

Lorsque f est impaire dans un repére R = (O, 7, j

i ) alors C; admet le point O comme centre de symétrie.

Une fonction f est périodique de période T > 0 dans un repére R = (O, i, j ) lorsque les 2 conditions
suivantes sont réalisées :

1. V€ Dy,onax+T € Dy
2.VzxeDy,ona f(x+7T) = f(z)

- =
Lorsque f est périodique de période T dans un repére R = (O, ¢, j ) alors Cy est globalement invariante

bl

par la translation horizontale de vecteur ti .

3.1 Axe de symétrie
La droite D : x = a dans le repére R est un axe de symétrie de Cy

T
N , - , . N . ,
Dans le repére R’ = (Q(a,0)r; i, 7 ) la courbe a pour équation ¥ = g(X) ou g est paire dans R’.
On utilise pour cela les _f)ognules de changement de coordonnées : oo
M (z,y) dans R = (O; i, j )a pour coordonnées ((X,Y) dans R'=(Q; i, j)avec X =z —aetY =y
T

Pour tout h tel que a+h € Dy onaa—h € Dy et f(a+h)= f(a—h)

)

Pour tout = tel que € Dy on a 2a —x € Dy et f(2a — z) = f(z)
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3.2 Centre de symétrie

Le point Q(a;b)r est un centre de symétrie de Cy

)

- =
Dans le repére R’ = (Q; 7, j ) la courbe a pour équation Y = g(X) o g est impaire dans R’.

On utilise pour cela les _f}ognules de changement de coordonnées : oo

M(z,y) dans R = (O, i, j )a pour coordonnées ((X,Y) dans R' =(Q; i, j)avec X =z —aetY =y—b

0

Pour tout h tel que a+h € Dyonaa—h e Dyet fla+h)+ fla—h)=2b

0

Pour tout = tel que € Dy on a 2a —x € Dy et f(2a —x) =2b — f(x)

4 Dérivabilité ; continuité

1. On étudie d’abord la dérivabilité puis la continuité de f sur les intervalles formant ’ensemble d’étude.
2. On fera une étude spécifique aux points charniéres lors que f est une fonction définie par morceaux.

3. On pourra utiliser le résultat suivant : si une fonction f est dérivable en z( alors elle est continue en xg

5 Etude des variations

5.1 Meéthode 1
On étudie le signe du nombre dérivé f'(z) (lorsqu’il n’est pas évident) en résolvant séparément par équivalence
logique :
1. Péquation f'(x) =0
2. Pinéquation f'(z) >0
Sur tout intervalle I ot f'(z) > 0, f est strictement croissante.
Sur tout intervalle I ou f'(x) < 0, f est strictement décroissante.

5.2 Meéthode 2
Pour déterminer les variations de f, au lieu de déterminer le signe du nombre dérivé, on peut aussi utiliser les
théorémes suivants :

1. La somme g + h de 2 fonctions g et h croissantes sur un intervalle I est croissante sur I

2. La somme g + h de 2 fonctions g et h décroissantes sur un intervalle I est décroissante sur I

3. La composée h o g d’une fonction croissante g sur I et d’une fonction croissante h sur J avec J C f < I >
est croissante sur

4. La composée h o g d’une fonction décroissante g sur I et d’une fonction décroissante h sur J avec
J C f < I > est croissante sur

5. La composée h o g d’une fonction croissante g sur I et d’une fonction décroissante h sur J avec
J C f < I > est décroissante sur I

6. La composée h o ¢ d’une fonction décroissante g sur I et d’une fonction croissante h sur J avec
J C f < I > est décroissante sur



10 REPRESENTATION GRAPHIQUE

6 Etude des limites

On étudie les limites de f aux bornes de ’ensemble d’étude.

7 Tableau de variations

On dresse alors le tableau des variations de f.
Il ne doit pas y avoir de contradiction entre les limites et les variations de f.

8 Tableau des valeurs et points remarquables

On dresse un tableau de valeurs de f(z) en précisant :
o le point d’intersection M(0,£(0)) de C; et de I'axe des ordonnées lorsque 0 € Dy
o les points éventuels d’intersection de la courbe Cy et de I'axe des abscisses. Ces points ont pour abscisses
les solutions éventuelles de I’équation f(z) =0

9 Etude des branches infinies

A Taide des limites , on étudie les branches infinies de Cy (asymptotes, branches paraboliques, directions asymp-
totiques, ...)
Il faut en particulier préciser :

e les points éventuels d’intersection de la courbe et de ses asymptotes

e la position relative de la courbe et des asymptotes.

10 Représentation graphique

On dessine alors C¢ en respectant le type de repére et les unités de longueur imposés par 1’énoncé.
Les pentes des tangentes aux points remarquables doivent étre dessinées.

La courbe doit étre légendée.

Il ne faut pas oublier les symétries et périodicités éventuelles.



11 RETOUR SUR LES BRANCHES INFINIES

11 Retour sur les branches infinies

11.1 Définition

On dit que la courbe représentative Cy de la fonction numérique d’une variable réelle f présente une branche
infinie lorsque 1'on est dans I'un des 4 cas suivants :

1. = tend vers +oo

2. x tend vers —oo

3. f(z) tend vers +oo

4. f(z) tend vers —oo
Attention!!! Deux de ces quatre conditions peuvent apparaitre simultanément.

11.2 Droites asymptotes

1. paralléles a ’axe des ordonnées Lorsque 1’on est en présence d’un des 4 cas suivants :
(a) quand x tend vers z on a f(x) qui tend vers +o00
(b) quand z tend vers xj on a f(z) qui tend vers —oo
(c) quand x tend vers z; on a f(x) qui tend vers +oco

(d) quand z tend vers z; on a f(z) qui tend vers —oo
Alors la droite (D) d’équation © = g est une asymptote verticale & C; au voisinage de x§ dans les

deux premiers cas (resp. , dans les deux derniers cas )
2. paralléles a ’axe des abscisses Lorsque ’'on est en présence d’un des 4 cas suivants :
(a) quand z tend vers 400 on a f(z) qui tend vers yg
(b) quand z tend vers +o0 on a f(x) qui tend vers y,
(¢) quand z tend vers —oc on a f(x) qui tend vers yg-
(d) quand z tend vers —oo on a f(x) qui tend vers y,
Alors la droite (D) d’équation y = yo est une asymptote horizontale & C¢ au voisinage de +o0o dans les
deux premiers cas (resp. —oo dans les deux derniers cas )
3. obliques Lorsque l'on est en présence d’un des 2 cas suivants :
(a) f(x) =ax + b+ e(x) avec xlgr_loo e(z) =0

(b) f(z) =ax+b+e(x)avec lim e(z) =0

T —00
Alors la droite (D) d’équation y = ax + b est une asymptote oblique & Cy au voisinage de +o00 dans le
premier cas (resp. —oo dans le deuxiéme cas)
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11.3 Courbes asymptotes et Positions relatives

Lorsque ’on est en présence d’'un des 2 cas suivants :
o f(z) =g(x)+ e(x) avec lim e(x) =0
x——+00
o f(z)=g(x)+e(x) avec lim e(x) =0
T——00
Alors la courbe C,; d’équation y = g(z) est une courbe-asymptote & C; au voisinage de +oo dans le premier
cas (resp. —oco dans le deuxiéme cas )

11.3.1 Positions relatives d’une courbe et de son asymptote

Pour déterminer les positions relatives de la courbe C; d’équation y = f(x) par rapport a son asymptote
Cyd’équation y = g(z), il suffit d’étudier le signe de la différence f(z) — g(z)
o Les x éventuels annulant f(z) — g(z) sont les abscisses des points d’intersection des courbes Cy et Cg4
o Les x éventuels tels que f(x) —g(x) > 0 sont les abscisses des points tels que la courbe Cy est au-dessus
de la courbe C,
o Les x éventuels tels que f(x)—g(x) < 0 sont les abscisses des points tels que la courbe Cy est en-dessous
de la courbe C,

11.3.2 Exemple : les fonctions hyperboliques sh et ch

8

. et —e " et +e " e e e
1. Soit sh(z) = T,ch(m) = Tyf(x) = 5,9(35) = 77/“?(90) -9
2. Dy, =R donc Vz € Dgj, on a —x € Dyy,. Alors sh(—z) = % = —sh(x) donc sh est impaire

3. Comme la courbe de sh admet O comme centre de symétrie, il suffit d’étudier sh sur RT.
sh est la différence de f et de g qui sont toutes deux dérivables sur R donc sh est dérivable sur R donc
sur RT.
Vz € RT sh/(z) = ch(x) > 0 donc sh est strictement croissante sur R

ona lim sh(z)=+ococar lim e*=+4ocoet lim e *=0
TH—r—+00 THr—+00 TH—r—+00

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de sh :

T —00 0 400
' (x) + 1]+
(x) | —o0 | /10| 2| 400

e*l‘
4. li — = 1l -
Comme hm sh(z) — f(x) m ==

= 0 alors la courbe représentative Cyp, de sh admet comme

asymptote au voisinage de 400 la courbe CY

671‘

5. Comme Vz € R on a sh(x) — f(z) = — 5

< 0 alors Cjp, est en dessous de Cfy

6. Comme lim sh(z)—k(z)= lim % =0 alors la courbe représentative C;; de sh admet comme
T —00 T —00

asymptote au voisinage de —oo la courbe C},
e v+ e
2
8. Comme la courbe de ch admet 'axe des ordonnées comme axe de symétrie, il suffit d’étudier ch sur RY.
ch est la somme de f et de g qui sont toutes deux dérivables sur R donc ch est dérivable sur R donc sur
RT.
Vo € RT ch/(z) = sh(z) > 0 . ch/(x) ne s’annule qu’en 0 alors ch est strictement croissante sur R™

ona lim ch(zx)=4ococar lim e®=+ocoet lim e =0
TH—r—+00 T——400 400

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de ch :

7. Do, =R donc Vo € Dy, on a —x € Dy, Alors , ch(—z) = = ch(x) donc ch est paire

T —00 0 400
f'(z) - 10+
(@) |40 [\ |1 ] /] 400




11.3

Courbes asymptotes et Positions relatives 11 RETOUR SUR LES BRANCHES INFINIES

10.

11.

12.

—T

Comme lim ch(z)— f(z) = lim
T—r+00 T—+00
asymptote au voisinage de 400 la courbe CYy

=0 alors la courbe représentative C.; de ch admet comme

Comme Vz € R V'on a ch(x) — f(z) = 67 > 0 alors Cyy, est au dessus de C

€T

Comme lim ch(z) —g(x) = lim £ —0 alors la courbe représentative Cs;, de sh admet comme
TH>—00 z—>—00 2

asymptote au voisinage de —oo la courbe Cj,
x

Comme Vz € R lon a ch(z) — g(z) = % > 0 alors Cqp, est au dessus de Cj

y=X
y=exp(x}/2 y=exp(-x)/2
48 4 92 24 16 08 08 24 32 4 48

y=-exp(-x)/2
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11.4 Branches paraboliques et directions asymptotiques

On dtermine lim M
T—+o0 X

Alors C; admet

ou cette limite vaut 0

une branche parabolique de direction (Ox)

Exemplef(x) = /z ou f(z) = In(x)

ou cette limite vaut oo

une branche parabolique de direction (Oy)

Ezemplef(z) = 2% ou f(z) = exp(x)

ou cette limite vaut a # 0

On détermine lim f(z) — ax
Tr——400

alors

ou elle vaut b

D :y = ax + b est une asymptote oblique

ou elle vaut oo

D : y = az est une direction asymptotique




12 EQUATIONS F(X) =M ; F(X)=MX

12 Equations f(z) =m ; f(z) =mx

12.1 Application numérique non injective et non surjective

"Je doute, j’hésite, je me trompe, je médite, je change de direction ... donc j’apprends.”
Proverbe khirkize -17éme siécle

Préambule :
Soient F et F' des ensembles. On dit qu’'une relation f de E vers F est une application de E vers F' lorsque tout
élément de E a une image et une seule par f dans F. On appelle f < E > le sous-ensemble de F' , ayant pour
éléments les images des éléments de E par f. On dit qu'une application f de E vers F est injective lorsque
deux éléments quelconques distincts de £ ont deux images distinctes dans F. On dit qu'une application f de
E vers F' est surjective lorsque tout élément de F' a au moins un antécédent par f dans E. On dit qu’une
application f de E vers F' est bijective lorsque f est injective et surjective.
Sujet :
Soit f la fonction numérique d’une variable réelle définie par :
2
etz —1
)= ———
f(@) 2?2+x+1
On appellera (C) sa courbe représentative dans un repére orthonormé.
1. Démontrer que f est bien une application de R dans R

2. Etudier et représenter graphiquement f dans un repére orthonormé. (unité graphique : 3 cm). Préciser
les points d’intersection de (Cy) avec les axes du repére ainsi que son asymptote.

3. Démontrer que (Cf) a un axe de symétrie que 'on précisera.

4. (a) Résoudre graphiquement, en discutant selon m, I’équation suivante (E) : f(x) = m d’inconnue
réelle x et olt m est un paramétre réel

Retrouver les mémes résultats par une méthode algébrique.

L’application f est-elle injective ?

)
)
b) Déterminer I'ensemble-image de R par f noté f <R > .
) L’application f est-elle surjective ? Justifier .

)

L’application f est-elle bijective ? Justifier.

12.2 Corrigé

2
. . . . . +z—1
Soit f la fonction numérique d’une variable réelle définie par f(z) = xzim
2 t+x+1l

On appellera (Cf) sa courbe représentative dans un repére orthonormé R = (O; f, 7)-

1. Df:RcaereRl’onax2+x—lquiexiste ainsi que 22 + 2 + 1 et en plus, 22 + x + 1 # 0 car son

discriminant A = —3 < 0. Comme Dy = R tout réel z a donc une et une seule image f(z) donc f est
bien une application de R dans R
2. (a) Df =R

(b) On ne peut simplifier f(z)
2
-1
(¢) Dy =R est bien centré en 0 mais f(—z) = ;fi—i—l # f(z) et f(—x) # —f(x) donc f est ni paire,
ni impaire dans R = (O;4, ). On étudiera f sur Ey =R.

(d) f étant une fonction fraction rationnelle est donc dérivable donc continue sur son ensemble de défini-

tion : R.Vx € R 'on a :
z+ )22 +z2+1)— (22 +z—-1)(2z + 1)

/
f(I)— ($2_$+1)2
223 + 222 + 2r + 2? + w4+ 1 —[22° + 2% + 222 + 2 — 20 — 1] 4o + 2
N (22 —xz +1)2 (@2 -+ 1)
Comme (22 — z + 1)? > 0 alors le signe de f’(z) est celui du binéme 4z + 2
2
(e) o Comme f est une fonction fraction rationnelle, lim f(z)= lim :% =1
r——00 rT—>—00 I

10
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e lim f(z)= lim — =1
r—r+00 r——+oco I
e donc Cy admet au voisinage de —oo et de 400 la droite (D) d’équation y =1

(f)
I
T —00 3 +00
f'(z) -1 0 |+
1 1

f(z) pN 7
5
3

(8) 1 Crn(0y) ={M(0; f(0))} = {M(0; 1)}
~1-+5 T L)

ii.f(x):O<:>m2+m—1:O<:>x:x’:Toua:: 5
-1-+5 -14+5
done Cy N (Oz) = {M1(——5—;0); Mo(———;0)}
Fir-1_
RPN
3
7@:__7__ - . Diy=m idmil_i___-vmpm:
TR oo amenn
10 5 \ iﬂ ‘I,* . ; n
I ’
Vol
\I‘.]:_‘ f0)=-1
Iy
\:/ Diysm G m=-5/2
4
!/ 1 P
3. Prouvons (Cy) admet D’ : x = —— comme axe de symétrie. Pour cela posons a = —3 alors 2a —x =

o

(a) Pour tout z € Dy =R 'on a bien —1 —2 € Rdonc 2a —x = —-1—2 € Dy
(-1—-2)?2-1-2-1 1+4+2z+22—-1—-2-1 2>+2-1

B) fRa—a) =/l =2 = G =, 71 " irm s —i—sdl 2rarl @

1
(c) Donc (Cy) admet D’ : z = —7 comme axe de symeétrie.

4. (a) Résolution graphique de (E): f(z) =m:
f(xz) = m <= x est I'abscisse éventuelle des points d’intersection de C et de la droite D,, : y =m

5

e ou bien m < —3 alors pas de point d’intersection de Cy et de D,, donc pas de solution pour (E)
) 12

e ou bien m = -3 alors un seul point d’intersection M(_i; g) de C¢ et de Dy,

1
donc une seule solution = = —5 pour (E)
5
e ou bien —- < m < 1 alors deux points d’intersection de C et de D,,, donc deux solutions z’ et

2" pour (E)
e ou bien 1 < m alors pas de point d’intersection de Cy et de D,,, donc pas de solution pour (E)
(b) Résolution algébrique de (E) : f(zx) =m:

2
-1
flz)=m= % =m<<=ritr—1l=m@*+z+1) <= 1-m)z*+(1-m)z—1-m =0
22+

e ou bien m = 1 alors (E) : 0z + 0x — 2 = 0 pas de solution

11
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e ou bien m # 1 donc (E) est bien de degré 2
A=1-m)2=41-m)((=1=m) =1 -m)[(1 —m)+4(1+m)] = (1 —m)(5+ 3m)
A est un trinéme de variable m de racines 1 et %, d’aprés le théoréme du signe du trindéme on

peut donc dire que :

5
m —00 —3
A =m0 3m) T T 7=

-5 —1
i. sim= 3 alors A = 0 donc (E) a une seule solution z = >

il. si 3 <m < 1 alors A > 0 donc (F) a deux solutions z’ et x”

-5
iii. sim < 5 oum> 1 alors A < 0 donc (E) n’a pas de solutions.

-1-v5 , -1+v5  —1-V5 —-1+V5
5 7y ) =0t fl—g—

5. (a) L’application f n’est pas injective car )=0.

§;1[.
3

5
(¢) L’application f n’est pas surjective car f < R > R. En effet, il suffit de choisir un y ¢ [—g' 1] . cet

)

(b) D’apres l’étude des variations de f alors ’ensemble-image f < R >= [—

y n’a pas d’antécédent par f dans ’ensemble de départ R.

(d) L’application f n’est donc pas bijective car f n’est pas injective. On pourrait dire aussi que 'appli-
cation f n’est donc pas bijective car f n’est pas surjective.

12
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12.3 Equations f(z) =m et f(z) = mz

5.0

1. Soit la famille de fonctions numériques d’une variable réelle (f,,) ou m est un parameétre réel et f,, est
définie par

mx3

fm(z) = m

On note C,, la courbe représentative de f,, dans un repére orthonormé R = (O;7, J).
Démontrer que Vm € R C,, admet au moins un point fixe dont on donnera les coordonnées.
2. Soit la fonction f;.
C D

(a) Déterminer des réels A, B,C et D tels que fi(x) = Ax + B + — + a0

Cei s’appelle la décomposition en éléments simples de la fraction rationnelle W
—x

(b) Etudier la fonction f; et représenter f; dans le repére R = (O;7, ).

3. Soit la fonction f_;. Construisez sans étudier f_; sa courbe représentative C_; dans un repére ortho-
normé

4. Construisez aussi sans étudier h la courbe Cj, dans un repére orthonormé lorsque

o P

5. Résoudre graphiquement ’équation suivante d’inconnue réelle x et de paramétre m € R. :
z2 —ma® +2mx —m =0
6. Déterminer graphiquement, le nombre et le signe des solutions de ’équation d’inconnue z :

23(1 —m) + 2ma® —mz =0

7. Retrouvez les résultats de la question précédente par une méthode algébrique.

12.3.1 Corrigé

1. e ma? existe pour tout réel z
e (1 — x)? existe pour tout réel x
e (1-2?=0<+=1-2=0 << z=1
Par conséquent, ’ensemble de définition de f,, est R — {1}.

03
Il est évident que si z = 0 alors f,,(0) = i =0.

(1-a)?
Donc Vm € R C,, admet au moins un point fixe O (

3

BN

C D @ (Az+B)(x—-1?+C(1—-=2)+D
1 =A B =

(@) Vol file)=det By Tt e < Toap (1—a)

— *=(Ar+B)(1-2)’+C(l—-2)+D = 2*=(Ar+B) (1 -2z +2*)+C(1—2)+ D
A=1

— 3=A2® +2?(B-24A)+2(A-2B+C)+B+C+ D < B-24=0
A-2B-C=0
B+C+D=0

par identification des coefficients des monomes respectifs.
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12.3 Equations f(x) =m et f(z) = ma 12 EQUATIONS F(X)=M ; F(X)=MX

A=1
C D B=
Donc Vx # 1 fl(x):AaL“—i—B—F1_x—|—(1_x)2 = C—_3
D:
Par conséquent,
x> 3 1
V. 1 — = 2 —
vAl g Tt i AT

(b) e f1 est une fonction rationnelle car c’est le quotient de deux fonctions polynémes donc f; est
dérivable (donc continue)sur son ensemble de définition Dy, =R — {1}
o 32?(1—a)? 2?2 (1)1 —2) 2*(1-2)B1—=x)+2z) 2*(1—x)(3—x)

!
Pt T 1o T e d-ap
Comme Vz # 1 (1 —2)* > 0 alors le signe de f’(z) est celui de z?(1 — 2)(3 — )
[ ]
T —00 0 1 3 +00
z? + (0] + + +
(1-2)3—x) + + 0 -1 0|+
(1—a)* + + 0 + +
f(x) + 0] + 1 -1 0|+
+oo ||+ o0 +o0
/ |
0 | hY /!
f(x) / |
27
- I v
I
e — f(0)=0
— ="
— i lim fi(z) =4oocar lim 2® =1et lim (1—2)>=0"
r—1- =1 1"

ii. lim fi(z)=+occar lim z®=1et lim (1—2)*>=0"
1+ 1+ 1t

iii. La courbe de f; admet pour asymptote verticale la droite d’équation z = 1
3

— i lim fi(zx)= lim — = lim z=+o0
x——+00 r—>—00 1’2 r—>—+00
ii.
23
iii. lim fi(z)= lim — = lim z=-
T —00 2 —00 12 T —00

iv. Etudions ces deux branches infinies :

3 3
A limz — JrooM =limx — Jrooxi =limx — +oo:i =1
x (1 —x)? x3
3 3 _ 1— 2
B. limz — +oof(x) —z =limz — oo —z = limz — —|—oou
(1—a)? (1 —a)?
22
=limz — foo—F =2
x

C. idem au voisinage de —oo

D. Par conséquent, au voisinage de —oo et au voisinage de +oo la courbe de f admet
comme asymtote oblique la droite d’équation y = x + 2

14



12.3 Equations f(z) =m et f(x) = mz 12 EQUATIONS F(X)=M ; F(X)=MX

3
—x
—)2 = — f1(x) donc sa courbe représentative C_; en vert est 'image de la courbe rouge
x

3. e f—l(x) = (1_

C; par la symétrie orthogonale d’axe I'axe des abscisses dans le repére orthonormé

8
r/:]ﬂ)):ﬁ:—[luw
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12.3 Equations f(x) =m et f(z) = ma 12 EQUATIONS F(X)=M ; F(X)=MX

- h@)
——— = fi(x)six >0
A N |23 (1-12)2
M= E e Ty
(1_73:)2 = ffl(l') S1X S 0
e Par conséquent, C — h coincide avec la courbe verte C_; sur | — 00;0] et avec la courbe rouge C; sur
[05 +o0]
10 ‘ |
N\ :
AN
N
N
N\
\ |
A\
\\ 2,
N\ |
N

5. Soit (E) l'équation d’inconnue z :

22— maz?+2mz—m =0

e L’ensemble de définition de cette équation est D =R
eVzeR 22 —ma?+2mr—m=0 < 23 =m(2? -2z +1) = 23 =m(l —2)?
— ou bien x =1
mais alors (E) <= 1 =0 donc z = 1 ne peut étre solution de cette équation.
— ou bien x # 1

alors (F) < =m < f(z)=m

23
(1—=)?
<= =z est ’abscisse des points éventuels d’intersection de Cy, et de la droite d’équation y = m
Par conséquent,

— si m < 01l y a une seule solution ' < 0
— sim = 0il y a une seule solution '’ =0

27
— siO<m<Zilyauneseulesolution0<x’<1
27
— sim= — ily a deux solutions 0 < 2’ < 1let 2”7 =3

.27 . . .
—81Z<m11yatr01ssolut10ns()<x’<1; l<a” <3et3<a”

1
xn
y=moi = <m
yFmon 7

' 27
V=7

16



12.3 Equations f(x) =m et f(z) = ma 12 EQUATIONS F(X)=M ; F(X)=MX

6. Soit (F) I'équation d’inconnue z :
23(1 —m) + 2ma? — mz =0

e [’ensemble de définition de cette équation est D = R
eVzeR 23(1—m)+2ma? —mz=0 < 22 =mz® - 2ma?+mr < 23 =ma(2? -2z +1)
< 23 =ma(l —2)?
— oubienz =1
mais alors (F) <= 1 =0 donc = 1 ne peut étre solution de cette équation.
— ou bien x # 1

alors (F) <—

3

1—1x)2
<= T est l’absc(isse dls points éventuels d’intersection de Cy, et de la droite d’équation y = ma
Par conséquent,
— si m < 0 il y a une seule solution z =0
— sim =01l y a une seule solution z =0
— si0<m<1ily atrois solutions ' <0; z=0et 0 <z’ <1
— sim=1ily adeux solutionsz =0et 0 <z’ <1
— sil<milyatroissolutionsz=0; 0<2’'<1; 1<z

=mr < f(z)=mz

b))

17



12.3 Equations f(x) =m et f(z) = ma 12 EQUATIONS F(X)=M ; F(X)=MX

7. On peut retrouver les résultats de la question précédente par une méthode algébrique :
23(1—m)+2ma? —mz =0 < z[z*(1-m)+2mz—m]=0 < z=0ouz*(1—m)+2mx—m =0
Etudions I'équation (G) : 2%(1 —m) + 2mx —m = 0.

1
(a) ou bien m = 1 alors z2(1 —m) +2mzx —m =0 < 2r—1=0 < z=3

(b) ou bien m # 1 alors I’équation est de degré 2.
A=(2m)?—4(1—-m)(—m) =4 m? — 4m?> +4m = 4m
e ou bien m < 0 alors A < 0 donc (G) n’a pas de solution.

—2m 0
eoubienm=0alors A=0etz =——"-—==-=0
20—-m) 2
e ou bien m > 0 alors A > 0 et (G) a deux solutions x’ et x”.
c —-m m
Le produit de ces deux solutions P = z'2” = — = = est du signe de m — 1 car
a 1—-m m —
m > 0.
— sim < 1 alors P < 0 donc 2’ et 2”7 sont de signes contraires.
—b 2m
— sim > 1 alors P > 0 donc z’ et 2” ont le méme signe : celui de leur somme S = — = —
a m—

qui est du signe de m — 1 car m > 0 donc S > 0 d'on 0 < o’ < 2”..
e On retrouve bien les résultats précédents : Par conséquent,
— sim < 01il y a une seule solution = = 0
— sim =01l y a une seule solution z = 0
— si0<m < 1ily a trois solutions 2/ < 0;z =0et 0 <2’ <1
— sim=1ily adeux solutionsz =0et 0 <z’ <1
— sil<milyatroissolutionsz=0; 0<z' <1; 1<a”

18



13 AUTRES EXERCICES

13 Autres Exercices

13.1 f(z)=2a"

I Etudier et représenter la fonction numérique f définie par f(x) = z®.

On sait que pour Va >0 VbeR ab = eb (@) Donc 2® = e* (),

1. Dy = {z/zin(z) existe } = {x/In(z) existe } = RT* =]0; 00|

2. f est dérivable sur ]0; +oo[ car :
e f est la composée de = — xin(z) et de exp
o = +— zin(x) est dérivable sur |0; 4+o00[ car elle est le produit de = — fonction polynéme dérivable sur
R donc sur |0; +o00[ et de In dérivable sur ]0; +o00]
o Vx>0 zln(z)eR
e exp est dérivable sur R.

3. En utilisant la formule (e*)" = v'e" et (uv) = v'v 4+ wv’
1
Ve >0 f'(x) = (zln(x)) e = (1in(z) + z—)e*™®) = (In(z) + 1)@
x

Comme e*™(®) > ( alors le signe de f(z) est celui de In(x) + 1
o f'(2) =0 < In(z)+1=0 < In(z) = -1 < exp(in(z)) = exp(—1) car exp est bijective

1 1
— r=e€ — T = -
e
o /() >0 <= In(z)+1>0 < In(x) > -1 < exp(in(z)) > exp(—1) car exp est strictement
croissante 1
= x>l = -
e
1
e Sur |0; —| f'(z) < 0 donc f est strictement décroissante
e
e Sur |—;+o0| f'(x) > 0 donc f est strictement croissante
e

1 1 1
Enz=- f'(x) = 0 et change de signe alors f admet un minimum qui vaut f (7> =exp (7>
e e e

4. e Quand z tend vers 01 alors zln(z) tend vers 0~ alors e**™(®) tend vers ¢ = 1.
C; a donc un point limite le point de coordonnées (0;1)
e Quand 2 tend vers +oo alors zln(z) tend vers +oo alors e®™(*) tend vers 400

= = 2! = exp((z — 1)In(z)) tend vers +o00 quand x tend vers +oo donc présente au
T

voisinage de +oo une branche parabolique de direction I’axe des ordonnées.
[ ]

T 0 é 400
f'(z) -1 0+
1 +00
@ | N |
le

On peut remarquer que f(1) = 1' = 1, la pente de la tangente au point de coordonnées (1;1) est f/(1) =1
On peut remarquer que f(2) =2%2=14.
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13.2 Inégalité des accroissements finis 13 AUTRES EXERCICES

8
C:y=x" = exp(xin(x))
-2
13.2 Inégalité des accroissements finis
13.2.1 Encadrement
1. Démont Yn e N* T ! <vn+1 \/_<1
o emontrer que vn ona: ——— n — n —
E 2vn+1 "~ ~ 2v/n

2. Trouver une valeur approchée de In(7) en utilisant U'intervalle [3; ]

—_

1
3. Démontrer que Vn € N* 'on a : oo <lin(n+1)—In(n) < —

3

4. Soient les réels a et S tels que 0 < a < 8 < g

Démontrer que cils%gz) < tan(pB) — tan(a) < cfs+£)'
En déduire un encadrement de tan(0,78) et de tan(0, 8)
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13.2 Inégalité des accroissements finis 13 AUTRES EXERCICES

1 x 1 x+1
13.2.2 Sens de variation des fonctions = — (1 + 7) et de z — (1 + 7>
T T

1. A l'aide du théoréme des accroissements finis, démontrer que
Vr>0  — <in(@+1)— in(z) < &
z — <lIn(x —In(z) < —
z+1 T

2. En déduire le sens de variations et la limite en +o0o des fonctions f et g définies sur R™* par

flx) = (1 + é)x et g(x) = (1 4= i)mﬂ

1. e Commex >0onposea=zetb=x+1ldonca<beta—-b=z+1—x=1.
e [n est continue sur [x ; x + 1] car In est continue sur |0 ; +ool et [z ; 4+ 1] C0; +oof
e [n est dérivable sur |z ; « + 1 car In est dérivable sur |0 ; +ool et |z ; o+ 1[C 0 ; +oo]
e Donc d’aprés le théoréme des accroissements finis on peut dire :
1
Je€lr; z+1] In(z+1) —In(z) = (In) (c) = -
c
1 1 1
e Par conséquent, comme x < ¢ < x + 1 alors 1 < — < — donc
x c oz
Vo >0 1<l(+1)l()<1
x o1 Sinle n(z) <~
1\* 1 1
2. e Soit f définie sur R par f(x) = (1 + 7) = exp {x In (1 + 7)} =exp {x In (x—'_ )}
x x x

o Vr>0 f(z)=-explz(In(x+1)—In(x)] = explz In(z+ 1) — z In(z)]
o f est dérivable sur R**
oV >0 f'(z)=[zln(z+1)—xin(z)] explr in(x +1) —z In(z)]

fl(z) = _1 In(z+1)+=x

—1In(z) — xé} explz In(x + 1) — x In(x)]

z+1
f(z) = _ln(x +1)—In(z) + xL—i—l — 1| explz In(z+1) — z In(z))
fl(z) = _ln(az +1) —in(z) + %} explz In(x + 1) — z In(x)]
fl(z) = _ln(x +1) —In(z) — %-1-1} explz In(x + 1) — x In(x)]

1
¢ Le signe de f/(z) est celui de h(z) = {ln(x +1) —In(z) — ) e explz In(z+1)—z In(z)] >0
x

* h est dérivable sur |0 ; +oo]
* Yz >0ona:

B (x) = 22

-1 -1 1 —(z+1)+= -1
L‘Fl_(z+1)2_x(:r+1)+(x+l)2_ z(x+1)2 z(z+1)

x

* VYo > 0onah/(z) <0 donc h est strictement décroissante sur |0 ; +oo|

x+1 (x +1
x

*x Or lim =1donc lim In
r—r+00 x T—r+0o0

x Comme h est strictement décroissante sur |0 ; +oo[ et que lirf h(z)=0
alors Vx >0 h(z) >0
o Par conséquent, Vo >0 f’(z) = h(xz) > 0 donc f est strictement croissante sur |0 ; +oo|
o lim f(z)=ecar
r—r+00

1
) = 0. Comme de plus, lim s Oalors lim h(z)=0
T—r

+oo x + T—+00

1
1\° 1\° o {H*}
*enposanty:<1+f> alorsl(y):ln{(lJrf) }:xln {1+7} S e— L
T x T 1
1 In(l+h v
* En posant h = — alors ln(y):%
T

21



13.2 Inégalité des accroissements finis 13 AUTRES EXERCICES

In(14+h) In(l+h)—In(1)

* Quand z — +o0 alors h — 0 d’ou In(y) = - = T — = (In)'(1) =1 item
[*] xgrfoo In(y) = }?L% In(y) =1 done wgr}rlooy =exp(l) =e
¢ Voici alors le tableau des variations de f :
T 0 400
f'(x) +
e
f(z) /

x+1
e Soit g définie sur R** par g(x) = (1 + é) = f(x) (1 + %) = f(z) + ;f(fﬂ)

1
o Comme z — (1 + 7) et que f est dérivable sur ]0 ; +oo[ alors g qui est le produit des ces deux
x

fonctions est alors dérivable sur |0 ; +ool.

o *Vr>0 g(x)= <1+31U>m+1 = exp {(w+1)ln <1+%>} = exp {(x%—l)ln(x:l)}

g(z) = expl(x + D[in(z + 1) — In(z)]] = exp[(z + Din(z + 1) — (z + 1)in(x)]

* V>0 ¢(x)=[z+1in(z+1)— (z+1)in(z)] exp[(z+ Din(z+ 1) — (z + 1)in(z)]
Comme exp[(x + 1)In(xz + 1) — (z 4+ 1)In(x)] > 0 alors le signe de ¢'(z) est celui de v/(z) avec
u(z) =[x+ Din(z+1) — (xl—l— 1)in(z)].

*x u'(z)=In(z+1)+ (x + 1)m —In(x) — (z + 1)5
u'(z) =In(z+1)4+1—In(z) — JTTH =in(z+1)+1—In(z)—1— 1 In(x+1) —In(z) — !

X €T

* Or d’aprés la question précédente on sait que In(z 4+ 1) — In(x) < — donc u/(z) < 0 donc
x
g'(z) <0 d’on g est décroissante sur |0 ; +ool.
1 1
C = — t li =ecet li —=0al i =
o Comme g(x) = f(z) + xf(a:) et comme lim fx)=ee Jm — alors lim glzr)=e

¢ On peut alors dresser le tableau des variations de ¢ :

€T 0 +o0
g (z) +
g9(z) N
(&
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13.3 Etude dérivabilité et continuité d’une fonction définie par morceaux 13 AUTRES EXERCICES

13.3 Etude dérivabilité et continuité d’une fonction définie par morceaux

Soit f une fonction numérique d’une variable réelle définie par

[ O0siz=0
f(x)_{exl? siz#0

Démontrer que f est continue sur R*

Démontrer que f est continue en 0. Conclusion ?
Démontrer que f est paire.

Démontrer que f est dérivable sur R*.

Démontrer que f est dérivable en 0. Conclusion ?

® &> 80 =

Représenter graphiquement la fonction f.
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13.4 Etude de la fonction hyperbolique x +— th(x) 13 AUTRES EXERCICES

13.4 Etude de la fonction hyperbolique = +— th(zx)

Soit f une fonction numérique d’une variable réelle définie par

e —e ™ sh(x)
flo) = e +e* ch(z) th(z)

Etudier la fonction f. Représenter graphiquement la fonction f dans un repére.
Démontrer f est bijective et admet une bijection réciproque Argth définie sur J =] — 1;1]
Démontrer que Vx € R f'(z) =1-[f(2)]*

En déduire que Argth est dérivable sur J et déterminer (Argth)’(y) pour tout y € J.

= 80 N =
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13.5 Intersection de deux courbes 13 AUTRES EXERCICES

13.5 Intersection de deux courbes

5 33z +5
Soient les fonctions suivantes f et g définies respectivement par f(z) = 2x*+ 23 — 3z + i et g(x) = %
x
Soit le repére orthonormé R = (O; 1, 7).
1. Etudier la fonction f et représenter graphiquement la courbe C; de f dans le repére R
2. Etudier la fonction g et représenter graphiquement la courbe C, de f dans le méme repére R

3. Démontrer que les deux courbes coupent ’axe des ordonnées au méme point A dont on déterminera
les coordonnées.

4. Démontrer que les tangentes en A aux deux courbes sont perpendiculaires.

13.5.1 Corrigé

> restart;

. i, 5
> frmxord e P —3as
[=x=22x +x -3x el
43 . 5
frx-2i @ -3xs 3

> diff (f(x).x);

8737 -3
[5 o 30245)
8= 4x+3) "
o Sxls
)
[> diff(g(x),x);
9 7449\"]5
R VT ESFI
7)15"¥A9
5= 1o

5=
: 4

[> of = plor( f(x),x=-30.30,y=-30 .30, color = blue, ) : cg == plot(g(x),x=-30.30) : eas = plot(as(x), x=-30.30) : with|plots)
display( {<f, cg, cas ), scaling = constrained);

:> o= plot{ f{x),1=-3.3,y=-3.3, color=blue, ) :cg += plotig(x], x=-3.3,y=-3.3) :cas := plot{as(x),x=-3.3) - with{ plots)

display {f,eg, cas , scaling = consiained )
\ | ’
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13.6 Etude d’une suite u,+1 = f(uy) 13 AUTRES EXERCICES

13.6 Etude d’une suite u, 1 = f(u,)

"Etudier sans réfléchir est une occupation vaine ; réfléchir sans étudier est dangereux."
Confucius ( 555 - 479 avJC) - Chine

@ _q
€ >0

—_

. Montrer que pour tout z € R* on a :

2. On considére la fonction f définie sur R par

Montrer que f est continue sur R
3. Montrer que f est de classe C! sur R* et préciser f’(z) pour tout x de R*

4. On admet la Formule dite de Taylor-Young : Si g est de classe C™ sur un intervalle de bornes a et

h h™
a + h et admet une dérivée d’ordre n + 1 en a alors g(a + h) = g(a) + Fg'(a) + 4 —'g(")(a) +
! n!

hn+1
e (n+1) F _
D) lg (a) +e(h)] avec lim e(h) = 0.
2 2
(a) Montrer alors que, pour tout  non nul, e* =14z + > I ?€<.’L‘) avec lin% e(x) =0.
T
1
TN |
(b) Montrer que iﬂ%f () = 5

(c) En déduire que f est de classe C* sur R et donner f/(0)
5. (a) Etudier les variations de la fonction g définie par :
VeeR glz)=ze* —e®+1
(b) En déduire le signe de g(z) puis dresser le tableau de variations de f (limites comprises).
(¢) Dessiner l'allure de la courbe représentative de f

6. On consideére la suite (u,) définie par la donnée de son premier terme ug > 0 et par la relation valable
pour tout entier naturel n : up41 = f(uy).
Montrer que Vn € N, u,, > 0

7. (a) Vérifier que Vz e R, f(z) —z = f(—=x)
(b) En déduire le signe de f(z) —z sur R**
(¢) Montrer que la suite (u,) est décroissante
8. En déduire que la suite (u,) converge et donner sa limite

9. Ecrire un programme Pascal permettant de déterminer et d’afficher le plus petit entier naturel n pour
lequel u,, < 10~2 dans le cas ot ug = 1
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13.7 Fonction rationnelle 13 AUTRES EXERCICES

13.7 Fonction rationnelle

1. Soit la fonction numeérique f d’une variable réelle définie sur |2; +o00[ par

222 — 3z — 9
fo) ===
On note (C) sa courbe représentative dans Is repére orthonormal R = (O;z1, )
(a) Déterminer les réels a, b, ¢ tels que Va €]2;+00] f(z) =azx+b+ - 5
B —

(b) Justifier les limites de f en 2 et en +oo. Déterminer les asymptotes a (C) ainsi que la position de
(C) par rapport a ses asymptotes.

(c¢) Tracer alors (C) et ses asymptotes.

2. Soit la fonction numérique g d’une variable réelle définie sur R par

34+ ++Vz?2 —10z + 81
g(z) = 1

On note (C’) sa courbe représentative dans ls repére orthonormal R = (O;z1, 7)

(a) Justifier les limites de g en —oo et en +o0.
Déterminer les asymptotes & (C’) ainsi que la position de (C’) par rapport & ses asymptotes.

(b) Déterminer ¢'(z). Justifier avec soin son signe. En déduire le tableau de variations de g.
(c¢) Tracer alors (C') et ses asymptotes dans le méme repére que (C')

3. Justifier pourquoi f admet une fonction réciproque f~! puis déterminer I’expression de f~!(z).
Que peut-on en déduire pour les courbes (C) et (C')?
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13.8 Fonctions définies par morceaux

Soit un plan P muni d’un repére cartésien orthonormal R = (0; e7, e_%)
13.8.1 Partie A

f(z) = —xIn(z) si x >0
f(0)=0

(a) Etudier la fonction f. Tracer ensuite la courbe représentative I" de f

1. Soit la fonction f définie par {

(b) Etudier selon x la position relative de I" et de la droite (D) : y =«
g(x) = —zln(|z|) si x #0
9(0)=0

(a) En utilisant le 1°), tracer ensuite la courbe représentative C, de g

2. Soit la fonction g définie par {
oit "application e ans ul a tout point a5 associe le point x avec
b) Soit I'application T' de P dans P qui a point M (z,y ie le point M’ (',

{ ¥ =eczx
y = —exr+ey
Déterminer T < C4 >.

3. Soit la suite (u,) définie par
Unt1 = g(up) sin €N

1
ug € }O ; 7[
e
Démontrer que la suite (u,) est convergente et déterminer sa limite.

13.8.2 Partie B

fa(z) = -z In (%)n si x € ]0;1]
fa(0) =0

(a) Etudier la dérivabilité puis la continuité de f,, sur [0;1]

1. Soit n € N*. Soit la suite f,, définie par

(b) Démontrer que f, admet un maximum a,, sur ]0;1] que l'on calculera.

2. (a) Démontrer que la suite (a,) est convergente et déterminer sa limite.

bn
b) Montrer que Vz € [0;e "] on a f,(z) > —=

)
)
(¢) On pose b, = f,(ay). Calculer b, en fonction de n.
)
)

an

=

1 e
3. Soit n € N*. Soient les intégrales I,, = / fo(x)dz et J, = / fn(x)dx
0 0
(a) Démontrer que Yn € N I,, > J,
1
(b) Démontrer que Vn € N J,, > 571”67271

(¢) En déduire que la suite (I,) est divergente.

13.8.3 Partie A
f(x)=—xIn(x) si x>0
f(0)=0
(a) e —z In(x) est défini sur |0; 00| et comme f(0) = 0 alors f est définie sur [0; +o0]
e Id est dérivable sur R et In est dérivable sur ]0;+oo] donc f est dérivable donc continue sur

1. Soit la fonction f définie par {

10; +o00]
- -z
e lim f@) = /(0 = lim =@ In{x) = lim —In(xz) = 400 donc f n’est pas dérivable a droite en
z—0t z—0 z—0t T z—0t

0 mais sa courbe représentative I' admet une demi-tangente paralléle & ’axe des ordonnées.

o Vx>0, f(x)=-In(z)- x% = —In(z) —1

eV >0 fl(z)=0 <= —in(z)=-1 < In(z) = -1 < In(z) =In <é> = = é car
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In réalise une bijection de R** sur R.
1 1
Ve>0 fl(z)>0 < —in(z) >1 < In(z) < -1 < In(z) <lIn (7) <= zr < -—arlin
e €

est strictement croissante sur RT*.

. xll)rfoo flz) = ngoof(x) = —o0 car a;llgloo —x = —o0et I’Erlloo In(x) = +o0

e On en déduit le tableau de variations suivant :

1
x —00 - —+00
e
f'(x) + 10—
1
e
f(z) / e
0 —00

(b) eVx>0 f(z)—z=—xlin(r)—x=—z(n(z)+1) donc

— V>0 f(z)—2=0 <= —z(n(x)+1)=0 <= In(z)+1=0 < In(x) = -1 =
In(x) =In(e™!) &= z=c¢L
Par conséquent, (T') coupe (D) au point d’abscisse x = e~

— V>0 f(z)—2>0 <= —z(ln(z)+1) >0 <= In(z)+1<0 < In(z) < -1 <=
In(z) <ln(el) &= z<e L.
Par conséquent, (T') est au dessus de (D) pour tous les points dont Pabscisse est strictement
comprise entre 0 et e~ !

— V>0 fz)—-2<0 <= —z(n(z)+1) <0 < In(z)+1>0 < In(z) > -1
In(x) > In(e™) <= z>e L
Par conséquent, (I') est en dessous de (D) pour tous les points dont ’abscisse est strictement
plus grande que e~!

e Siz=0alors f(z) —2=0—0=0 donc (I') coupe (D) au point d’abscisse x = 0

1

z)=—zln(x) = f(z) si x>0
)=—zln(—z) = —f(—x) siz <0

x
0)=0
(a) o Vz#0 g(—x)=—(-2)n(]—z]) =z In(|z|) = —g(x)
* 9(=0) =¢(0) =0 =—0=—¢(0)
e Donc Ve € R —z € Ret g(—z) = —g(x) donc g es impaire donc C; admet O comme centre de
symétire.
e On peut alors construire C, sachant qu’elle coincide avec Cy sur R™T.

g(
2. ¢ g(
g(
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T 4 1w 1w N a8 4w @ o wm wm e w N 12 w5 1 2

.T/ ;C:x—/
/: Xr = —
(b) {I’:iexere c / —
Y y ey=y +ex=9y +e—=19y +a Y+
Y=
x/
r="=
e
(7 z /
M y €T <Cy><= IM y €C, M'=TM) < v+
y=
e
y = —x In(|z])
! !/ ! / ! / ! /
= Y tr_ T ln(x—) = y—:—x——x—lnﬂx’\)—kx—ln(e)
e e e e e e e
! / ! ! / /!
= Lo 2 _Tneh+ L = L=—Zin) <= ¢ = —2'In(l7]) <= M €,
e e e e e e

Par conséquent, on a donc T' < C; >= C, donc C, est globalement invariante par 7T

3. Soit la suite (u,) définie par
Upt1 = g(un) sin € N

1
ug € }0; — {
e
) i 1
(a) Démontrons par récurrence que Vn € N u,, € |0; —
e
o Cette propriété est initialisée en 0 car ug € }O; - {
e
1
e Cette propriété est héréditaire car si pour un certain entier naturel n on a u, € }0; f{ alors
e

1

d’apreés le tableau de variations de la fonction on a f(u,) € }O; p
1

Or lorsque z € }0; - { on a g(z) = f(z) donc f(u,) = g(un) = Uny1.
e

1
Par conséquent, u, 1 € }0; - {
e

e Comme la propriété est initialisée en 0 et est héréditaire alors elle est vraie pour tout entier naturel
n

1
(b) Vn e N upy1 —up = gluy) —up, >0carVn € N wu, € }O; f{ donc la suite (uy,) est stritcement
e

croissante.

1 1
(c) Cette suite est strictement croissante et majorée par — donc elle converge vers une limite L < —.
e e

(d) Comme (u,) converge vers L, comme u,+1 = g(uy) et que g est continue sur R donc continue en L
alors g(u,) va converger vers g(L)
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(e) Par unicité de la limite, comme lim w,11 =L et que lim w,y; = g(L) alors cette limite L va
n—-+00 n——+00

1
vérifier ’équation g(z) = x donc L = —
e
13.8.4 Partie B

\"
1. Soit n € N*. Soit la suite f,, définie par fa(@) =~z In (;) si @ € ]0;1]
fn(0)=0
(a) Etudier la dérivabilité puis la continuité de f,, sur [0;1]

(b) Démontrer que f, admet un maximum a,, sur ]0; 1] que 'on calculera.

2. (a) Démontrer que la suite (a,,) est convergente et déterminer sa limite.

b
b) Montrer que Vz € [0;e" "] on a f,(z) > —=x
Qp

)
)
(¢) On pose b, = fn(an). Calculer b, en fonction de n.
)
)

—n

1 e
3. Soit n € N*. Soient les intégrales I,, = / fo(x)dz et J, = / fn(x)dz
0 0
(a) Démontrer que VYn € N I, > J,
1
(b) Démontrer que Vn € N .J,, > in"e_Q"

(c¢) En déduire que la suite (I,) est divergente.
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13.9 Famille de fonctions paramétrée par un entier naturel

13.9.1

enx

Soit n € N*. Soit la fonction f, définie sur |0; +o00[ par f,(x) = —
5

1. Calculer les limites de f,, aux bornes de son intervalle de définition.
2. Calculer f!(x) et déterminer les variations de f,.

3. Démontrer que pour tout entier naturel non nul n, la fonction f,, admet un minimum. exprimer en
fonction de n la valeur y,, de ce minimum et la valeur xz,, pour laquelle il est atteint.

4. Etudier le comportement des suites (x,,) et (yy).

Corrigé
1. (a) Déterminons a:»ll»r—ir-loo fn(z).

Comme n < 0 alors quand z — +o0o nz — +o0o €™ — 400 on tombe alors sur une forme
q

b2

00
indéterminée du type ” Feo
+00

nT nx

. et e ng . e . nx .
Mais — = — —. Or lim — =+4ocet lim — =ndonc lim f,(z)=+c0
x nr z+oo NI z+oo X T +oo
(b) Déterminons lim f,(x).
=0t 1
Quand z — 0" nz+— 0T e —1 =+ +o00.Donc lim f,(z) = +o0
T z—0t
2. Calculer f!(x) et déterminer les variations de f,.
3. Démontrer que pour tout entier naturel non nul n, la fonction f, admet un minimum. exprimer en
focntion de n la valeur y,, de ce minimum et la valeur x,, pour laquelle il est atteint.

4. Etudier le comportement des suites (x,,) et (yy).
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13.9.2 Edhec 1995

3.
4

Soit n € N*. Soit la fonction f,, définie sur R par f,(z) = 2° + nx — 1
1.
2.

Etudier les variations de f;,
En déduire que Vn € N*  Flu, e R f,(u,) =0

1
Démontrer que Vn € N*  wu, < —
n

. En déduire que la suite (u,,) est convergente et déterminer sa limite.

Déterminer lim n u, et en déduire que u,, ~ —
n—-+o0o n

. . . 1 ..
Déterminer un équivalent simple de u,, — — au voisinage de 400
n
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13.9.3 Escla ISC 1997

Soit n € N*. Soit la fonction f,, définie sur [0; +oco[ par
n
fn(x) :Zk e =z + 222+ 323 +... 4 na”
k=1
1. Démontrer que ’équation f,(x) = 1 admet une solution unique dans [0; +00[ que I’on notera u,
2. En évaluant f,11(u,) , démontrer que la suite (u,) est décroissante.

3. Démontrer que cette suite (u,) est convergente.
1—(n+1)z" + nx"t!

4. (a) Démontrer que Vo #1 f,(x) == e
(b) Calculer ug. En déduire nEr-sr-loo(u") puis ngrfoo n(un)

(c) Déterminer lim wu,
n—-+oo
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13.10 Etude de branches infinies
13.10.1 Escla ISC 1997

1. Soit la fonction numeérique f définie sur [0; +oo[ par

£(t) = 12_;5 —In(l+1)

(e) Démontrer que 3 < a < 4.

2. Soit la fonction numérique g définie sur R par
g(z) = e ® In(1 + @)

(a) Démontrer que g est définie sur R.

(b) Démontrer que g est dérivable sur R.

(c¢) Calculer e® ¢'(x) pour tout réel z.

(d) Déterminer alors le signe de ¢’(z) selon les valeurs de z.
)

(e) Etudier les branches infinies de la courbe représentative C4 de g.

35



13.11 Détermination d’une primitive F' d’une fonction f 13 AUTRES EXERCICES

13.11 Détermination d’une primitive F' d’une fonction f

1
Soit la fonction f définie sur |0; +oo[ par f(x) = <1 - ;) [ln(x) — 2].

1. Déterminer les limites de f en 0T et en +o0

2. Justifier la dérivabilité de f sur |0; +-o0o[ puis déterminer f’(x)

3. Soit g la fonction définie sur ]0; +oo[ par g(x) = In(z) + 2 — 3
(a) Etudier les variations de g

ontrer que 1’équation g(z) = 0 admet une solution unique a dans 'intervalle |2; 3].
b) Mont I’équati 0 admet luti i d I'int lle [2;3
Montrer que 2,20 < a < 2,21

(¢) En déduire le signe de g(z) sur ]0; +o00[
Etudier les variations de f
Résoudre I’équation f(z) = 0 dans ]0; +oo|
En déduire le signe de f(x)

Construire la courbe représentative de f

2 N & & g

Soit F' une primitive de f sur ]0;4o00[ qui s’annule en z = 1
(a) Sans calculer F'(z) déterminer les variations de f sur |0; +o00|
(b) Soit u(xz) = xIn(z) — . Justifier la dérivabilité de u sur ]0; +-o00[ puis déterminer «'(z). Conclusion ?

_ln(m)+g_2
i

)
(¢) Montrer que pour tout > 0 l'on a : f(x) = In(x) .
)

(d) En déduire l'expression de F'(x)

13.11.1 Corrigé
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13.12 Etudes de fonctions

Partie A
Soit la fonction g définie sur R par g(z) = zvz2 +1 — 1.

1. Déterminer les limites de g en 400 et en —oo.
2. Démontrer que ’équation g(x) = 0 admet dans R une unique solution que ’on notera «.
3. Déterminer le signe de g sur R.
Partie B
Soit la fonction f définie sur R par f(z) =

%3 — v/ 22 + 1. On note C la courbe représentative de f dans un
repére orthonormé.
1. Déterminer les limites de f en +00 et en —oo.
z g(x)
22+ 1
3. Dresser le tableau de variations de f en justifiant.

2. Démontrer que f'(x) =

3
0
4. Soit la fonction hy définie pour tout réel x par hy(z) = 3 < et soit Cp, sa courbe représentative

dans le méme repére que C.

(a) Déterminer lim (f(x) — hi(x))
T——+00

(b) Interpréter graphiquement ce résultat.

(¢) Trouver une fonction hy permettant d’avoir une interprétation graphique similaire en —oo.

13.12.1 Corrigé

Partie A
Soit g(x) = xv/22 +1— 1. Comme Vz € R 2% +1 >0 car 22 > 0 et donc 22 + 1 > 1 alors g(z) est bien défini
sur R =] — oo; 400
1. e Quand z — 400 on a 22 — +oo donc Va2 + 1 — +oo donc zvz2 + 1 — +oo
donc zvVz?2 4+ 1 -1~ +oo.

Par conséquent lim g(x) = +oo
T——00

e Quand z — —oo on a z? — +oo donc Va2 + 1 — +oo donc zvz2 + 1 — —o0
donc zva?2 +1—1+ —oo.

Par conséquent lim g(x) = —o0
T——+00

2. e La fonction x — z , la fonction = — vx2 + 1 sont toutes deux dérivables sur R donc la fonction
x — xv/ax? + 1 est dérivable sur R. De plus la fonction 2 — 1 est dérivable sur R alors g est dérivable
donc continue sur R.

2x T 224+ 1+ 22
eVzeR ¢(z)=val+l4+r——m——=V22+1+4+2 =
g(@) , 2vx2 +1 vVrz+1 vz +1
2 1
Onadoncg’(x):i>Opuisque2:62+1>Oet V2 +1>0

V2 +1

e ¢ est donc strictement croissante sur R
e ¢ est continue sur R
e Or 0 appartient a I'intervalle image R donc I’équation g(z) = 0 admet une unique solution « dans R

3. Comme g est strictement croissante sur R et que g(z) =0 < x = « alors
e g(x) <0 lorsque z < «
e g(x) =0 lorsque = = «
e g(z) > 0 lorsque = > «

37



13.12 FEtudes de fonctions 13 AUTRES EXERCICES

y=gix)

204

Partie B
23
Soit f(z) = 5 z? 4+ 1.

3
1. Quandfoooonaxszroodonc\/x2+1»—>+oo.Or%r—>foo
3

donc %— Va2 4+ 1+ —oo.

3
2. Quandxl—>+ooonax2»—>+oodoncx/$c2+1»—>—|—oo.Or%»—>+oo

b2

donc on obtient une forme indéterminée du type ” + co — o0”.
Levons cette indétermination.

3 3 1
%-w/ F1=T5 -2+ = Af—Ji L+—

:——|x|\/1—|—— %—x\/l+—enprenantx>0

Par conséquent f(x) = xs[ \/ 1 + — ] — +o0o quand x — +o0 car

1 1 1
Quandxr—>+ooona—r—>() Vit 5 =1 et | 1+—2]»—>§
x

3
3. La fonction z +— 3 et la fonction x — vx2 + 1 sont toutes deux dérivables sur R donc f est dérivable

2x 9 x 2?2Vl +l—z  wavaz+1-1)
—_— = — = =
2vx? + 1 Va1 Va? +1 22 +1

Donc f/(z) = \;63;(730—)1 du signe de = g(z) car V22 +1>0

donc continue sur R.

VeeR f'(z)=2%—

x —00 0 « +00
T -1 0 | + +
g(z) = — 0 +
xg(x) + |0 | — 0 +
' (z) +| 0 |- 0 +
-1 +00
e pY S
f(x) | —oo f(a)

23
4. Soit hy(x) = 32

23 23 23 23
(a) f(x)*hl(@:?*\/i*(?*f) ng—ngx:x— z? + 1.

Normalement quand & — 400 on obtient une forme indéterminée du type "+oo — c0”. levons cette
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indétermination :
F(@) = hu () (x — Vo2 + D) (z+ V22 +1) 22— (22 +1) -1
x) —hi(z) = = —
! T4+ vz +1 T4+ vVaZ+1 T+ V241

Quand x — 400 on a vxZ + 1+ +oo donc = + V22 + 1 +— +co
donc f(z) — hy(z) — 0.

(b) Par conséquent, au voisinage de +o0o la courbe représentative de f admet pour asymptote la courbe

de la fonction hq.
23
5. Soit he(x) = 3 +x

3 3 3 3
x x x x
(a) f(x)—hg(x):3—\/x2+1—(?+x):§—\/xz—i—l—?—x:—x—\/x +1.
Normalement quand & — —oo on obtient une forme indéterminée du type "+oo — c0”. levons cette
indétermination :

(&) — ha(z) = (—z—Va?+1)(—z+Va?+1) 2?—(2®+1) -1

? —x+vVa2+1 —z4+vVe2+1l —zx+vVa*+1
Quand z — +oo on a Va2 + 1+ +oo donc —z + V22 + 1 +— 400
donc f(z) — ha(z) — 0.

(b) Par conséquent, au voisinage de —oo la courbe représentative de f admet pour asymptote la courbe
de la fonction hs.

rouge cf bleu chl vert ch2
104
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13.13 Résolution 22 — 32 +1=0

1. Soit la fonction numérique d’une variable réelle f définie par f(z) = 2® — 3z + 1
(a) Etudier la fonction f.

(b) On note Cy la courbe représentative dans un repére orthonormé avec comme unité de longueur
5 cm.

1
i. Déterminer les équations des tangentes a Cy aux points d’abscisses 0 ; 3 2

ii. Démontrer que C; admet un centre de symétrie 2 que I'on précisera.
iii. Résoudre graphiquement 1’équation f(z) = m d’inconnue z € R et de paramétre réel m.
(c) Démontrer lexistence de 3 solutions x1, z2, 3 pour I’équation f(x) = 0.
2. Soit g la fonction numérique d’une variable réelle a définie par g(a) = 2 cos(a)
(a) Exprimer cos(3a) en fonction de cos(a).
(b) On note h = f o g.
i. Démontrer que h(a) = 2 cos(3a) + 1

ii. Résoudre ’équation h(a) = 0 d’inconnue a € R.
On précisera tout particuliéerement celles des solutions qui appartiennent a [0 ; 7]

iii. En déduire les valeurs de cos(a) qui correspondent aux solutions a qui appartiennent a [0 ; 7).

iv. Donner alors la valeur exacte et une valeur approchée a 1073 prés de chacune des solutions
T1,x2,T3.

13.13.1 Corrigé

1. Soit la fonction numérique d’une variable réelle f définie par f(z) = 2® — 3z + 1

(a) e f est une fonction polynome de degré 3 donc f est dérivable donc est continue sur son ensemble
de définition Dy = R
o Vz R fl(x)=322-3=3(%-1)=3(x+1)(z 1)
Le signe de f'(x) est le signe du trindme 22 — 1 qui a pour racines 1 et 1.
e D’aprés le théoréme de signe d’un trindme

T —00 -1 1 +00
f(x) + 1 0| —=1 0|+
3 +00
f(x) a e a
—00 -1
e lim f(z)= lim 2°=—o0
T —00 T —00
lim f(z)= lim %= +o0
T——+00 xT—-+00
3
e lim @: lim r_ lim 2% =400
r——00 T——00 I T —00
3
lim M = lim r_ lim 2?2 =400
r——+00 €T =400 I TH—+o0

Par conséquent, C; admet au voisinage de —oo et de +oo une branche parabolique de direction
I’axe des ordonnées.

(b) On note Cy la courbe représentative dans un repére orthonormé avec comme unité de longueur 5 cm.
i. e f estdérivable en 0 donc Cy admet une tangente d’équation y = f/(0)(z —0)+ f(0) = =3z +1

)+ () =

o f est dérivable en — donc C; admet une tangente d’équation y = f’ (5)(1“ -3

9 1 3 9 3
Syl g =y

e f est dérivable en 2 donc Cy admet une tangente d’équation y = f'(2)(z — 2) + f(2) =
9z —-2)+3=92x—-15
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u,.y/:ﬁmuwl

-15

ii. On conjecture d’aprés le graphique que Cy admet €( <(1))) comme centre de symétrie. Démontrons

le.
e Le point M (Z) dans le repére R = (0O;7,7) a pour coordonnées (

R = (%7,))

e La courbe de f qui a pour équation y = 22 —32+1 dans R a pour équation Y +1 = X3 -3X +1
dans R’ c’est-a-dire Y = X3 — 3X = —g(X)

e D, =R donc VX € D, —X eDyet g(—X) =g9(X)

e Par conséquent g est impaire dans le repére R’ = (;7,7) donc la courbe de f qui est celle de

X=2-0

Y =y 1) dans le repére

g admet ( ((1))) comme centre de symétrie.

iii. Résolvons graphiquement ’équation f(x) = m d’inconnue x € R et de paramétre réel m.
e L’ensemble de définition de ’équation 23 — 3z +1 = m est R

e Vx eR
f(z) =m <= =z est 'abscisse des points éventuels d’intersection de Cret et de la droite D :
y=m
L]
m Nbre points d’intersection | Nbre solutions Position solutions
—co<m< —1 1 1 ' <0
m= — 2 2 2 <0; 27 =1
—-1l<m< -1 3 3 r<0;0<2”<1; 1<2”
m=1 3 3 <0;27=0; 1<z
l<m<3 3 3 r<—-1; -1<2”<0; 1<z
m=3 2 2 r=-1;2" =2
3<m< 400 1 1 x> 2
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N A A AN s G
/ /
| \J
. . 3 .
(¢) i. Comme f est continue sur |—2 ; —5 car f est continue sur R |
3
comme f(—2) <0et f (—5) >0
alorsﬂxle}—Q; —;{ flz1)=0

car f est continue sur R ,

ii. Comme f est continue sur {0 ;=
1
comme f(0) >0 et f (5) <0

1
alorsﬂxge}O; 5{ flz2) =0

. 3 .
iii. Comme f est continue sur {5 ; 2| car f est continue sur R,

comme f(g) <0et f(2)>0

; {

-2 =0

9 f($3)

2. Soit g la fonction numérique d’une variable réelle a définie par g(a) = 2 cos(a)

(a) cos(3a) = cos(2a+a) = cos(2a) cos(a) —sin(2a) sin(a) = (2cos?(a) —1)cos(a) —2sin(a) cos(a) sin(a)
cos(3a) = 2 cos3(a) — cos(a) — 2 sin?(a) cos(a) = 2 cos3(a) — cos(a) — 2(1 — cos*(a)) cos(a)
‘ cos(3a) = 4 cos®(a) — 3 cos(a) ‘
(b) On note h = f o g.
Alors h(a) = (f o g)(a) = f(g(a) = /(2 cos(a)) = (2 cos(a)* — 3(2 cos(a)) + 1
donc ’ h(a) = 8 cos®(a) — 6 cos(a) +1 =2 cos(3a) + 1 ‘

i.

alors 4 x5 €

1 2
ha) =0 <= 2 c0s(3a) +1 =0 < cos(3a) = —5 = cos(3a) = cos <§)
27 27
ha)=0 <= JkeZ 3a:—§+2k7rou3a:?+2k‘7r
2 2km 2 2km
h(a) = dk e Z =—— 4+ — = 4=
(o) =0 — € a 9 + 3 oua= g + 3
.. . . . N 2m 4 8w
ii. Les solutions a qui appartiennent & [0 ; 7] sont a = 9 0=g 8=y Comme h(a) =0 <

f(g(a)) =0 alors f(x) =0 pour = = g(a) avec a € {%T ; %T ; %T}

2 4
iii. Donc |21 = 2 cos (377) ~ 1,532088886 ; xo2 = 2 cos (g) =~ 0,3472963554

8
T3 = 2 cos (g) ~ —1,879385242
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13.14 Fonction trigonométrique

Soit la fonction numérique d’une variable réelle f définie parf(z) =

1.
2.

cos(2x)

Etudier puis représenter graphiquement f.
Déterminer g(z) de telle sorte que F(x) = In (’tan (g) D —g(z) soit une primitive de fsur un intervalle
[a; B] C [0; 7]

Démontrer que tan (3%) =1++2

7r
Démontrer que tan (g) =—-1++2
Déterminer, en unité d’aire, I’aire du domaine formé par 1’axe des abscisses, la courbe Cy et les droites
3T

d’équati T et
equation r = — et r =
E 4 A

13.14.1 Corrigé

1.

o Dy ={x/sin(z) # 0} =R — {kn/k € Z}
o f est dérivable sur Dy car f est le quotient de z — cos(2x) et x — sin(x) telles que
— @+ cos(2x) est dérivable sur Dy car elle est dérivable sur R
— x — sin(x) est dérivable sur Dy car elle est dérivable sur R
— x> sin(z) ne s’annule jamais sur Dy
e f est périodique de période 27 puisque = — cos(2z) est périodique de période 7w et x — sin(x) est
périodique de période 2w
e f est impaire car
— Vx € Df —x € Df
~VeeD, f(ea) = cos(—2x) _ cos(2x)

= = — x
sin(—x) —sin(x) 1)
e On peut étudier donc f sur 'intervalle |0; 7r[, on complétera ensuite sur | —; 0 par la symétrie centrale
de centre O et enfin on reproduira périodiquement sur les intervalles de longueur 27

o Wz €0 7] () = —2sin(2x)sin('x) — cos(2x)cos(x) _ —48in2(m)cos(?t) — cos(2x)cos(x)
sin?(x) sin?(x)
, —cos(x)[4sin®(x) + cos(2x)]  —cos(z)[4sin?(x) + 1 — 2sin?(z)]  —cos(x)[2sin?(z) + 1]
f (‘T) = ) = 12 = im 2
sin?(x) sin?(x) sin?(x)

du signe de cos(z).

[ ]
T 0 g T
—cos(x) -1 0 |+
ffle) | I =10 ]+ |
+0o0 400
f(x) h /!
-1

e car

— i = li 2z) =1et li ) =0t

Jim, f(x) = 400 car Jim, cos(2x) et lim sin(x)
— lim f(x) = +oo car lim cos(2x) =1et lim sin(xr) =0T
T T =TT . T T
o Vx €Dy flz) =0 < cos(2z) =0 < FkecZ 2x:§+k7r<:>5|k€Z m:Z+k5
3
Par conséquent, sur Uintervalle ]0; 7| f(x) =0 pour z = % et T = Zﬂ
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I . cos(2x)
> I
i cos(2x) ;
| / sin(x) (
> plt((x). )
o
2‘15 w in ‘E 7 ﬁ "1[
2. e Lorsque = €]0; 7| alors z €]0; [ donc tan (w) existe et ne s’annule pas.
e Si F(x)=1In (‘tan (g) D — g(z) est une primitive de f alors
/ ul('r) / € !/ 1 £
flz)=F'(z) = (o) — ¢'(x) avec u(z) = tan (5) donc ' (x) = 3 (1 + tan? (2>>
1 T z
costza) 3 (1t (5)) (5 () coston)
. sin(®) = ) x) g (z) dou ¢'(z) = " (ac) i)
an (= an (=
2 2
@) = 1 cos(2x)
g o Sin (g) sin(z)
2 cos? (5) =
CcoS (5)
1 cos(2x)
g'(x) = - —
2 sin (g) cos (g) sin(z)

o1 cos(2z)  1—cos(2z) 1—(1—2sin?(z)) 2sin*(z)
9@ = sin(z)  sin(x)  sin(z) sin(x) -~ sin(z) 2sin(x)
Par conséquent, ‘g(a:) = —2cos(z) + C"

e Soit | Fl(x) =lIn (‘tan (g) D + 2cos(z) |.
L. g1 1 —2sin(z)  cos(2z)
On vérifie que F'(z) = sin(@) 2sin(z) = sin(@) | sin(@) f(z). CQFD.
3. e On sait que tan(20) = %

Or —1 = tan (27 = tan (27 2tcm<8>
‘ (F) =tan () - e ()

3 3
On en déduit que tan? (g) — 2 tan (g) —-1=0
e Résolvons l'équation X2 —2X —1=0.ona A=4+4=38

2—22
2\[:1—\/§etX”:

tcm(38>—1—|—\[

donc il y a deux racines X' =

2+2V2
2

e Or tcm<38 ) > 0 donc
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4. e On sait que tan(20) = %
T
e Or1=tan <£> = tan (2%) = 12?;2(?2) d’ott 1 — tan? (%) =2 tan (%)
8

On en déduit que —tan? (g) — 2 tan (g) +1=0

e Résolvons I'équation —X2 —2X +1=0.ona A =4+4=38
2—22 2422

donc il y a deux racines X' = 72\[ =—1+V2et X7 = ;2\[ =-1-V2.

e Or tan (g) > 0 donc | tan (%) =v2-1

4’ 4
e Comme le domaSine A considéré est situé en dessous de ’axe des abscisses alors :

3
3 4
5. e Comme f est continue sur {E —W} alors f y est intégrable donc / f(t) dt existe.
4

Aire(A) = 7/7r4 f(t) dt unité d’aire
4

M:!Mgf

. ou:ﬁzf(t) dt =
tan <3§ﬂ-> > + 2008(?%) —In (‘tcm (g) ‘) + 2005(%) = In(vV24+1)—In(vV2-1)-2v2

e Par conséquent, | Aire(A) = 2v/2 — In(vV2 + 1) + In(v/2 — 1) unité d’aire
| Aire(A) ~ 1,065 unité daire |

donc I = ln(
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13.15 Etude de fonction

1. Déterminer ’ensemble D des réels x tels que e* —e™* > 0
2. On définit la fonction f par Vx € D f(z) = In(e® —e™ ")
(a) Etudier les variations de f.
(b) Déterminer lim f(x)
z—0
(c¢) Déterminer x»EI-lr-loo f(z)
3. (a) En déduire lexistence d’un réel unique « tel que f(a) =0
(

(
(c) Veérifier que f'(a) = /5
4. (a) Déterminer lim f(z)—=x
(

)
)
)
b) Déterminer la valeur exacte de .
)
) a>+oo
)

b) En déduire une équation cartésienne d’asymptote (A) & la courbe représentative C; au voisinage
de +o00

(c) etudier la position relative de Cy et de (A)
5. Etudier la concavité de f.

6. Donner lallure de Cy en faisant figurer (A).
On admetra que o ~ 0,5 et que /5 ~ 2,23
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13.16 Etude de fonction

1. On considére la fonction numérique f de la variable réelle x définie sur R par
fl)=€e"—az -1

On note Cy sa courbe représentative dans le plan muni d’un repére orthonormal (O;7, ) avec comme
unité graphique 1 cm.

(a) Calculer 21}1 f(x).

(b) i. Vérifier que Vo e R f(x) =€ (1 L i)
ii. En déduire mgglm f(z).
(c) Calculer f/(x) et établir le tableau des variations de f.
(d) 1. Montrer que la droite (D) d’équation y = —x — 1 est asymptote & Cy lorsque x — —o0
ii. Etudier la position de Cy par rapport a (D)
(e) Déterminer une équation cartésienne de la tangente (D’) & C; au point de C; d’abscisse —1.
(f) Construire alors C¢ et (D).

2. (a) Montrer qu’en tout point Md’abscisse a de la courbe Cy, il existe une tangente a Cy dont on établira
une équation cartésienne en fonction de a.

(b) Cette tangente rencontre 'asymptote (D) en un point N.
On désigne par M’ et N’ les projections orthogonales des points M et N sur ’axe des abscisses.

i. Démontrer que M’N’ est un nombre constant.
ii. En déduire une construction simple de la tangent en M.

iii. Construire la tangente (D’) & Cy au point de Cy d’abscisse —1.
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13.17 Etude de fonction paramétrée

Les parties 2 et 3 peuvent étre traitées indépendamment de la partie 1.
Partie 1

Soit a € R.
On consideére la fonction numérique f, de la variable réelle = définie par

fo(z) = (2% + az — a)e™®

Soit C, la courbe représentative de la fonction f, dans un repére orthonormé R = (0;7, 7).

1. Etudier selon les valeurs de a les variations de la fonction f, et donner les différents tableaux de
variations possibles pour f,.

2. On suppose que a # —2.
Démontrer que I’ensemble des points du plan en lesquels la tangente a C, est paralléle a l'axe des
abscisses, est la réunion d’une partie de droite F; et d’une partie de courbe Fo dont on précisera une
équation cartésienne de la forme y = g(z).

3. (a) Etudier la fonction numeérique g de la variable réelle = définie par

g(z)=ze

(b) Tracer E5 dans le plan rapporté au repére orthonormé R = (0O;7, )
Partie 2

On pose a = 1.
1. Donner le tableau de variation de la fonction f;.
2. Etudier la position de C; par rapport & Fs.
3. Préciser les points d’intersection de C; avec les axes de coordonnées. Tracer C;.

4. (a) Déterminer les réels a et 3 tels que
VzeR  fi(z) =af’1(z)+Bfi(z) +2e7"

(b) En déduire une primitive de la fonction f; sur R.

5. Soit ¢t un réel supérieur a 1.

1<x<t
a) Déterminer, en em? aire A(t) de ’ensemble des points M (x,y) tels que { - = .
(a) (t) p (z,9) tels que \ o = — ¢ ()
(b) Déterminer, si elle existe, la limite de .A(¢) lorsque ¢ tend vers +oo.

(¢) Interpréter géométriquement le résultat obtenu.
Partie 3

On pose a = —2.

1. Etudier la fonction numérique A de la variable réelle x définie par
h(@) = f-s() —

2. (a)
b)

a) Démontrer que f_o est une bijection de R sur |0; +oo[

. (a) Démontrer que l'équation f_o(z) = x admet une solution unique que 1’on notera xg.
(b) Donner une valeur approchée & 10~2 prés par défaut de z.

3.(
(b) Donner le tableau de variation de la fonction réciproque f~5

4. Tracer la courbe représentative des fonctions f_5 et f:21 dans le plan rapporté au repére orthonormé
R

=(0;7,))
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13.17.1 Corrigé
Partie 1
Soit a € R.
1. Soit fu(z) = (z* + ax — a)e™®.
o = — 22 4 ax — a est une fonction polynéme donc est définie sur R.
1
De méme, z — e™" = — est définie sur R.

e
fa étant le produit des deux fonctions est donc définie sur R.
e f, étant ni paire, ni impaire est donc étudiée sur R.
o = — 22 4 ax — a est une fonction polynéme donc est dérivable sur R.

1 .
De méme, x — ™" = — est dérivable sur R.

e
fa étant le produit des deux fonctions est dérivable (donc continue) sur R.

e VzeR fi(z)=(2z+a)e™® — (2?2 +azx —a)e ™ = e *[—2? + (2 — a) + 2d]

o fl(2)=0 = e *[-22+2(2—a)+2a] =0 < —2>+2(2—a)+2a=0carVz €R e % >0

e Le discriminant du trinéme P(r) = —22 + x(2 — a) + 2a est :
A=2-a)?—-4(-1)(2a) =4 —4da+a*+8a=4+4a+a® = (a+2)?
e ou bien ¢ = —2 A
— A =0 donc le trindéme f/ 4(z) = —2? +42+4 < 0 sauf en x = ﬁ = 2 ol le trin6me s’annule.
— foo(z) = (22 =2z +2)e ® donc lim f o(x) =4occar lim 2?—2x+2= lim 2= +ooet
T——00 I —00 T—>—00
lim e * =400
TH——00
2 2 2 2 2 2
— f_g(m):z—x(lf;JrP) donczgmoof 2(x )f()carmli)gloo:—x:Oetxli&loolf;JrP:l
T —00 2 +00
fLo() -1 0]-
+00
f-2(x) N
=
h
0

e ou bien a # —2
— A > 0 donc le trindme P(z) a deux racines z’ et 2” avec ' < 7.

— falx) = (2% + az — a)e™® donc .EIP fa(x) = 400 car 'EIP ? +ar—a= 'Er_n 2% = 400 et
lim e % =40
T —00
x? a . a? ) a a
: falz) =— = (1—1—;—?) doncwll)moofa( )—Ocar$11>rilooe—z—06t I»Br-il:lool—’—;_P_l
x —00 a’ x” +o0
fi(x) - 0 + 0 -
+OO fa(x”)
Jfa(x) N\ e hY
falz) 0

2. On suppose que a # —2.

La tangente a C, en M(x,y) est parallele & 'axe des abscisses { ?’[,( ‘)f£ 3
fiz)=0 &= e *[-2?+2(2—a)+2a] =0 < —2?>+2(2—a)+ OcarVzeR e *>0
— rz=2 ouz=2a"
a—2—|2+aq| a—2+|2+q|
== r=——our=————
—2 —2
x —0 -2 400
2+a — 0 +
|2 4 al —2—a| 0 |2+a
e ou bien a < —2 alors
a—2—-124+a a—2-(-2-a) a—2+12+a a—-2+(-2-a)
T = 5 = 5 =—aouxr= > = 5 =2

49



13.17 Etude de fonction paramétrée 13 AUTRES EXERCICES

e ou bien @ > —2 alors
a—2—24a a-2-(2+4a 9
= = oux =
-2 -2 -2
e Par conséquent, sia # —2ona f.(z) =0 < z=2ouz=—a

a—2+12+al a—2+(2+a)
B -2

On en déduit que :
La tangente a C, en M(x,y) est parallele a ’axe des abscisses

= M ((4+i)e*2> ou M (fa_:*a>

L’ensemble recherché est la réunion d’une partie de la droite F; d’équation x = 2

et d’une partie de la courbe Fs d’équation y = —x e~ 7.

3. (a) Soit g(x) =x e
e L’ensemble de définition de g est R car g est le produit de z — = et x — e™* qui sont toutes deux
définies sur R.
e ¢ n’est ni paire, ni impaire donc on ’étudie sur R.
e ¢ est dérivable (donc continue) sur R car g est le produit de z — z et © — e™* qui sont toutes
deux dérivables sur R.
eVzeR ¢(x)=1e*—2xe *=e"1—-21)dusigne du bindme 1 —x car Vx € R e~ * > 0.

x

o lim g(x)=-cocar lim z=-ocoet lim e *=+o0.
T —00 IT——00 T——00
Etudions cette branche infinie :
x
lim M = lim e * = 400 donc la courbe F> admet donc au voisinage de —oc une branche
——00 I T —00
parabolique de direction ’axe des ordonnées.
X . . e*
o g(x) = s donc xgr}rloog(x) =0 car Ill&loo g +00
La courbe F5 admet donc au voisinage de +0o une aymptote qui est I’axe des abscisses.
[ ]
z —00 1 +00
!
9'(z) +10] -
1
e
9(x) / N\
—00 0

(b) Voici ci dessous la courbe représentative Eo

o5
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Partie 2

On pose a = 1. Soit fi(z) = (22 + 2 — 1)e*

1. D’aprés la partie 1 on a le tableau de variations suivant :

T —00 -1 2 400
fi(x) — 0 + 0 —
+00 f1(2) = 2
fi(z) ¢ /‘ ¢
fl(_]-) = —€ O

2. eVzeR fi(z)—gx)=(@*+2x—-1e*—ze®=ca?+x—1—2)= (22— 1)e ® du signe de
2?2 —lcarVreR e * > 0.
e ou bien x < —1 ou & > 1 alors fi(z) — g(x) > 0 donc C; est au-dessus de Fs.
e ou bien —1 < < 1 alors fi(z) — g(x) < 0 donc C; est en-dessous de Fs.
e ou bien x = —1 ou x =1 alors fi(z) — g(x) = 0 donc C; rencontre Es

3. e f1(0) = (0?40~ 1)e™® = —1 donc C; N (Oy) = {A (Pl>}

o filx)=0 & (22 +2-1)e =0 < 22 +z—-1=0carVz €R e #0
Le discriminant du trinéme 22 + 2 —1est A =12 —4(1)(-=1) =1+4=5

-1- -1
Les solutions de x2+x71:080nt:£:T\/5 etx:%\/g.
-1-+5 ~1+5

Par conséquent, C; N (Ox) =< D 2 ;C 2
0 0

C:y=("+z-1)e

4. (a) Déterminer les réels a et § tels que
Ve eR  fi(z) =af’i(x) +Bfi(x) +2e"

(b) En déduire une primitive de la fonction f; sur R

5. Soit t un réel supérieur a 1.
<zx<
(a) Déterminer, en em? laire A(t) de I’ensemble des points M (x,y) tels que { 1 P gyc =

(b) Déterminer, si elle existe, la limite de A(¢) lorsque ¢ tend vers +oo.

(c) Interpréter géométriquement le résultat obtenu.
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13.18 Hyperbole

Soit R = (0;7,7) un repére orthonormal direct du plan.
Soit f la fonction numérique d’une variable réelle définie par

flz) = —2x+/3(z2—1)

1. (a) Etudier les variations de f
(b) Soit Cs la courbe représentative de f dans le plan rapporté a R.
i. Démontrer que la droite (D;) : y = (—2 + v/3)z est une asymptote a C; au voisinage de +oo.
ii. Démontrer que la droite (Ds) : y = (—2 — v/3)z est une asymptote 4 C; au voisinage de —co.
(c) Précisez les tangentes a Cy aux points d’abscisse —1 et 1.
(d) Construisez alors Cy.

2. Soit g la fonction numérique d’une variable réelle définie par
g(x) = =2z —4/3(z%2 - 1)

(a) Démontrer que sa courbe représentative C, est I'image de Cy par la symétrie centrale de centre O.

(b) Démontrer que la courbe I' = Cy Uy a pour équation

2 +4zy+4°+3=0

(¢) Construisez alors T'.
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13.19 Bac D Rennes Septembre 1976

Soit la fonction numérique d’une variable réelle f définie par
4 B =2
-fevaen(252)
@) = ga+ 2+ n (|23
Partie A

1. Déterminer Dy ’ensemble de définition de f.

2. Déterminer les limites de f aux bornes de Dy .

3. Justifier la dérivabilité de f puis déterminer la fonction dérivée f/ de f.
4. En déduire le tableau de variations de f.

Partie B
Soit Cy la courbe représentative de f dans un plan affine euclidien muni d’un repére orthonormé R = (O ; 7, }).
On prendra comme unité de longueur 2 cm.

4
1. Démontrer que la droite D d’équation y = gm + 2 est une asymptote a Cy.

2. Démontrer que I le point de Cy d’abscisse x = 0 est un centre de symétrie de Cy.
3. Construire la tangente a Cy en 1.
4. Construire ensuite Cy.

Partie C
Soit un réel a > 2.

a -2
1. A Taide d’une intégration par parties, calculer F(a) = / In (a? " 2) dx
3 m

2. Calculer, en ¢cm?, 'aire du domaine limité par la courbe Cy, la droite (D) et les droites d’équation
x = 3 et © = 4. Donner une valeur approchée de cette aire.

Partie D
On appelle ¢ la restriction de f a ]2 ; +ool.

1. Démontrer que ¢ admet une fonction réciproque .
2. Donner I’ensemble de départ et I’ensemble d’arrivée de ).

3. Construire sur un graphique distinct de celui de la partie B, les courbes représentatives (H) et (H')de

¢ et de ¥
Partie E
Soit un point mobile M ayant pour coordonnées dans le repére R = (O ; 7', 7)
3t
B==
4 8 —3t
=t4+2+1 ( — )
Y=t et g s

oute } 8.8 {
nl —=; =
3° 3
1. Démontrer que la trajectoire de M est une partie de C¢ que ’on précisera.

2. Calculer , en fonction de ¢ , les coordonnées du vecteur-vitesse V' (t) et du vecteur-accélaration I'(¢) du
point M a la date t.
3. Etudier le mouvement de M.

NB - On donne In(2) ~ 0,69 ;In(3) ~ 1,10 ; In(5) ~ 1,61 ; In(7) ~ 1,95

THAT’S ALL FOLKS!!!
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13.20 Etude de fonctions

Etudier les fonctions suivantes :

L f(z) =+ 11+—:fx

2. flz) = \/11—#

3. f(z) = { elin((z]* si w0
= )= 2§2+_31

5. () =/| = 1‘

6. f(z) = —— +in(jz +1|)
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