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"En mathématiques, nous sommes d’avantage des serviteurs que des maîtres."
Hermite

Une fonction numérique peut s’étudier en 10 points sauf dans les cas suivants où l’on peut dessiner
sans étude la courbe Cf dans un repère R = (O;

−→
i ,

−→
j ) :

1. La fonction affine x→ ax+ b où a ∈ R et b ∈ R :
la courbe représentative est une droite d’équation y = ax+ b.
Pour tracer cette droite, il suffit de déterminer deux de ces points . Pour cela 2 méthodes possibles :
• Méthode 1 :

— Placer le point ordonnée à l’origine B(0; b) puisqu’en faisant x = 0 on obtient y = a(0) + b = b
— Puis en utilisant la pente a, en partant du point B et en avancant d’une unité de longueur

parallèlement à l’axe des abscisses puis on monte ou descend de la pente a parallèlement à l’axe
des ordonnées, placer le point A(1; b+ a)
En effet, pour x = 1 on a y = a(1) + b = a+ b

• Méthode 2 : Déterminer les points d’intersection de cette droite avec les deux axes :
— Le point d’intersection avec l’axe des ordonnées on obtient l’ordonnée à l’origineB(0; b) puisqu’en

faisant x = 0 on obtieny y = a(0) + b = b
— Dans le cas où la pente a ̸= 0 alors le point d’intersection avec l’axe des abscisses est le point

A

Å
− b

a
; 0

ã
puisque y = 0 ⇐⇒ ax+ b = 0 ⇐⇒ x = − b

a
— Dans le cas où la pente a = 0 la droite a pour équation y = b et est donc parallèle à l’axe des

ordonnées.
2. La fonction partie entière x → [x] = le plus grand entier relatif précédant x qui est une fonction

en escalier définie sur R, continue sur chaque segment ouvert ]n;n + 1[ où n ∈ Z et continue à droite
en tout n ∈ Z

3. La fonction homographique x→ ax+ b

cx+ d
où c ̸= 0 et ad− bc ̸= 0 :

la courbe représentative est une hyperbole d’équation y =
ax+ b

cx+ d
ayant pour asymptotes les droites

d’équation x = −d
c

et y =
a

c
et pour centre de symétrie le point d’intersection de ces 2 asymptotes :

Ω

Å
−d
c
;
a

c

ã
4. La fonction trinôme x→ ax2 + bx+ c où a ̸= 0 :

sa courbe représentative est une parabole de sommet Ω

Å
− b

2a
;−∆

4a

ã
où ∆ = b2 − 4ac et d’axe de

symétrie la droite D : x = − b

2a
5. les 4 fonctions circulaires x→ sin(x), x→ cos(x) , x→ tan(x) et x→ cotan(x)

6. la fonction f = −g :
si l’on connaît Cg alors Cf est l’image de Cg par la symétrie d’axe l’axe des abscisses.

7. la fonction f = |g| :
si l’on connaît Cg alors Cf coïncide avec Cg pour tout x tel que g(x) ≥ 0 et Cf coïncide avec C−g pour
tout x tel que g(x) ≤ 0.
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3 PARITÉ, IMPARITÉ,PÉRIODICITÉ

1 Ensemble de définition

Déterminer l’ensemble de définition de f s’il n’est pas donné directement par l’énoncé.

2 Simplification éventuelle de f(x)

Simplifier si cela est possible f(x).
Attention, il ne faut jamais simplifier avant d’avoir cherché l’ensemble de définition..

Exemple, pour f(x) =
x2 − 1

x− 1
on a Df = R− {1} et ∀x ∈ Df f(x) = x+ 1

3 Parité, imparité,périodicité

Une fonction f est paire dans un repère R = (O,
−→
i ,

−→
j ) lorsque les 2 conditions suivantes sont réalisées :

1. Df est centré en 0 c’est-à-dire Df admet O comme centre de symétrie c’est-à-dire ∀x ∈ Df , on a −x ∈ Df

2. ∀x ∈ Df , on a f(−x) = f(x)

Lorsque f est paire dans un repère R = (O,
−→
i ,

−→
j ) alors Cfadmet l’axe des ordonnées, la droite d’équation

y = 0 comme axe de symétrie.
Une fonction f est impaire dans un repère R = (O,

−→
i ,

−→
j ) lorsque les 2 conditions suivantes sont réalisées :

1. Df est centré en 0 c’est-à-dire Df admet O comme centre de symétrie c’est-à-dire ∀x ∈ Df , on a −x ∈ Df

2. ∀x ∈ Df , on a f(−x) = −f(x)
Lorsque f est impaire dans un repère R = (O,

−→
i ,

−→
j ) alors Cf admet le point O comme centre de symétrie.

Une fonction f est périodique de période T > 0 dans un repère R = (O,
−→
i ,

−→
j ) lorsque les 2 conditions

suivantes sont réalisées :
1. ∀x ∈ Df , on a x+ T ∈ Df

2. ∀x ∈ Df , on a f(x+ T ) = f(x)

Lorsque f est périodique de période T dans un repère R = (O,
−→
i ,

−→
j ) alors Cf est globalement invariante

par la translation horizontale de vecteur t⃗i .

3.1 Axe de symétrie
La droite D : x = a dans le repère R est un axe de symétrie de Cf

⇕

Dans le repère R′ = (Ω(a, 0)R;
−→
i ,

−→
j ) la courbe a pour équation Y = g(X) où g est paire dans R′.

On utilise pour cela les formules de changement de coordonnées :
M(x, y) dans R = (O;

−→
i ,

−→
j )a pour coordonnées ((X,Y ) dans R′ = (Ω;

−→
i ,

−→
j ) avec X = x− a et Y = y

⇕
Pour tout h tel que a+ h ∈ Df on a a− h ∈ Df et f(a+ h) = f(a− h)

⇕
Pour tout x tel que x ∈ Df on a 2a− x ∈ Df et f(2a− x) = f(x)
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3.2 Centre de symétrie 5 ETUDE DES VARIATIONS

3.2 Centre de symétrie
Le point Ω(a; b)R est un centre de symétrie de Cf

⇕

Dans le repère R′ = (Ω;
−→
i ,

−→
j ) la courbe a pour équation Y = g(X) où g est impaire dans R′.

On utilise pour cela les formules de changement de coordonnées :
M(x, y) dans R = (O,

−→
i ,

−→
j )a pour coordonnées ((X,Y ) dans R′ = (Ω;

−→
i ,

−→
j ) avec X = x− a et Y = y − b

⇕

Pour tout h tel que a+ h ∈ Df on a a− h ∈ Df et f(a+ h) + f(a− h) = 2b

⇕

Pour tout x tel que x ∈ Df on a 2a− x ∈ Df et f(2a− x) = 2b− f(x)

4 Dérivabilité ; continuité
1. On étudie d’abord la dérivabilité puis la continuité de f sur les intervalles formant l’ensemble d’étude.
2. On fera une étude spécifique aux points charnières lors que f est une fonction définie par morceaux.
3. On pourra utiliser le résultat suivant : si une fonction f est dérivable en x0 alors elle est continue en x0

5 Etude des variations

5.1 Méthode 1
On étudie le signe du nombre dérivé f ′(x) (lorsqu’il n’est pas évident) en résolvant séparément par équivalence
logique :

1. l’équation f ′(x) = 0

2. l’inéquation f ′(x) > 0

Sur tout intervalle I où f ′(x) > 0 , f est strictement croissante.
Sur tout intervalle I où f ′(x) < 0 , f est strictement décroissante.

5.2 Méthode 2
Pour déterminer les variations de f , au lieu de déterminer le signe du nombre dérivé, on peut aussi utiliser les
théorèmes suivants :

1. La somme g + h de 2 fonctions g et h croissantes sur un intervalle I est croissante sur I
2. La somme g + h de 2 fonctions g et h décroissantes sur un intervalle I est décroissante sur I
3. La composée h ◦ g d’une fonction croissante g sur I et d’une fonction croissante h sur J avec J ⊂ f < I >

est croissante sur I
4. La composée h ◦ g d’une fonction décroissante g sur I et d’une fonction décroissante h sur J avec
J ⊂ f < I > est croissante sur I

5. La composée h ◦ g d’une fonction croissante g sur I et d’une fonction décroissante h sur J avec
J ⊂ f < I > est décroissante sur I

6. La composée h ◦ g d’une fonction décroissante g sur I et d’une fonction croissante h sur J avec
J ⊂ f < I > est décroissante sur I
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10 REPRÉSENTATION GRAPHIQUE

6 Etude des limites

On étudie les limites de f aux bornes de l’ensemble d’étude.

7 Tableau de variations

On dresse alors le tableau des variations de f .
Il ne doit pas y avoir de contradiction entre les limites et les variations de f .

8 Tableau des valeurs et points remarquables

On dresse un tableau de valeurs de f(x) en précisant :
• le point d’intersection M(0,f(0)) de Cf et de l’axe des ordonnées lorsque 0 ∈ Df

• les points éventuels d’intersection de la courbe Cf et de l’axe des abscisses. Ces points ont pour abscisses
les solutions éventuelles de l’équation f(x) = 0

9 Etude des branches infinies
A l’aide des limites , on étudie les branches infinies de Cf (asymptotes, branches paraboliques, directions asymp-
totiques, ...)
Il faut en particulier préciser :

• les points éventuels d’intersection de la courbe et de ses asymptotes
• la position relative de la courbe et des asymptotes.

10 Représentation graphique
• On dessine alors Cf en respectant le type de repère et les unités de longueur imposés par l’énoncé.
• Les pentes des tangentes aux points remarquables doivent être dessinées.
• La courbe doit être légendée.
• Il ne faut pas oublier les symétries et périodicités éventuelles.
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11 RETOUR SUR LES BRANCHES INFINIES

11 Retour sur les branches infinies

11.1 Définition

On dit que la courbe représentative Cf de la fonction numérique d’une variable réelle f présente une branche
infinie lorsque l’on est dans l’un des 4 cas suivants :

1. x tend vers +∞
2. x tend vers −∞
3. f(x) tend vers +∞
4. f(x) tend vers −∞

Attention ! ! ! Deux de ces quatre conditions peuvent apparaître simultanément.

11.2 Droites asymptotes

1. parallèles à l’axe des ordonnées Lorsque l’on est en présence d’un des 4 cas suivants :
(a) quand x tend vers x+0 on a f(x) qui tend vers +∞
(b) quand x tend vers x+0 on a f(x) qui tend vers −∞
(c) quand x tend vers x−0 on a f(x) qui tend vers +∞
(d) quand x tend vers x−0 on a f(x) qui tend vers −∞
Alors la droite (D) d’équation x = x0 est une asymptote verticale à Cf au voisinage de x+0 dans les
deux premiers cas (resp. x−0 dans les deux derniers cas )

2. parallèles à l’axe des abscisses Lorsque l’on est en présence d’un des 4 cas suivants :
(a) quand x tend vers +∞ on a f(x) qui tend vers y+0
(b) quand x tend vers +∞ on a f(x) qui tend vers y−0
(c) quand x tend vers −∞ on a f(x) qui tend vers y+0
(d) quand x tend vers −∞ on a f(x) qui tend vers y−0
Alors la droite (D) d’équation y = y0 est une asymptote horizontale à Cf au voisinage de +∞ dans les
deux premiers cas (resp. −∞ dans les deux derniers cas )

3. obliques Lorsque l’on est en présence d’un des 2 cas suivants :
(a) f(x) = ax+ b+ ϵ(x) avec lim

x 7→+∞
ϵ(x) = 0

(b) f(x) = ax+ b+ ϵ(x) avec lim
x 7→−∞

ϵ(x) = 0

Alors la droite (D) d’équation y = ax+ b est une asymptote oblique à Cf au voisinage de +∞ dans le
premier cas (resp. −∞ dans le deuxième cas)
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11.3 Courbes asymptotes et Positions relatives 11 RETOUR SUR LES BRANCHES INFINIES

11.3 Courbes asymptotes et Positions relatives

Lorsque l’on est en présence d’un des 2 cas suivants :
• f(x) = g(x) + ϵ(x) avec lim

x7→+∞
ϵ(x) = 0

• f(x) = g(x) + ϵ(x) avec lim
x7→−∞

ϵ(x) = 0

Alors la courbe Cg d’équation y = g(x) est une courbe-asymptote à Cf au voisinage de +∞ dans le premier
cas (resp. −∞ dans le deuxième cas )

11.3.1 Positions relatives d’une courbe et de son asymptote

Pour déterminer les positions relatives de la courbe Cf d’équation y = f(x) par rapport à son asymptote
Cgd’équation y = g(x), il suffit d’étudier le signe de la différence f(x)− g(x)

• Les x éventuels annulant f(x)− g(x) sont les abscisses des points d’intersection des courbes Cf et Cg
• Les x éventuels tels que f(x)−g(x) > 0 sont les abscisses des points tels que la courbe Cf est au-dessus

de la courbe Cg
• Les x éventuels tels que f(x)−g(x) < 0 sont les abscisses des points tels que la courbe Cf est en-dessous

de la courbe Cg

11.3.2 Exemple : les fonctions hyperboliques sh et ch

1. Soit sh(x) =
ex − e−x

2
; ch(x) =

ex + e−x

2
; f(x) =

ex

2
; g(x) =

e−x

2
; k(x) = −e

−x

2

2. Dsh = R donc ∀x ∈ Dsh on a −x ∈ Dsh. Alors sh(−x) = e−x − ex

2
= −sh(x) donc sh est impaire

3. Comme la courbe de sh admet O comme centre de symétrie, il suffit d’étudier sh sur R+.
sh est la différence de f et de g qui sont toutes deux dérivables sur R donc sh est dérivable sur R donc
sur R+.
∀x ∈ R+ sh′(x) = ch(x) > 0 donc sh est strictement croissante sur R+

on a lim
x 7→+∞

sh(x) = +∞ car lim
x 7→+∞

ex = +∞ et lim
x 7→+∞

e−x = 0

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de sh :

x −∞ 0 +∞
f ′(x) + 1 +
f(x) −∞ ↗ 0 ↗ +∞

4. Comme lim
x 7→+∞

sh(x)− f(x) = lim
x 7→+∞

−e
−x

2
= 0 alors la courbe représentative Csh de sh admet comme

asymptote au voisinage de +∞ la courbe Cf

5. Comme ∀x ∈ R l’on a sh(x)− f(x) = −e
−x

2
< 0 alors Csh est en dessous de Cf

6. Comme lim
x 7→−∞

sh(x)− k(x) = lim
x 7→−∞

ex

2
= 0 alors la courbe représentative Csh de sh admet comme

asymptote au voisinage de −∞ la courbe Ck

7. Dch = R donc ∀x ∈ Dch on a −x ∈ Dch. Alors , ch(−x) = e−x + ex

2
= ch(x) donc ch est paire

8. Comme la courbe de ch admet l’axe des ordonnées comme axe de symétrie, il suffit d’étudier ch sur R+.
ch est la somme de f et de g qui sont toutes deux dérivables sur R donc ch est dérivable sur R donc sur
R+.
∀x ∈ R+ ch′(x) = sh(x) ≥ 0 . ch′(x) ne s’annule qu’en 0 alors ch est strictement croissante sur R+

on a lim
x7→+∞

ch(x) = +∞ car lim
x7→+∞

ex = +∞ et lim
x7→+∞

e−x = 0

On en déduit le tableau de variations suivant en utilisant la symétrie de la courbe de ch :

x −∞ 0 +∞
f ′(x) − 0 +
f(x) +∞ ↘ 1 ↗ +∞
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11.3 Courbes asymptotes et Positions relatives 11 RETOUR SUR LES BRANCHES INFINIES

9. Comme lim
x 7→+∞

ch(x)− f(x) = lim
x 7→+∞

e−x

2
= 0 alors la courbe représentative Cch de ch admet comme

asymptote au voisinage de +∞ la courbe Cf

10. Comme ∀x ∈ R l’on a ch(x)− f(x) =
e−x

2
> 0 alors Cch est au dessus de Cf

11. Comme lim
x 7→−∞

ch(x)− g(x) = lim
x 7→−∞

ex

2
= 0 alors la courbe représentative Csh de sh admet comme

asymptote au voisinage de −∞ la courbe Cg

12. Comme ∀x ∈ R l’on a ch(x)− g(x) =
ex

2
> 0 alors Cch est au dessus de Cg
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11.4 Branches paraboliques et directions asymptotiques 11 RETOUR SUR LES BRANCHES INFINIES

11.4 Branches paraboliques et directions asymptotiques

On dtermine lim
x7→+∞

f(x)

x
Alors Cf admet

ou cette limite vaut 0 une branche parabolique de direction (Ox) Exemplef(x) =
√
x ou f(x) = ln(x)

ou cette limite vaut ∞ une branche parabolique de direction (Oy) Exemplef(x) = x2 ou f(x) = exp(x)

ou cette limite vaut a ̸= 0 On détermine lim
x7→+∞

f(x)− ax alors

ou elle vaut b D : y = ax+ b est une asymptote oblique

ou elle vaut ∞ D : y = ax est une direction asymptotique
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12 EQUATIONS F (X) =M ; F (X) =MX

12 Equations f(x) = m ; f(x) = mx

12.1 Application numérique non injective et non surjective
"Je doute, j’hésite, je me trompe, je médite, je change de direction ... donc j’apprends."
Proverbe khirkize -17éme siècle

Préambule :
Soient E et F des ensembles. On dit qu’une relation f de E vers F est une application de E vers F lorsque tout
élément de E a une image et une seule par f dans F . On appelle f < E > le sous-ensemble de F , ayant pour
éléments les images des éléments de E par f . On dit qu’une application f de E vers F est injective lorsque
deux éléments quelconques distincts de E ont deux images distinctes dans F . On dit qu’une application f de
E vers F est surjective lorsque tout élément de F a au moins un antécédent par f dans E. On dit qu’une
application f de E vers F est bijective lorsque f est injective et surjective.
Sujet :
Soit f la fonction numérique d’une variable réelle définie par :

f(x) =
x2 + x− 1

x2 + x+ 1

On appellera (Cf ) sa courbe représentative dans un repère orthonormé.
1. Démontrer que f est bien une application de R dans R
2. Etudier et représenter graphiquement f dans un repère orthonormé. (unité graphique : 3 cm). Préciser

les points d’intersection de (Cf ) avec les axes du repère ainsi que son asymptote.
3. Démontrer que (Cf ) a un axe de symétrie que l’on précisera.
4. (a) Résoudre graphiquement, en discutant selon m, l’équation suivante (E) : f(x) = m d’inconnue

réelle x et où m est un paramètre réel
(b) Retrouver les mêmes résultats par une méthode algébrique.

5. (a) L’application f est-elle injective ?
(b) Déterminer l’ensemble-image de R par f noté f < R > .
(c) L’application f est-elle surjective ? Justifier .
(d) L’application f est-elle bijective ? Justifier.

12.2 Corrigé

Soit f la fonction numérique d’une variable réelle définie par f(x) =
x2 + x− 1

x2 + x+ 1
On appellera (Cf ) sa courbe représentative dans un repère orthonormé R = (O; i⃗, j⃗).

1. Df = R car ∀x ∈ R l’on a x2 + x − 1 qui existe ainsi que x2 + x + 1 et en plus, x2 + x + 1 ̸= 0 car son
discriminant ∆ = −3 < 0. Comme Df = R tout réel x a donc une et une seule image f(x) donc f est
bien une application de R dans R

2. (a) Df = R
(b) On ne peut simplifier f(x)

(c) Df = R est bien centré en 0 mais f(−x) = x2 − x− 1

x2 − x+ 1
̸= f(x) et f(−x) ̸= −f(x) donc f est ni paire,

ni impaire dans R = (O; i⃗, j⃗). On étudiera f sur Ef = R.
(d) f étant une fonction fraction rationnelle est donc dérivable donc continue sur son ensemble de défini-

tion : R. ∀x ∈ R l’on a :

f ′(x) =
(2x+ 1)(x2 + x+ 1)− (x2 + x− 1)(2x+ 1)

(x2 − x+ 1)2

=
2x3 + 2x2 + 2x+ x2 + x+ 1− [2x3 + x2 + 2x2 + x− 2x− 1]

(x2 − x+ 1)2
=

4x+ 2

(x2 − x+ 1)2
.

Comme (x2 − x+ 1)2 > 0 alors le signe de f ′(x) est celui du binôme 4x+ 2

(e) • Comme f est une fonction fraction rationnelle, lim
x→−∞

f(x) = lim
x→−∞

x2

x2
= 1
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12.2 Corrigé 12 EQUATIONS F (X) =M ; F (X) =MX

• lim
x→+∞

f(x) = lim
x→+∞

x2

x2
= 1

• donc Cf admet au voisinage de −∞ et de +∞ la droite (D) d’équation y = 1

(f)

x −∞ −1

2
+∞

f ′(x) − 0 +
1 1

f(x) ↘ ↗
−5

3

(g) i. Cf ∩ (Oy) = {M(0; f(0))} = {M(0;−1)}

ii. f(x) = 0 ⇐⇒ x2 + x− 1 = 0 ⇐⇒ x = x′ =
−1−

√
5

2
ou x = x” =

−1 +
√
5

2

donc Cf ∩ (Ox) = {M1(
−1−

√
5

2
; 0);M2(

−1 +
√
5

2
; 0)}

3. Prouvons (Cf ) admet D′ : x = −1

2
comme axe de symétrie. Pour cela posons a = −1

2
alors 2a − x =

−1− x

(a) Pour tout x ∈ Df = R l’on a bien −1− x ∈ R donc 2a− x = −1− x ∈ Df

(b) f(2a− x) = f(−1− x) =
(−1− x)2 − 1− x− 1

(−1− x)2 − 1− x+ 1
=

1 + 2x+ x2 − 1− x− 1

1 + 2x+ x2 − 1− x+ 1
=
x2 + x− 1

x2 + x+ 1
= f(x)

(c) Donc (Cf ) admet D′ : x = −1

2
comme axe de symétrie.

4. (a) Résolution graphique de (E) : f(x) = m :
f(x) = m⇐⇒ x est l’abscisse éventuelle des points d’intersection de Cf et de la droite Dm : y = m

• ou bien m < −5

3
alors pas de point d’intersection de Cf et de Dm donc pas de solution pour (E)

• ou bien m = −5

3
alors un seul point d’intersection M(−1

2
;
2

3
) de Cf et de Dm

donc une seule solution x = −1

2
pour (E)

• ou bien −5

3
< m < 1 alors deux points d’intersection de Cf et de Dm donc deux solutions x′ et

x” pour (E)
• ou bien 1 ≤ m alors pas de point d’intersection de Cf et de Dm donc pas de solution pour (E)

(b) Résolution algébrique de (E) : f(x) = m :

f(x) = m⇐⇒ x2 + x− 1

x2 + x+ 1
= m⇐⇒ x2+x−1 = m(x2+x+1) ⇐⇒ (1−m)x2+(1−m)x−1−m = 0

• ou bien m = 1 alors (E) : 0x2 + 0x− 2 = 0 pas de solution
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12.2 Corrigé 12 EQUATIONS F (X) =M ; F (X) =MX

• ou bien m ̸= 1 donc (E) est bien de degré 2
∆ = (1−m)2 − 4(1−m)((−1−m) = (1−m)[(1−m) + 4(1 +m)] = (1−m)(5 + 3m)

∆ est un trinôme de variable m de racines 1 et
−5

3
, d’après le théorème du signe du trinôme on

peut donc dire que :
•

m −∞ −5

3
1 +∞

∆ = (1−m)(5 + 3m) − 0 + // +

i. si m =
−5

3
alors ∆ = 0 donc (E) a une seule solution x =

−1

2

ii. si
−5

3
< m < 1 alors ∆ > 0 donc (E) a deux solutions x′ et x”

iii. si m <
−5

3
ou m > 1 alors ∆ < 0 donc (E) n’a pas de solutions.

5. (a) L’application f n’est pas injective car
−1−

√
5

2
̸= −1 +

√
5

2
et f(

−1−
√
5

2
) = 0 et f(

−1 +
√
5

2
) = 0.

(b) D’après l’étude des variations de f alors l’ensemble-image f < R >= [−5

3
; 1[ .

(c) L’application f n’est pas surjective car f < R ≯= R. En effet, il suffit de choisir un y /∈ [−5

3
; 1[ . cet

y n’a pas d’antécédent par f dans l’ensemble de départ R.
(d) L’application f n’est donc pas bijective car f n’est pas injective. On pourrait dire aussi que l’appli-

cation f n’est donc pas bijective car f n’est pas surjective.
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12.3 Equations f(x) = m et f(x) = mx

1. Soit la famille de fonctions numériques d’une variable réelle (fm) où m est un paramètre réel et fm est
définie par

fm(x) =
m x3

(1− x)2

On note Cm la courbe représentative de fm dans un repère orthonormé R = (O; ı⃗, ȷ⃗).
Démontrer que ∀m ∈ R Cm admet au moins un point fixe dont on donnera les coordonnées.

2. Soit la fonction f1.

(a) Déterminer des réels A,B,C et D tels que f1(x) = Ax+B +
C

1− x
+

D

(1− 1)2
.

Cei s’appelle la décomposition en éléments simples de la fraction rationnelle
x3

(1− x)2

(b) Etudier la fonction f1 et représenter f1 dans le repère R = (O; ı⃗, ȷ⃗).
3. Soit la fonction f−1. Construisez sans étudier f−1 sa courbe représentative C−1 dans un repère ortho-

normé
4. Construisez aussi sans étudier h la courbe Ch dans un repère orthonormé lorsque

h(x) =
|x|3

(1− x)2

5. Résoudre graphiquement l’équation suivante d’inconnue réelle x et de paramètre m ∈ R. :

x3 −mx2 + 2mx−m = 0

6. Déterminer graphiquement, le nombre et le signe des solutions de l’équation d’inconnue x :

x3(1−m) + 2mx2 −mx = 0

7. Retrouvez les résultats de la question précédente par une méthode algébrique.

12.3.1 Corrigé

1. • mx3 existe pour tout réel x
• (1− x)2 existe pour tout réel x
• (1− x)2 = 0 ⇐⇒ 1− x = 0 ⇐⇒ x = 1

Par conséquent, l’ensemble de définition de fm est R− {1}.

Il est évident que si x = 0 alors fm(0) =
m 03

(1− x)2
= 0.

Donc ∀m ∈ R Cm admet au moins un point fixe O
Å
0
0

ã
.

2. f1(x) =
x3

(1− x)2
.

(a) ∀x ̸= 1 f1(x) = Ax+B +
C

1− x
+

D

(1− x)2
⇐⇒ x3

(1− x)2
=

(Ax+B)(x− 1)2 + C(1− x) +D

(1− x)2

⇐⇒ x3 = (Ax+B)(1− x)2 + C(1− x) +D ⇐⇒ x3 = (Ax+B)(1− 2x+ x2) + C(1− x) +D

⇐⇒ x3 = Ax3 + x2(B − 2A) + x(A− 2B + C) +B + C +D ⇐⇒


A = 1
B − 2A = 0
A− 2B − C = 0
B + C +D = 0

par identification des coefficients des monômes respectifs.

13
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Donc ∀x ̸= 1 f1(x) = Ax+B +
C

1− x
+

D

(1− x)2
⇐⇒


A = 1
B = 2
C = −3
D = 1

Par conséquent,

∀x ̸= 1
x3

(1− x)2
= x+ 2− 3

1− x
+

1

(1− x)2

(b) • f1 est une fonction rationnelle car c’est le quotient de deux fonctions polynômes donc f1 est
dérivable (donc continue)sur son ensemble de définition Df1 = R− {1}

• ∀x ̸= 1 f ′(x) =
3x2(1− x)2 − x3 2 (−1)(1− x)

(1− x)4
=
x2(1− x)(3(1− x) + 2x)

(1− x)4
=
x2(1− x)(3− x)

(1− x)4

Comme ∀x ̸= 1 (1− x)4 > 0 alors le signe de f ′(x) est celui de x2(1− x)(3− x)
•

x −∞ 0 1 3 +∞
x2 + 0 + + +

(1− x)(3− x) + + 0 − 0 +
(1− x)4 + + 0 + +
f ′(x) + 0 + || − 0 +

+∞ ||+∞ +∞
↗ ||

0 || ↘ ↗
f(x) ↗ ||

−∞ || 27

4
||

• — f(0) = 0

— f(3) =
27

4
— i. lim

x 7→1−
f1(x) = +∞ car lim

x 7→1−
x3 = 1 et lim

x7→1−
(1− x)2 = 0+

ii. lim
x 7→1+

f1(x) = +∞ car lim
x 7→1+

x3 = 1 et lim
x 7→1+

(1− x)2 = 0+

iii. La courbe de f1 admet pour asymptote verticale la droite d’équation x = 1

— i. lim
x 7→+∞

f1(x) = lim
x 7→+∞

x3

x2
= lim

x 7→+∞
x = +∞

ii.

iii. lim
x 7→−∞

f1(x) = lim
x7→−∞

x3

x2
= lim

x 7→−∞
x = −∞

iv. Etudions ces deux branches infinies :

A. limx 7→ +∞f(x)

x
= limx 7→ +∞ x3

x(1− x)2
= limx 7→ +∞x3

x3
= 1

B. limx 7→ +∞f(x)− x = limx 7→ +∞ x3

(1− x)2
− x = limx 7→ +∞x3 − x(1− x)2

(1− x)2

= limx 7→ +∞2x2

x2
= 2

C. idem au voisinage de −∞
D. Par conséquent, au voisinage de −∞ et au voisinage de +∞ la courbe de f admet

comme asymtote oblique la droite d’équation y = x+ 2

•

14



12.3 Equations f(x) = m et f(x) = mx 12 EQUATIONS F (X) =M ; F (X) =MX

3. • f−1(x) =
−x3

(1− x)2
= −f1(x) donc sa courbe représentative C−1 en vert est l’image de la courbe rouge

C1 par la symétrie orthogonale d’axe l’axe des abscisses dans le repère orthonormé

•
.
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4. • h(x) =
|x|3

(1− x)2
=


x3

(1− x)2
= f1(x) si x ≥ 0

−x3

(1− x)2
= f−1(x) si x ≤ 0

• Par conséquent, C − h coïncide avec la courbe verte C−1 sur ]−∞; 0] et avec la courbe rouge C1 sur
[0; +∞[

5. Soit (E) l’équation d’inconnue x :
x3 −mx2 + 2mx−m = 0

• L’ensemble de définition de cette équation est D = R
• ∀x ∈ R x3 −mx2 + 2mx−m = 0 ⇐⇒ x3 = m(x2 − 2x+ 1) ⇐⇒ x3 = m(1− x)2

— ou bien x = 1
mais alors (E) ⇐⇒ 1 = 0 donc x = 1 ne peut être solution de cette équation.

— ou bien x ̸= 1

alors (E) ⇐⇒ x3

(1− x)2
= m ⇐⇒ f(x) = m

⇐⇒ x est l’abscisse des points éventuels d’intersection de Cf1 et de la droite d’équation y = m
Par conséquent,
— si m < 0 il y a une seule solution x′ < 0
— si m = 0 il y a une seule solution x′ = 0

— si 0 < m <
27

4
il y a une seule solution 0 < x′ < 1

— si m =
27

4
il y a deux solutions 0 < x′ < 1 et x” = 3

— si
27

4
< m il y a trois solutions 0 < x′ < 1 ; 1 < x” < 3 et 3 < x′′′

•
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6. Soit (F ) l’équation d’inconnue x :

x3(1−m) + 2mx2 −mx = 0

• L’ensemble de définition de cette équation est D = R
• ∀x ∈ R x3(1−m) + 2mx2 −mx = 0 ⇐⇒ x3 = mx3 − 2mx2 +mx ⇐⇒ x3 = mx(x2 − 2x+ 1)
⇐⇒ x3 = mx(1− x)2

— ou bien x = 1
mais alors (F ) ⇐⇒ 1 = 0 donc x = 1 ne peut être solution de cette équation.

— ou bien x ̸= 1

alors (F ) ⇐⇒ x3

(1− x)2
= mx ⇐⇒ f(x) = mx

⇐⇒ x est l’abscisse des points éventuels d’intersection de Cf1 et de la droite d’équation y = mx
Par conséquent,
— si m < 0 il y a une seule solution x = 0
— si m = 0 il y a une seule solution x = 0
— si 0 < m < 1 il y a trois solutions x′ < 0 ; x = 0 et 0 < x′′ < 1
— si m = 1 il y a deux solutions x = 0 et 0 < x′ < 1
— si 1 < m il y a trois solutions x = 0 ; 0 < x′ < 1 ; 1 < x”

•
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7. On peut retrouver les résultats de la question précédente par une méthode algébrique :
x3(1−m)+2mx2−mx = 0 ⇐⇒ x[x2(1−m)+2mx−m] = 0 ⇐⇒ x = 0 ou x2(1−m)+2mx−m = 0
Etudions l’équation (G) : x2(1−m) + 2mx−m = 0.

(a) ou bien m = 1 alors x2(1−m) + 2mx−m = 0 ⇐⇒ 2x− 1 = 0 ⇐⇒ x =
1

2
(b) ou bien m ̸= 1 alors l’équation est de degré 2.

∆ = (2m)2 − 4(1−m)(−m) = 4 m2 − 4m2 + 4 m = 4m
• ou bien m < 0 alors ∆ < 0 donc (G) n’a pas de solution.

• ou bien m = 0 alors ∆ = 0 et x =
−2m

2(1−m)
=

0

2
= 0

• ou bien m > 0 alors ∆ > 0 et (G) a deux solutions x′ et x”.

Le produit de ces deux solutions P = x′x” =
c

a
=

−m
1−m

=
m

m− 1
est du signe de m − 1 car

m > 0.
— si m < 1 alors P < 0 donc x′ et x” sont de signes contraires.

— si m > 1 alors P > 0 donc x′ et x” ont le même signe : celui de leur somme S =
−b
a

=
2m

m− 1
qui est du signe de m− 1 car m > 0 donc S > 0 d’où 0 < x′ < x”..

• On retrouve bien les résultats précédents : Par conséquent,
— si m < 0 il y a une seule solution x = 0
— si m = 0 il y a une seule solution x = 0
— si 0 < m < 1 il y a trois solutions x′ < 0;x = 0 et 0 < x′′ < 1
— si m = 1 il y a deux solutions x = 0 et 0 < x′ < 1
— si 1 < m il y a trois solutions x = 0 ; 0 < x′ < 1 ; 1 < x”

18
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13 Autres Exercices

13.1 f(x) = xx

Etudier et représenter la fonction numérique f définie par f(x) = xx.

On sait que pour ∀a > 0 ∀b ∈ R ab = eb ln(a). Donc xx = ex ln(x).

1. Df = {x/xln(x) existe } = {x/ln(x) existe } = R+∗ =]0;+∞[

2. f est dérivable sur ]0; +∞[ car :
• f est la composée de x 7→ xln(x) et de exp
• x 7→ xln(x) est dérivable sur ]0; +∞[ car elle est le produit de x 7→ fonction polynôme dérivable sur
R donc sur ]0; +∞[ et de ln dérivable sur ]0; +∞[

• ∀x > 0 xln(x) ∈ R
• exp est dérivable sur R.

3. En utilisant la formule (eu)′ = u′eu et (uv)′ = u′v + uv′

∀x > 0 f ′(x) = (xln(x))′exln(x) = (1ln(x) + x
1

x
)exln(x) = (ln(x) + 1)exln(x)

Comme exln(x) > 0 alors le signe de f ′(x) est celui de ln(x) + 1
• f ′(x) = 0 ⇐⇒ ln(x) + 1 = 0 ⇐⇒ ln(x) = −1 ⇐⇒ exp(ln(x)) = exp(−1) car exp est bijective

⇐⇒ x = e−1 ⇐⇒ x =
1

e
• f ′(x) > 0 ⇐⇒ ln(x) + 1 > 0 ⇐⇒ ln(x) > −1 ⇐⇒ exp(ln(x)) > exp(−1) car exp est strictement

croissante
⇐⇒ x > e−1 ⇐⇒ 1

e

• Sur ]0;
1

e
[ f ′(x) < 0 donc f est strictement décroissante

• Sur ]
1

e
; +∞[ f ′(x) > 0 donc f est strictement croissante

• En x =
1

e
f ′(x) = 0 et change de signe alors f admet un minimum qui vaut f

Å
1

e

ã
= exp

Å
1

e

ã
4. • Quand x tend vers 0+ alors xln(x) tend vers 0− alors exln(x) tend vers e0 = 1.

Cf a donc un point limite le point de coordonnées (0; 1)
• Quand x tend vers +∞ alors xln(x) tend vers +∞ alors exln(x) tend vers +∞

•
f(x)

x
=

xx

x
= xx−1 = exp((x − 1)ln(x)) tend vers +∞ quand x tend vers +∞ donc présente au

voisinage de +∞ une branche parabolique de direction l’axe des ordonnées.
•

x 0
1

e
+∞

f ′(x) − 0 +
1 +∞

f(x) ↘ ↗
1
e

1
e

On peut remarquer que f(1) = 11 = 1 , la pente de la tangente au point de coordonnées (1; 1) est f ′(1) = 1
On peut remarquer que f(2) = 22 = 4 .
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13.2 Inégalité des accroissements finis
13.2.1 Encadrement

1. Démontrer que ∀n ∈ N∗ l’on a :
1

2
√
n+ 1

≤
√
n+ 1−

√
n ≤ 1

2
√
n

2. Trouver une valeur approchée de ln(π) en utilisant l’intervalle [3;π]

3. Démontrer que ∀n ∈ N∗ l’on a :
1

n+ 1
≤ ln(n+ 1)− ln(n) ≤ 1

n

4. Soient les réels α et β tels que 0 < α ≤ β <
π

2
.

Démontrer que
β − α

cos2(α)
≤ tan(β)− tan(α) ≤ β − α

cos2(β)
.

En déduire un encadrement de tan(0, 78) et de tan(0, 8)
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13.2 Inégalité des accroissements finis 13 AUTRES EXERCICES

13.2.2 Sens de variation des fonctions x 7→
Å
1 +

1

x

ãx
et de x 7→

Å
1 +

1

x

ãx+1

1. A l’aide du théorème des accroissements finis, démontrer que

∀x > 0
1

x+ 1
< ln(x+ 1)− ln(x) <

1

x

2. En déduire le sens de variations et la limite en +∞ des fonctions f et g définies sur R+∗ par

f(x) =

Å
1 +

1

x

ãx
et g(x) =

Å
1 +

1

x

ãx+1

1. • Comme x > 0 on pose a = x et b = x+ 1 donc a < b et a− b = x+ 1− x = 1.
• ln est continue sur [x ; x+ 1] car ln est continue sur ]0 ; +∞[ et [x ; x+ 1] ⊂ 0 ; +∞[
• ln est dérivable sur ]x ; x+ 1[ car ln est dérivable sur ]0 ; +∞[ et ]x ; x+ 1[⊂ 0 ; +∞[
• Donc d’après le théorème des accroissements finis on peut dire :

∃c ∈]x ; x+ 1[ ln(x+ 1)− ln(x) = (ln)′(c) =
1

c

• Par conséquent, comme x < c < x+ 1 alors
1

x+ 1
<

1

c
<

1

x
donc

∀x > 0
1

x+ 1
< ln(x+ 1)− ln(x) <

1

x

2. • Soit f définie sur R+∗ par f(x) =
Å
1 +

1

x

ãx
= exp

ï
x ln

Å
1 +

1

x

ãò
= exp

ï
x ln

Å
x+ 1

x

ãò
⋄ ∀x > 0 f(x) = exp[x(ln(x+ 1)− ln(x)] = exp[x ln(x+ 1)− x ln(x)]
⋄ f est dérivable sur R+∗

⋄ ∀x > 0 f ′(x) = [x ln(x+ 1)− x ln(x)]′ exp[x ln(x+ 1)− x ln(x)]

f ′(x) =

ï
1 ln(x+ 1) + x

1

x+ 1
− 1 ln(x)− x

1

x

ò′
exp[x ln(x+ 1)− x ln(x)]

f ′(x) =

ï
ln(x+ 1)− ln(x) +

x

x+ 1
− 1

ò
exp[x ln(x+ 1)− x ln(x)]

f ′(x) =

ï
ln(x+ 1)− ln(x) +

x− (x+ 1)

x+ 1

ò
exp[x ln(x+ 1)− x ln(x)]

f ′(x) =

ï
ln(x+ 1)− ln(x)− 1

x+ 1

ò
exp[x ln(x+ 1)− x ln(x)]

⋄ Le signe de f ′(x) est celui de h(x) =
ï
ln(x+ 1)− ln(x)− 1

x+ 1

ò
car exp[x ln(x+1)−x ln(x)] > 0

⋆ h est dérivable sur ]0 ; +∞[
⋆ ∀x > 0 on a :

h′(x) =

−1

x2
x+ 1

x

− −1

(x+ 1)2
=

−1

x(x+ 1)
+

1

(x+ 1)2
=

−(x+ 1) + x

x(x+ 1)2
=

−1

x(x+ 1)

⋆ ∀x > 0 on a h′(x) < 0 donc h est strictement décroissante sur ]0 ; +∞[

⋆ Or lim
x→+∞

x+ 1

x
= 1 donc lim

x→+∞
ln

Å
x+ 1

x

ã
= 0. Comme de plus, lim

x→+∞

1

x+ 1
= 0 alors lim

x→+∞
h(x) = 0

⋆ Comme h est strictement décroissante sur ]0 ; +∞[ et que lim
x→+∞

h(x) = 0

alors ∀x > 0 h(x) > 0
⋄ Par conséquent, ∀x > 0 f ′(x) = h(x) > 0 donc f est strictement croissante sur ]0 ; +∞[
⋄ lim

x→+∞
f(x) = e car

⋆ en posant y =

Å
1 +

1

x

ãx
alors l(y) = ln

ïÅ
1 +

1

x

ãxò
= x ln

ï
1 +

1

x

ò
=

ln

ï
1 +

1

x

ò
1

x

⋆ En posant h =
1

x
alors ln(y) =

ln(1 + h)

h
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⋆ Quand x→ +∞ alors h→ 0 d’où ln(y) =
ln(1 + h)

h
=
ln(1 + h)− ln(1)

1 + h− 1
→ (ln)′(1) = 1 item

[⋆] lim
x→+∞

ln(y) = lim
h→0

ln(y) = 1 donc lim
x→+∞

y = exp(1) = e

⋄ Voici alors le tableau des variations de f :

x 0 +∞
f ′(x) +

e
f(x) ↗

• Soit g définie sur R+∗ par g(x) =
Å
1 +

1

x

ãx+1

= f(x)

Å
1 +

1

x

ã
= f(x) +

1

x
f(x)

⋄ Comme x→
Å
1 +

1

x

ã
et que f est dérivable sur ]0 ; +∞[ alors g qui est le produit des ces deux

fonctions est alors dérivable sur ]0 ; +∞[.

⋄ ⋆ ∀x > 0 g(x) =

Å
1 +

1

x

ãx+1

= exp

ï
(x+ 1)ln

Å
1 +

1

x

ãò
= exp

ï
(x+ 1)ln

Å
x+ 1

x

ãò
g(x) = exp[(x+ 1)[ln(x+ 1)− ln(x)]] = exp[(x+ 1)ln(x+ 1)− (x+ 1)ln(x)]

⋆ ∀x > 0 g′(x) = [(x+ 1)ln(x+ 1)− (x+ 1)ln(x)]′ exp[(x+ 1)ln(x+ 1)− (x+ 1)ln(x)]
Comme exp[(x+ 1)ln(x+ 1)− (x+ 1)ln(x)] > 0 alors le signe de g′(x) est celui de u′(x) avec
u(x) = [(x+ 1)ln(x+ 1)− (x+ 1)ln(x)].

⋆ u′(x) = ln(x+ 1) + (x+ 1)
1

x+ 1
− ln(x)− (x+ 1)

1

x

u′(x) = ln(x+1)+ 1− ln(x)− x+ 1

x
= ln(x+1)+ 1− ln(x)− 1− 1

x
= ln(x+1)− ln(x)− 1

x

⋆ Or d’après la question précédente on sait que ln(x + 1) − ln(x) <
1

x
donc u′(x) < 0 donc

g′(x) < 0 d’où g est décroissante sur ]0 ; +∞[.

⋄ Comme g(x) = f(x) +
1

x
f(x) et comme lim

x→+∞
f(x) = e et lim

x→+∞

1

x
= 0 alors lim

x→+∞
g(x) = e

⋄ On peut alors dresser le tableau des variations de g :

x 0 +∞
g′(x) +

g(x) ↘
e
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13.3 Etude dérivabilité et continuité d’une fonction définie par morceaux

Soit f une fonction numérique d’une variable réelle définie par

f(x) =

®
0 si x = 0

e−
1
x2 si x ̸= 0

1. Démontrer que f est continue sur R∗

2. Démontrer que f est continue en 0. Conclusion ?
3. Démontrer que f est paire.
4. Démontrer que f est dérivable sur R∗.
5. Démontrer que f est dérivable en 0. Conclusion ?
6. Représenter graphiquement la fonction f .
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13.4 Etude de la fonction hyperbolique x 7→ th(x)

Soit f une fonction numérique d’une variable réelle définie par

f(x) =
ex − e−x

ex + e−x
=
sh(x)

ch(x)
= th(x)

.
1. Etudier la fonction f . Représenter graphiquement la fonction f dans un repère.
2. Démontrer f est bijective et admet une bijection réciproque Argth définie sur J =]− 1; 1[

3. Démontrer que ∀x ∈ R f ′(x) = 1− [f(x)]2.
4. En déduire que Argth est dérivable sur J et déterminer (Argth)′(y) pour tout y ∈ J .
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13.5 Intersection de deux courbes

Soient les fonctions suivantes f et g définies respectivement par f(x) = 2x4+x3−3x+
5

4
et g(x) =

3(3x+ 5)

4(x+ 3)
.

Soit le repère orthonormé R = (O; i⃗, j⃗).
1. Etudier la fonction f et représenter graphiquement la courbe Cf de f dans le repère R
2. Etudier la fonction g et représenter graphiquement la courbe Cg de f dans le même repère R
3. Démontrer que les deux courbes coupent l’axe des ordonnées au même point A dont on déterminera

les coordonnées.
4. Démontrer que les tangentes en A aux deux courbes sont perpendiculaires.

13.5.1 Corrigé
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13.6 Etude d’une suite un+1 = f(un)

"Étudier sans réfléchir est une occupation vaine ; réfléchir sans étudier est dangereux."
Confucius ( 555 - 479 avJC) - Chine

1. Montrer que pour tout x ∈ R∗ on a :
ex − 1

x
> 0

2. On considère la fonction f définie sur R par f(x) = ln

Å
ex − 1

x

ã
si x ̸= 0

f(0) = 0

Montrer que f est continue sur R
3. Montrer que f est de classe C1 sur R∗ et préciser f ′(x) pour tout x de R∗

4. On admet la Formule dite de Taylor-Young : Si g est de classe Cn sur un intervalle de bornes a et

a + h et admet une dérivée d’ordre n + 1 en a alors g(a + h) = g(a) +
h

1!
g′(a) + · · · + hn

n!
g(n)(a) +

hn+1

(n+ 1)!
[g(n+1)(a) + ε(h)] avec lim

h 7→0
ε(h) = 0.

(a) Montrer alors que, pour tout x non nul, ex = 1 + x+
x2

2
+
x2

2
ϵ(x) avec lim

x 7→0
ϵ(x) = 0.

(b) Montrer que lim
x 7→0

f ′(x) =
1

2
.

(c) En déduire que f est de classe C1 sur R et donner f ′(0)
5. (a) Etudier les variations de la fonction g définie par :

∀x ∈ R g(x) = x ex − ex + 1

(b) En déduire le signe de g(x) puis dresser le tableau de variations de f (limites comprises).
(c) Dessiner l’allure de la courbe représentative de f

6. On considère la suite (un) définie par la donnée de son premier terme u0 > 0 et par la relation valable
pour tout entier naturel n : un+1 = f(un).
Montrer que ∀n ∈ N, un > 0

7. (a) Vérifier que ∀x ∈ R , f(x)− x = f(−x)
(b) En déduire le signe de f(x)− x sur R+∗

(c) Montrer que la suite (un) est décroissante
8. En déduire que la suite (un) converge et donner sa limite
9. Ecrire un programme Pascal permettant de déterminer et d’afficher le plus petit entier naturel n pour

lequel un ≤ 10−3 dans le cas où u0 = 1
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13.7 Fonction rationnelle

1. Soit la fonction numérique f d’une variable réelle définie sur ]2; +∞[ par

f(x) =
2x2 − 3x− 9

x− 2

On note (C) sa courbe représentative dans ls repère orthonormal R = (O; ı, ȷ)

(a) Déterminer les réels a, b, c tels que ∀x ∈]2; +∞[ f(x) = ax+ b+
c

x− 2

(b) Justifier les limites de f en 2 et en +∞. Déterminer les asymptotes à (C) ainsi que la position de
(C) par rapport à ses asymptotes.

(c) Tracer alors (C) et ses asymptotes.
2. Soit la fonction numérique g d’une variable réelle définie sur R par

g(x) =
3 + x+

√
x2 − 10x+ 81

4

On note (C ′) sa courbe représentative dans ls repère orthonormal R = (O; ı, ȷ)

(a) Justifier les limites de g en −∞ et en +∞.
Déterminer les asymptotes à (C ′) ainsi que la position de (C ′) par rapport à ses asymptotes.

(b) Déterminer g′(x). Justifier avec soin son signe. En déduire le tableau de variations de g.
(c) Tracer alors (C) et ses asymptotes dans le même repère que (C)

3. Justifier pourquoi f admet une fonction réciproque f−1 puis déterminer l’expression de f−1(x).
Que peut-on en déduire pour les courbes (C) et (C ′) ?
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13.8 Fonctions définies par morceaux

Soit un plan P muni d’un repère cartésien orthonormal R = (0;−→e1 ,−→e2).

13.8.1 Partie A

1. Soit la fonction f définie par
ß
f(x) = −x ln(x) si x > 0
f(0) = 0

(a) Etudier la fonction f . Tracer ensuite la courbe représentative Γ de f
(b) Etudier selon x la position relative de Γ et de la droite (D) : y = x

2. Soit la fonction g définie par
ß
g(x) = −x ln(|x|) si x ̸= 0
g(0) = 0

(a) En utilisant le 1°), tracer ensuite la courbe représentative Cg de g
(b) Soit l’application T de P dans P qui à tout point M(x, y) associe le point M ′(x′, y′) avecß

x′ = e x
y′ = −ex+ ey

Déterminer T < Cg >.
3. Soit la suite (un) définie par  un+1 = g(un) si n ∈ N

u0 ∈
ò
0 ;

1

e

ï
Démontrer que la suite (un) est convergente et déterminer sa limite.

13.8.2 Partie B

1. Soit n ∈ N∗. Soit la suite fn définie par

 fn(x) = −x ln
Å
1

x

ãn
si x ∈ ]0; 1]

fn(0) = 0

(a) Etudier la dérivabilité puis la continuité de fn sur [0; 1]

(b) Démontrer que fn admet un maximum an sur ]0; 1] que l’on calculera.
(c) On pose bn = fn(an). Calculer bn en fonction de n.

2. (a) Démontrer que la suite (an) est convergente et déterminer sa limite.

(b) Montrer que ∀x ∈ [0; e−n] on a fn(x) ≥
bn
an
x

3. Soit n ∈ N∗. Soient les intégrales In =

∫ 1

0

fn(x)dx et Jn =

∫ e−n

0

fn(x)dx

(a) Démontrer que ∀n ∈ N In ≥ Jn

(b) Démontrer que ∀n ∈ N Jn ≥ 1

2
nne−2n

(c) En déduire que la suite (In) est divergente.

13.8.3 Partie A

1. Soit la fonction f définie par
ß
f(x) = −x ln(x) si x > 0
f(0) = 0

(a) • −x ln(x) est défini sur ]0; +∞[ et comme f(0) = 0 alors f est définie sur [0; +∞[
• Id est dérivable sur R et ln est dérivable sur ]0; +∞[ donc f est dérivable donc continue sur
]0; +∞[

• lim
x 7→0+

f(x)− f(0)

x− 0
= lim

x 7→0+

−x ln(x)
x

= lim
x 7→0+

−ln(x) = +∞ donc f n’est pas dérivable à droite en

0 mais sa courbe représentative Γ admet une demi-tangente parallèle à l’axe des ordonnées.

• ∀x > 0, f ′(x) = −ln(x)− x
1

x
= −ln(x)− 1

• ∀x > 0 f ′(x) = 0 ⇐⇒ −ln(x) = −1 ⇐⇒ ln(x) = −1 ⇐⇒ ln(x) = ln

Å
1

e

ã
⇐⇒ x =

1

e
car
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ln réalise une bijection de R+∗ sur R.

∀x > 0 f ′(x) > 0 ⇐⇒ −ln(x) > 1 ⇐⇒ ln(x) < −1 ⇐⇒ ln(x) < ln

Å
1

e

ã
⇐⇒ x <

1

e
ar ln

est strictement croissante sur R+∗.
• lim

x 7→+∞
f(x) = lim

x 7→+∞
f(x) = −∞ car lim

x 7→+∞
−x = −∞ et lim

x 7→+∞
ln(x) = +∞

• On en déduit le tableau de variations suivant :

x −∞ 1

e
+∞

f ′(x) + 0 −

1

e
f(x) ↗ ↘

0 −∞

(b) • ∀x > 0 f(x)− x = −x ln(x)− x = −x(ln(x) + 1) donc
— ∀x > 0 f(x) − x = 0 ⇐⇒ −x(ln(x) + 1) = 0 ⇐⇒ ln(x) + 1 = 0 ⇐⇒ ln(x) = −1 ⇐⇒

ln(x) = ln(e−1) ⇐⇒ x = e−1.
Par conséquent, (Γ) coupe (D) au point d’abscisse x = e−1

— ∀x > 0 f(x) − x > 0 ⇐⇒ −x(ln(x) + 1) > 0 ⇐⇒ ln(x) + 1 < 0 ⇐⇒ ln(x) < −1 ⇐⇒
ln(x) < ln(e−1) ⇐⇒ x < e−1.
Par conséquent, (Γ) est au dessus de (D) pour tous les points dont l’abscisse est strictement
comprise entre 0 et e−1

— ∀x > 0 f(x) − x < 0 ⇐⇒ −x(ln(x) + 1) < 0 ⇐⇒ ln(x) + 1 > 0 ⇐⇒ ln(x) > −1 ⇐⇒
ln(x) > ln(e−1) ⇐⇒ x > e−1.
Par conséquent, (Γ) est en dessous de (D) pour tous les points dont l’abscisse est strictement
plus grande que e−1

• Si x = 0 alors f(x)− x = 0− 0 = 0 donc (Γ) coupe (D) au point d’abscisse x = 0

2.

 g(x) = −x ln(x) = f(x) si x > 0
g(x) = −x ln(−x) = −f(−x) si x < 0
g(0) = 0

(a) • ∀x ̸= 0 g(−x) = −(−x) ln(| − x|) = x ln(|x|) = −g(x)
• g(−0) = g(0) = 0 = −0 = −g(0)
• Donc ∀x ∈ R − x ∈ R et g(−x) = −g(x) donc g es impaire donc Cg admet O comme centre de

symétire.
• On peut alors construire Cg sachant qu’elle coïncide avec Cf sur R+.
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(b)
ß
x′ = e x
y′ = −ex+ ey

⇐⇒


x =

x′

e

ey = y′ + ex = y′ + e
x′

e
= y′ + x′

⇐⇒


x =

x′

e

y =
y′ + x′

e

M ′
Å
x′

y′

ã
∈ T < Cg >⇐⇒ ∃M

Å
x
y

ã
∈ Cg M ′ = T (M) ⇐⇒


x =

x′

e

y =
y′ + x′

e
y = −x ln(|x|)

⇐⇒ y′ + x′

e
= −x

′

e
ln

Å∣∣∣∣x′e ∣∣∣∣ã ⇐⇒ y′

e
= −x

′

e
− x′

e
ln(|x′|) + x′

e
ln(e)

⇐⇒ y′

e
= −x

′

e
− x′

e
ln(|x′|) + x′

e
⇐⇒ y′

e
= −x

′

e
ln(|x′|) ⇐⇒ y′ = −x′ln(|x′|) ⇐⇒ M ′ ∈ Cg

Par conséquent, on a donc T < Cg >= Cg donc Cg est globalement invariante par T .
3. Soit la suite (un) définie par  un+1 = g(un) si n ∈ N

u0 ∈
ò
0;

1

e

ï
(a) Démontrons par récurrence que ∀n ∈ N un ∈

ò
0;

1

e

ï
• Cette propriété est initialisée en 0 car u0 ∈

ò
0;

1

e

ï
• Cette propriété est héréditaire car si pour un certain entier naturel n on a un ∈

ò
0;

1

e

ï
alors

d’après le tableau de variations de la fonction on a f(un) ∈
ò
0;

1

e

ï
.

Or lorsque x ∈
ò
0;

1

e

ï
on a g(x) = f(x) donc f(un) = g(un) = un+1.

Par conséquent, un+1 ∈
ò
0;

1

e

ï
• Comme la propriété est initialisée en 0 et est héréditaire alors elle est vraie pour tout entier naturel
n

(b) ∀n ∈ N un+1 − un = g(un) − un > 0 car ∀n ∈ N un ∈
ò
0;

1

e

ï
donc la suite (un) est stritcement

croissante.

(c) Cette suite est strictement croissante et majorée par
1

e
donc elle converge vers une limite L ≤ 1

e
.

(d) Comme (un) converge vers L, comme un+1 = g(un) et que g est continue sur R+ donc continue en L
alors g(un) va converger vers g(L)
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(e) Par unicité de la limite, comme lim
n 7→+∞

un+1 = L et que lim
n7→+∞

un+1 = g(L) alors cette limite L va

vérifier l’équation g(x) = x donc L =
1

e

13.8.4 Partie B

1. Soit n ∈ N∗. Soit la suite fn définie par

 fn(x) = −x ln

Å
1

x

ãn
si x ∈ ]0; 1]

fn(0) = 0

(a) Etudier la dérivabilité puis la continuité de fn sur [0; 1]

(b) Démontrer que fn admet un maximum an sur ]0; 1] que l’on calculera.
(c) On pose bn = fn(an). Calculer bn en fonction de n.

2. (a) Démontrer que la suite (an) est convergente et déterminer sa limite.

(b) Montrer que ∀x ∈ [0; e−n] on a fn(x) ≥
bn
an
x

3. Soit n ∈ N∗. Soient les intégrales In =

∫ 1

0

fn(x)dx et Jn =

∫ e−n

0

fn(x)dx

(a) Démontrer que ∀n ∈ N In ≥ Jn

(b) Démontrer que ∀n ∈ N Jn ≥ 1

2
nne−2n

(c) En déduire que la suite (In) est divergente.
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13.9 Famille de fonctions paramétrée par un entier naturel
13.9.1

Soit n ∈ N∗. Soit la fonction fn définie sur ]0; +∞[ par fn(x) =
enx

x
1. Calculer les limites de fn aux bornes de son intervalle de définition.
2. Calculer f ′n(x) et déterminer les variations de fn.
3. Démontrer que pour tout entier naturel non nul n, la fonction fn admet un minimum. exprimer en

fonction de n la valeur yn de ce minimum et la valeur xn pour laquelle il est atteint.
4. Etudier le comportement des suites (xn) et (yn).

Corrigé
1. (a) Déterminons lim

x 7→+∞
fn(x).

Comme n < 0 alors quand x 7→ +∞ nx 7→ +∞ enx 7→ +∞ on tombe alors sur une forme
indéterminée du type ”

+∞
+∞

”.

Mais
enx

x
=
enx

nx

nx

x
. Or lim

x7→+∞

enx

nx
= +∞ et lim

x 7→+∞

nx

x
= n donc lim

x7→+∞
fn(x) = +∞

(b) Déterminons lim
x7→0+

fn(x).

Quand x 7→ 0+ nx 7→ 0+ enx 7→ 1
1

x
7→ +∞ . Donc lim

x 7→0+
fn(x) = +∞

2. Calculer f ′n(x) et déterminer les variations de fn.
3. Démontrer que pour tout entier naturel non nul n, la fonction fn admet un minimum. exprimer en

focntion de n la valeur yn de ce minimum et la valeur xn pour laquelle il est atteint.
4. Etudier le comportement des suites (xn) et (yn).
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13.9.2 Edhec 1995

Soit n ∈ N∗. Soit la fonction fn définie sur R par fn(x) = x5 + nx− 1

1. Etudier les variations de fn
2. En déduire que ∀n ∈ N∗ ∃!un ∈ R fn(un) = 0

3. Démontrer que ∀n ∈ N∗ un ≤ 1

n
4. En déduire que la suite (un) est convergente et déterminer sa limite.

5. Déterminer lim
n→+∞

n un et en déduire que un ∼ 1

n

6. Déterminer un équivalent simple de un − 1

n
au voisinage de +∞
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13.9.3 Escla ISC 1997

Soit n ∈ N∗. Soit la fonction fn définie sur [0; +∞[ par

fn(x) =

n∑
k=1

k xk = x+ 2x2 + 3x3 + · · ·+ nxn

1. Démontrer que l’équation fn(x) = 1 admet une solution unique dans [0; +∞[ que l’on notera un.
2. En évaluant fn+1(un) , démontrer que la suite (un) est décroissante.
3. Démontrer que cette suite (un) est convergente.

4. (a) Démontrer que ∀x ̸= 1 fn(x) = x
1− (n+ 1)xn + nxn+1

(1− x)2

(b) Calculer u2. En déduire lim
n→+∞

(un)
n puis lim

n→+∞
n(un)

n

(c) Déterminer lim
n→+∞

un
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13.10 Etude de branches infinies
13.10.1 Escla ISC 1997

1. Soit la fonction numérique f définie sur [0; +∞[ par

f(t) =
2t

1 + t
− ln(1 + t)

(a) Etudier les variations de f .
(b) Préciser la nature de la branche infinie de la courbe représentative Cf de f
(c) Construire Cf ainsi que sa tangente à l’origine dans un repère orthonormé.
(d) démontrer que l’équation f(t) = 0 a une unique solution notée a dans ]0; +∞[.
(e) Démontrer que 3 < a < 4.

2. Soit la fonction numérique g définie sur R par

g(x) = e−x ln(1 + e2x)

(a) Démontrer que g est définie sur R.
(b) Démontrer que g est dérivable sur R.
(c) Calculer ex g′(x) pour tout réel x.
(d) Déterminer alors le signe de g′(x) selon les valeurs de x.
(e) Etudier les branches infinies de la courbe représentative Cg de g.
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13.11 Détermination d’une primitive F d’une fonction f

Soit la fonction f définie sur ]0; +∞[ par f(x) =
Å
1− 1

x

ã
[ln(x)− 2].

1. Déterminer les limites de f en 0+ et en +∞
2. Justifier la dérivabilité de f sur ]0; +∞[ puis déterminer f ′(x)
3. Soit g la fonction définie sur ]0; +∞[ par g(x) = ln(x) + x− 3

(a) Etudier les variations de g
(b) Montrer que l’équation g(x) = 0 admet une solution unique α dans l’intervalle [2; 3].

Montrer que 2, 20 < α < 2, 21

(c) En déduire le signe de g(x) sur ]0; +∞[

4. Etudier les variations de f
5. Résoudre l’équation f(x) = 0 dans ]0; +∞[

6. En déduire le signe de f(x)
7. Construire la courbe représentative de f
8. Soit F une primitive de f sur ]0; +∞[ qui s’annule en x = 1

(a) Sans calculer F (x) déterminer les variations de f sur ]0; +∞[

(b) Soit u(x) = x ln(x)−x. Justifier la dérivabilité de u sur ]0; +∞[ puis déterminer u′(x). Conclusion ?

(c) Montrer que pour tout x > 0 l’on a : f(x) = ln(x)− ln(x)

x
+

2

x
− 2

(d) En déduire l’expression de F (x)

13.11.1 Corrigé
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13.12 Etudes de fonctions

Partie A
Soit la fonction g définie sur R par g(x) = x

√
x2 + 1− 1.

1. Déterminer les limites de g en +∞ et en −∞.
2. Démontrer que l’équation g(x) = 0 admet dans R une unique solution que l’on notera α.
3. Déterminer le signe de g sur R.

Partie B

Soit la fonction f définie sur R par f(x) =
x3

3
−

√
x2 + 1. On note C la courbe représentative de f dans un

repère orthonormé.
1. Déterminer les limites de f en +∞ et en −∞.

2. Démontrer que f ′(x) =
x g(x)√
x2 + 1

3. Dresser le tableau de variations de f en justifiant.

4. Soit la fonction h1 définie pour tout réel x par h1(x) =
x3

3
− x et soit Ch1

sa courbe représentative
dans le même repère que C.
(a) Déterminer lim

x7→+∞
(f(x)− h1(x))

(b) Interpréter graphiquement ce résultat.
(c) Trouver une fonction h2 permettant d’avoir une interprétation graphique similaire en −∞.

13.12.1 Corrigé

Partie A
Soit g(x) = x

√
x2 + 1− 1. Comme ∀x ∈ R x2 + 1 ≥ 0 car x2 ≥ 0 et donc x2 + 1 ≥ 1 alors g(x) est bien défini

sur R =]−∞; +∞[

1. • Quand x 7→ +∞ on a x2 7→ +∞ donc
√
x2 + 1 7→ +∞ donc x

√
x2 + 1 7→ +∞

donc x
√
x2 + 1− 1 7→ +∞.

Par conséquent lim
x 7→+∞

g(x) = +∞

• Quand x 7→ −∞ on a x2 7→ +∞ donc
√
x2 + 1 7→ +∞ donc x

√
x2 + 1 7→ −∞

donc x
√
x2 + 1− 1 7→ −∞.

Par conséquent lim
x 7→+∞

g(x) = −∞

2. • La fonction x 7→ x , la fonction x 7→
√
x2 + 1 sont toutes deux dérivables sur R donc la fonction

x 7→ x
√
x2 + 1 est dérivable sur R. De plus la fonction x 7→ 1 est dérivable sur R alors g est dérivable

donc continue sur R.

• ∀x ∈ R g′(x) =
√
x2 + 1 + x

2x

2
√
x2 + 1

=
√
x2 + 1 + x

x√
x2 + 1

=
x2 + 1 + x2√

x2 + 1

On a donc g′(x) =
2x2 + 1√
x2 + 1

> 0 puisque 2x2 + 1 > 0 et
√
x2 + 1 > 0

• g est donc strictement croissante sur R
• g est continue sur R
• Or 0 appartient à l’intervalle image R donc l’équation g(x) = 0 admet une unique solution α dans R

.
3. Comme g est strictement croissante sur R et que g(x) = 0 ⇐⇒ x = α alors

• g(x) < 0 lorsque x < α
• g(x) = 0 lorsque x = α
• g(x) > 0 lorsque x > α
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Partie B

Soit f(x) =
x3

3
−
√
x2 + 1.

1. Quand x 7→ −∞ on a x2 7→ +∞ donc
√
x2 + 1 7→ +∞ . Or

x3

3
7→ −∞

donc
x3

3
−
√
x2 + 1 7→ −∞.

2. Quand x 7→ +∞ on a x2 7→ +∞ donc
√
x2 + 1 7→ +∞ . Or

x3

3
7→ +∞

donc on obtient une forme indéterminée du type ” +∞−∞”.
Levons cette indétermination.
x3

3
−
√
x2 + 1 =

x3

3
−
…
x2(1 +

1

x2
=
x3

3
−
√
x2
…
1 +

1

x2

=
x3

3
− |x|

…
1 +

1

x2
=
x3

3
− x

…
1 +

1

x2
en prenant x > 0

Par conséquent f(x) = x3
[1
3
− 1

x2

…
1 +

1

x2
]
7→ +∞ quand x 7→ +∞ car

Quand x 7→ +∞ on a
1

x2
7→ 0,

…
1 +

1

x2
7→ 1 et

[1
3
− 1

x2

…
1 +

1

x2
]
7→ 1

3

3. La fonction x 7→ x3

3
et la fonction x 7→

√
x2 + 1 sont toutes deux dérivables sur R donc f est dérivable

donc continue sur R.

∀x ∈ R f ′(x) = x2 − 2x

2
√
x2 + 1

= x2 − x√
x2 + 1

=
x2

√
x2 + 1− x√
x2 + 1

=
x(x

√
x2 + 1− 1)√
x2 + 1

Donc f ′(x) =
x g(x)√
x2 + 1

du signe de x g(x) car
√
x2 + 1 > 0

x −∞ 0 α +∞
x − 0 + +
g(x) − − 0 +
xg(x) + 0 − 0 +
f ′(x) + 0 − 0 +

−1 +∞
↗ ↘ ↗

f(x) −∞ f(α)

4. Soit h1(x) =
x3

3
− x

(a) f(x)− h1(x) =
x3

3
−
√
x2 + 1− (

x3

3
− x) =

x3

3
−

√
x2 + 1− x3

3
+ x = x−

√
x2 + 1.

Normalement quand x 7→ +∞ on obtient une forme indéterminée du type "+∞−∞”. levons cette
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indétermination :

f(x)− h1(x) =
(x−

√
x2 + 1)(x+

√
x2 + 1)

x+
√
x2 + 1

=
x2 − (x2 + 1)

x+
√
x2 + 1

=
−1

x+
√
x2 + 1

Quand x 7→ +∞ on a
√
x2 + 1 7→ +∞ donc x+

√
x2 + 1 7→ +∞

donc f(x)− h1(x) 7→ 0.
(b) Par conséquent, au voisinage de +∞ la courbe représentative de f admet pour asymptote la courbe

de la fonction h1.

5. Soit h2(x) =
x3

3
+ x

(a) f(x)− h2(x) =
x3

3
−
√
x2 + 1− (

x3

3
+ x) =

x3

3
−

√
x2 + 1− x3

3
− x = −x−

√
x2 + 1.

Normalement quand x 7→ −∞ on obtient une forme indéterminée du type "+∞−∞”. levons cette
indétermination :

f(x)− h2(x) =
(−x−

√
x2 + 1)(−x+

√
x2 + 1)

−x+
√
x2 + 1

=
x2 − (x2 + 1)

−x+
√
x2 + 1

=
−1

−x+
√
x2 + 1

Quand x 7→ +∞ on a
√
x2 + 1 7→ +∞ donc −x+

√
x2 + 1 7→ +∞

donc f(x)− h2(x) 7→ 0.
(b) Par conséquent, au voisinage de −∞ la courbe représentative de f admet pour asymptote la courbe

de la fonction h2.
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13.13 Résolution x3 − 3x+ 1 = 0

1. Soit la fonction numérique d’une variable réelle f définie par f(x) = x3 − 3x+ 1

(a) Etudier la fonction f .
(b) On note Cf la courbe représentative dans un repère orthonormé avec comme unité de longueur

5 cm.

i. Déterminer les équations des tangentes à Cf aux points d’abscisses 0 ;
1

2
; 2

ii. Démontrer que Cf admet un centre de symétrie Ω que l’on précisera.
iii. Résoudre graphiquement l’équation f(x) = m d’inconnue x ∈ R et de paramètre réel m.

(c) Démontrer l’existence de 3 solutions x1, x2, x3 pour l’équation f(x) = 0.
2. Soit g la fonction numérique d’une variable réelle a définie par g(a) = 2 cos(a)

(a) Exprimer cos(3a) en fonction de cos(a).
(b) On note h = f ◦ g.

i. Démontrer que h(a) = 2 cos(3a) + 1

ii. Résoudre l’équation h(a) = 0 d’inconnue a ∈ R.
On précisera tout particulièrement celles des solutions qui appartiennent à [0 ; π]

iii. En déduire les valeurs de cos(a) qui correspondent aux solutions a qui appartiennent à [0 ; π].
iv. Donner alors la valeur exacte et une valeur approchée à 10−3 près de chacune des solutions

x1, x2, x3.

13.13.1 Corrigé

1. Soit la fonction numérique d’une variable réelle f définie par f(x) = x3 − 3x+ 1

(a) • f est une fonction polynôme de degré 3 donc f est dérivable donc est continue sur son ensemble
de définition Df = R

• ∀x ∈ R f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x+ 1)(x− 1)
Le signe de f ′(x) est le signe du trinôme x2 − 1 qui a pour racines 1 et 1.

• D’après le théorème de signe d’un trinôme

x −∞ −1 1 +∞
f ′(x) + 0 − 0 +

3 +∞
f(x) ↗ ↘ ↗

−∞ −1

• lim
x 7→−∞

f(x) = lim
x7→−∞

x3 = −∞

lim
x 7→+∞

f(x) = lim
x 7→+∞

x3 = +∞

• lim
x 7→−∞

f(x)

x
= lim

x7→−∞

x3

x
= lim

x 7→−∞
x2 = +∞

lim
x 7→+∞

f(x)

x
= lim

x 7→+∞

x3

x
= lim

x 7→+∞
x2 = +∞

Par conséquent, Cf admet au voisinage de −∞ et de +∞ une branche parabolique de direction
l’axe des ordonnées.

(b) On note Cf la courbe représentative dans un repère orthonormé avec comme unité de longueur 5 cm.
i. • f est dérivable en 0 donc Cf admet une tangente d’équation y = f ′(0)(x−0)+ f(0) = −3x+1

• f est dérivable en
1

2
donc Cf admet une tangente d’équation y = f ′(

1

2
)(x − 1

2
) + f(

1

2
) =

−9

4
)(x− 1

2
)− 3

8
= −9

4
)x+

3

4
• f est dérivable en 2 donc Cf admet une tangente d’équation y = f ′(2)(x − 2) + f(2) =
9(x− 2) + 3 = 9x− 15
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ii. On conjecture d’après le graphique que Cf admet Ω(
Å
0
1

ã
) comme centre de symétrie. Démontrons

le.
• Le point M

Å
x
y

ã
dans le repère R = (O; ı⃗, ȷ⃗) a pour coordonnées

Å
X = x− 0
Y = y − 1

ã
dans le repère

R′ = (Ω; ı⃗, ȷ⃗)
• La courbe de f qui a pour équation y = x3−3x+1 dans R a pour équation Y +1 = X3−3X+1

dans R′ c’est-à-dire Y = X3 − 3X = −g(X)
• Dg = R donc ∀X ∈ Dg −X ∈ Dg et g(−X) = g(X)
• Par conséquent g est impaire dans le repère R′ = (Ω; ı⃗, ȷ⃗) donc la courbe de f qui est celle de

g admet Ω(

Å
0
1

ã
) comme centre de symétrie.

iii. Résolvons graphiquement l’équation f(x) = m d’inconnue x ∈ R et de paramètre réel m.
• L’ensemble de définition de l’équation x3 − 3x+ 1 = m est R
• ∀x ∈ R
f(x) = m ⇐⇒ x est l’abscisse des points éventuels d’intersection de Cfet et de la droite D :
y = m

•

m Nbre points d’intersection Nbre solutions Position solutions
−∞ < m < −1 1 1 x′ < 0

m = −1 2 2 x′ < 0 ; x” = 1
−1 < m < −1 3 3 x′ < 0 ; 0 < x” < 1 ; 1 < x′′′

m = 1 3 3 x′ < 0 ; x” = 0 ; 1 < x′′′

1 < m < 3 3 3 x′ < −1 ; −1 < x” < 0 ; 1 < x′′′

m = 3 2 2 x′ = −1 ; x” = 2
3 < m < +∞ 1 1 x′ > 2
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(c) i. Comme f est continue sur
ï
−2 ; −3

2

ò
car f est continue sur R ,

comme f(−2) < 0 et f
Å
−3

2

ã
> 0

alors ∃ x1 ∈
ò
−2 ; −3

2

ï
f(x1) = 0

ii. Comme f est continue sur
ï
0 ;

1

2

ò
car f est continue sur R ,

comme f(0) > 0 et f
Å
1

2

ã
< 0

alors ∃ x2 ∈
ò
0 ;

1

2

ï
f(x2) = 0

iii. Comme f est continue sur
ï
3

2
; 2

ò
car f est continue sur R ,

comme f(
3

2
) < 0 et f (2) > 0

alors ∃ x3 ∈
ò
3

2
; 2

ï
f(x3) = 0

2. Soit g la fonction numérique d’une variable réelle a définie par g(a) = 2 cos(a)

(a) cos(3a) = cos(2a+a) = cos(2a) cos(a)−sin(2a) sin(a) = (2cos2(a)−1)cos(a)−2sin(a) cos(a) sin(a)
cos(3a) = 2 cos3(a)− cos(a)− 2 sin2(a) cos(a) = 2 cos3(a)− cos(a)− 2(1− cos2(a)) cos(a)

cos(3a) = 4 cos3(a)− 3 cos(a)

(b) On note h = f ◦ g.
Alors h(a) = (f ◦ g)(a) = f(g(a)) = f(2 cos(a)) = (2 cos(a))3 − 3(2 cos(a)) + 1

donc h(a) = 8 cos3(a)− 6 cos(a) + 1 = 2 cos(3a) + 1

i.
h(a) = 0 ⇐⇒ 2 cos(3a) + 1 = 0 ⇐⇒ cos(3a) = −1

2
⇐⇒ cos(3a) = cos

Å
2π

3

ã
h(a) = 0 ⇐⇒ ∃k ∈ Z 3a = −2π

3
+ 2kπ ou 3a =

2π

3
+ 2kπ

h(a) = 0 ⇐⇒ ∃k ∈ Z a = −2π

9
+

2kπ

3
ou a =

2π

9
+

2kπ

3

ii. Les solutions a qui appartiennent à [0 ; π] sont a =
2π

9
; a =

4π

9
; a =

8π

9
Comme h(a) = 0 ⇐⇒

f(g(a)) = 0 alors f(x) = 0 pour x = g(a) avec a ∈
ß
2π

9
;
4π

9
;
8π

9

™
iii. Donc x1 = 2 cos

Å
2π

9

ã
≈ 1, 532088886 ; x2 = 2 cos

Å
4π

9

ã
≈ 0, 3472963554

x3 = 2 cos

Å
8π

9

ã
≈ −1, 879385242
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13.14 Fonction trigonométrique

Soit la fonction numérique d’une variable réelle f définie parf(x) =
cos(2x)

sin(x)

1. Etudier puis représenter graphiquement f .

2. Déterminer g(x) de telle sorte que F (x) = ln
(∣∣∣tan(x

2

)∣∣∣)−g(x) soit une primitive de fsur un intervalle
[α;β] ⊂ [0;π]

3. Démontrer que tan
Å
3π

8

ã
= 1 +

√
2

4. Démontrer que tan
(π
8

)
= −1 +

√
2

5. Déterminer, en unité d’aire, l’aire du domaine formé par l’axe des abscisses, la courbe Cf et les droites

d’équation x =
π

4
et x =

3π

4

13.14.1 Corrigé

1. • Df = {x/sin(x) ̸= 0} = R− {kπ/k ∈ Z}
• f est dérivable sur Df car f est le quotient de x 7→ cos(2x) et x 7→ sin(x) telles que

— x 7→ cos(2x) est dérivable sur Df car elle est dérivable sur R
— x 7→ sin(x) est dérivable sur Df car elle est dérivable sur R
— x 7→ sin(x) ne s’annule jamais sur Df

• f est périodique de période 2π puisque x 7→ cos(2x) est périodique de période π et x 7→ sin(x) est
périodique de période 2π

• f est impaire car
— ∀x ∈ Df − x ∈ Df

— ∀x ∈ Df f(−x) = cos(−2x)

sin(−x)
=

cos(2x)

−sin(x)
= −f(x)

• On peut étudier donc f sur l’intervalle ]0;π[, on complétera ensuite sur ]−π; 0[ par la symétrie centrale
de centre O et enfin on reproduira périodiquement sur les intervalles de longueur 2π

• ∀x ∈]0;π[ f ′(x) =
−2sin(2x)sin(x)− cos(2x)cos(x)

sin2(x)
=

−4sin2(x)cos(x)− cos(2x)cos(x)

sin2(x)

f ′(x) =
−cos(x)[4sin2(x) + cos(2x)]

sin2(x)
=

−cos(x)[4sin2(x) + 1− 2sin2(x)]

sin2(x)
=

−cos(x)[2sin2(x) + 1]

sin2(x)
du signe de cos(x).

•

x 0
π

2
π

−cos(x) − 0 +
f ′(x) ∥ − 0 + ∥

+∞ +∞
f(x) ↘ ↗

−1

• car
— lim

x 7→0+
f(x) = +∞ car lim

x 7→0+
cos(2x) = 1 et lim

x 7→0+
sin(x) = 0+

— lim
x 7→π−

f(x) = +∞ car lim
x7→π−

cos(2x) = 1 et lim
x 7→π−

sin(x) = 0+

• ∀x ∈ Df f(x) = 0 ⇐⇒ cos(2x) = 0 ⇐⇒ ∃k ∈ Z 2x =
π

2
+ kπ ⇐⇒ ∃k ∈ Z x =

π

4
+ k

π

2

Par conséquent, sur l’intervalle ]0;π[ f(x) = 0 pour x =
π

4
et x =

3π

4
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2. • Lorsque x ∈]0;π[ alors
x

2
∈]0; π

2
[ donc tan

(x
2

)
existe et ne s’annule pas.

• Si F (x) = ln
(∣∣∣tan(x

2

)∣∣∣)− g(x) est une primitive de f alors

f(x) = F ′(x) =
u′(x)

u(x)
− g′(x) avec u(x) = tan

(x
2

)
donc u′(x) =

1

2

(
1 + tan2

(x
2

))
•
cos(2x)

sin(x)
=

1

2

(
1 + tan2

(x
2

))
tan

(x
2

) − g′(x) d’où g′(x) =

(
1 + tan2

(x
2

))
2 tan

(x
2

) − cos(2x)

sin(x)

g′(x) =
1

2 cos2
(x
2

) sin(x
2

)
cos

(x
2

)
− cos(2x)

sin(x)

g′(x) =
1

2 sin
(x
2

)
cos

(x
2

) − cos(2x)

sin(x)

g′(x) =
1

sin(x)
− cos(2x)

sin(x)
=

1− cos(2x)

sin(x)
=

1− (1− 2sin2(x))

sin(x)
=

2sin2(x)

sin(x)
= 2sin(x)

Par conséquent, g(x) = −2cos(x) + C

• Soit F (x) = ln
(∣∣∣tan(x

2

)∣∣∣)+ 2cos(x) .

On vérifie que F ′(x) =
1

sin(x)
− 2sin(x) =

1− 2sin2(x)

sin(x)
=
cos(2x)

sin(x)
= f(x). CQFD.

3. • On sait que tan(2θ) =
2 tan(θ)

1− tan2(θ)

• Or −1 = tan

Å
3π

4

ã
= tan

Å
2
3π

8

ã
=

2 tan

Å
3π

8

ã
1− tan2

Å
3π

8

ã d’où tan2

Å
3π

8

ã
− 1 = 2 tan

Å
3π

8

ã
.

On en déduit que tan2

Å
3π

8

ã
− 2 tan

Å
3π

8

ã
− 1 = 0

• Résolvons l’équation X2 − 2X − 1 = 0. on a ∆ = 4 + 4 = 8

donc il y a deux racines X ′ =
2− 2

√
2

2
= 1−

√
2 et X” =

2 + 2
√
2

2
= 1 +

√
2.

• Or tan
Å
3π

8

ã
> 0 donc tan

Å
3π

8

ã
= 1 +

√
2
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4. • On sait que tan(2θ) =
2 tan(θ)

1− tan2(θ)

• Or 1 = tan
(π
4

)
= tan

(
2
π

8

)
=

2 tan
(π
8

)
1− tan2

(π
8

) d’où 1− tan2
(π
8

)
= 2 tan

(π
8

)
.

On en déduit que −tan2
(π
8

)
− 2 tan

(π
8

)
+ 1 = 0

• Résolvons l’équation −X2 − 2X + 1 = 0. on a ∆ = 4 + 4 = 8

donc il y a deux racines X ′ =
2− 2

√
2

−2
= −1 +

√
2 et X” =

2 + 2
√
2

−2
= −1−

√
2.

• Or tan
(π
8

)
> 0 donc tan

(π
8

)
=

√
2− 1

5. • Comme f est continue sur
ï
π

4
;
3π

4

ò
alors f y est intégrable donc

∫ 3π
4

π
4

f(t) dt existe.

• Comme le domaine ∆ considéré est situé en dessous de l’axe des abscisses alors :

Aire(∆) = −
∫ 3π

4

π
4

f(t) dt unité d’aire

• Or I =

∫ 3π
4

π
4

f(t) dt = []
3π
4
π
4

donc I = ln

Å∣∣∣∣tanÅ3π8 ã∣∣∣∣ã+2cos(
3π

4
)− ln

(∣∣∣tan(π
8

)∣∣∣)+2cos(
π

4
) = ln(

√
2+ 1)− ln(

√
2− 1)− 2

√
2

• Par conséquent, Aire(∆) = 2
√
2− ln(

√
2 + 1) + ln(

√
2− 1) unité d’aire

Aire(∆) ≈ 1, 065 unité d’aire
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13.15 Etude de fonction

1. Déterminer l’ensemble D des réels x tels que ex − e−x > 0

2. On définit la fonction f par ∀x ∈ D f(x) = ln(ex − e−x)

(a) Etudier les variations de f .
(b) Déterminer lim

x7→0
f(x)

(c) Déterminer lim
x7→+∞

f(x)

3. (a) En déduire l’existence d’un réel unique α tel que f(α) = 0

(b) Déterminer la valeur exacte de α.
(c) Vérifier que f ′(α) =

√
5

4. (a) Déterminer lim
x7→+∞

f(x)− x

(b) En déduire une équation cartésienne d’asymptote (∆) à la courbe représentative Cf au voisinage
de +∞

(c) etudier la position relative de Cf et de (∆)

5. Etudier la concavité de f .
6. Donner l’allure de Cf en faisant figurer (∆).

On admetra que α ≈ 0, 5 et que
√
5 ≈ 2, 23
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13.16 Etude de fonction

1. On considère la fonction numérique f de la variable réelle x définie sur R par

f(x) = ex − x− 1

On note Cf sa courbe représentative dans le plan muni d’un repère orthonormal (O; ı⃗, ȷ⃗) avec comme
unité graphique 1 cm.
(a) Calculer lim

x 7→−∞
f(x).

(b) i. Vérifier que ∀x ∈ R f(x) = ex
Å
1− x

ex
− 1

ex

ã
ii. En déduire lim

x 7→+∞
f(x).

(c) Calculer f ′(x) et établir le tableau des variations de f .
(d) i. Montrer que la droite (D) d’équation y = −x− 1 est asymptote à Cf lorsque x 7→ −∞

ii. Etudier la position de Cf par rapport à (D)

(e) Déterminer une équation cartésienne de la tangente (D′) à Cf au point de Cf d’abscisse −1.
(f) Construire alors Cf et (D).

2. (a) Montrer qu’en tout point Md’abscisse a de la courbe Cf , il existe une tangente à Cf dont on établira
une équation cartésienne en fonction de a.

(b) Cette tangente rencontre l’asymptote (D) en un point N .
On désigne par M ′ et N ′ les projections orthogonales des points M et N sur l’axe des abscisses.
i. Démontrer que M ′N ′ est un nombre constant.
ii. En déduire une construction simple de la tangent en M .
iii. Construire la tangente (D′) à Cf au point de Cf d’abscisse −1.
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13.17 Etude de fonction paramétrée

Les parties 2 et 3 peuvent être traitées indépendamment de la partie 1.
Partie 1

Soit a ∈ R.
On considère la fonction numérique fa de la variable réelle x définie par

fa(x) = (x2 + ax− a)e−x

Soit Ca la courbe représentative de la fonction fa dans un repère orthonormé R = (O; ı⃗, ȷ⃗).
1. Etudier selon les valeurs de a les variations de la fonction fa et donner les différents tableaux de

variations possibles pour fa.
2. On suppose que a ̸= −2.

Démontrer que l’ensemble des points du plan en lesquels la tangente à Ca est parallèle à l’axe des
abscisses, est la réunion d’une partie de droite E1 et d’une partie de courbe E2 dont on précisera une
équation cartésienne de la forme y = g(x).

3. (a) Etudier la fonction numérique g de la variable réelle x définie par

g(x) = x e−x

(b) Tracer E2 dans le plan rapporté au repère orthonormé R = (O; ı⃗, ȷ⃗)

Partie 2

On pose a = 1.
1. Donner le tableau de variation de la fonction f1.
2. Etudier la position de C1 par rapport à E2.
3. Préciser les points d’intersection de C1 avec les axes de coordonnées. Tracer C1.
4. (a) Déterminer les réels α et β tels que

∀x ∈ R f1(x) = αf”1(x) + βf ′1(x) + 2 e−x

(b) En déduire une primitive de la fonction f1 sur R.
5. Soit t un réel supérieur à 1.

(a) Déterminer, en cm2 l’aire A(t) de l’ensemble des points M(x, y) tels que
ß

1 ≤ x ≤ t
0 ≤ y ≤ f1(x)

.

(b) Déterminer, si elle existe, la limite de A(t) lorsque t tend vers +∞.
(c) Interpréter géométriquement le résultat obtenu.

Partie 3

On pose a = −2.
1. Etudier la fonction numérique h de la variable réelle x définie par

h(x) = f−2(x)− x

2. (a) Démontrer que l’équation f−2(x) = x admet une solution unique que l’on notera x0.
(b) Donner une valeur approchée à 10−2 près par défaut de x0.

3. (a) Démontrer que f−2 est une bijection de R sur ]0; +∞[

(b) Donner le tableau de variation de la fonction réciproque f−1
−2

4. Tracer la courbe représentative des fonctions f−2 et f−1
−2 dans le plan rapporté au repère orthonormé

R = (O; ı⃗, ȷ⃗)
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13.17.1 Corrigé

Partie 1
Soit a ∈ R.

1. Soit fa(x) = (x2 + ax− a)e−x.
• x 7→ x2 + ax− a est une fonction polynôme donc est définie sur R.

De même, x 7→ e−x =
1

ex
est définie sur R.

fa étant le produit des deux fonctions est donc définie sur R.
• fa étant ni paire, ni impaire est donc étudiée sur R.
• x 7→ x2 + ax− a est une fonction polynôme donc est dérivable sur R.

De même, x 7→ e−x =
1

ex
est dérivable sur R.

fa étant le produit des deux fonctions est dérivable (donc continue) sur R.
• ∀x ∈ R f ′a(x) = (2x+ a)e−x − (x2 + ax− a)e−x = e−x[−x2 + x(2− a) + 2a]
• f ′a(x) = 0 ⇐⇒ e−x[−x2 + x(2− a) + 2a] = 0 ⇐⇒ −x2 + x(2− a) + 2a = 0 car ∀x ∈ R e−x > 0
• Le discriminant du trinôme P (x) = −x2 + x(2− a) + 2a est :
∆ = (2− a)2 − 4(−1)(2a) = 4− 4a+ a2 + 8a = 4 + 4a+ a2 = (a+ 2)2

• ou bien a = −2

— ∆ = 0 donc le trinôme f ′−2(x) = −x2 + 4x+ 4 < 0 sauf en x =
−4

2(−1)
= 2 où le trinôme s’annule.

— f−2(x) = (x2 − 2x+2)e−x donc lim
x 7→−∞

f−2(x) = +∞ car lim
x 7→−∞

x2 − 2x+ 2 = lim
x 7→−∞

x2 = +∞ et

lim
x 7→−∞

e−x = +∞

— f−2(x) =
x2

ex

Å
1− 2

x
+

2

x2

ã
donc lim

x 7→+∞
f−2(x) = 0 car lim

x 7→+∞

x2

ex
= 0 et lim

x 7→+∞
1− 2

x
+

2

x2
= 1

x −∞ 2 +∞
f ′−2(x) − 0 −

+∞
f−2(x) ↘

2

e2
↘

0

• ou bien a ̸= −2
— ∆ > 0 donc le trinôme P (x) a deux racines x′ et x” avec x′ < x”.
— fa(x) = (x2 + ax − a)e−x donc lim

x 7→−∞
fa(x) = +∞ car lim

x 7→−∞
x2 + ax− a = lim

x 7→−∞
x2 = +∞ et

lim
x 7→−∞

e−x = +∞

— fa(x) =
x2

ex

(
1 +

a

x
− a

x2

)
donc lim

x 7→+∞
fa(x) = 0 car lim

x 7→+∞

x2

ex
= 0 et lim

x 7→+∞
1 +

a

x
− a

x2
= 1

—
x −∞ x′ x” +∞

f ′a(x) − 0 + 0 −
+∞ fa(x”)

fa(x) ↘ ↗ ↘
fa(x

′) 0

2. On suppose que a ̸= −2.

La tangente à Ca en M(x, y) est parallèle à l’axe des abscisses
ß
y = fa(x)
f ′a(x) = 0

f ′a(x) = 0 ⇐⇒ e−x[−x2 + x(2− a) + 2a] = 0 ⇐⇒ −x2 + x(2− a) + 2a = 0 car ∀x ∈ R e−x > 0
⇐⇒ x = x′ ou x = x”

⇐⇒ x =
a− 2− |2 + a|

−2
ou x =

a− 2 + |2 + a|
−2

x −∞ −2 +∞
2 + a − 0 +
|2 + a| −2− a 0 2 + a

• ou bien a < −2 alors

x =
a− 2− |2 + a|

−2
=
a− 2− (−2− a)

−2
= −a ou x =

a− 2 + |2 + a|
−2

=
a− 2 + (−2− a)

−2
= 2
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• ou bien a > −2 alors

x =
a− 2− |2 + a|

−2
=
a− 2− (2 + a

−2
= 2 ou x =

a− 2 + |2 + a|
−2

=
a− 2 + (2 + a)

−2
= −a

• Par conséquent, si a ̸= −2 on a f ′a(x) = 0 ⇐⇒ x = 2 ou x = −a
On en déduit que :
La tangente à Ca en M(x, y) est parallèle à l’axe des abscisses

⇐⇒ M

Å
2

(4 + a)e−2

ã
ou M

Å
−a

−a e−a

ã
L’ensemble recherché est la réunion d’une partie de la droite E1 d’équation x = 2
et d’une partie de la courbe E2 d’équation y = −x e−x.

3. (a) Soit g(x) = x e−x

• L’ensemble de définition de g est R car g est le produit de x 7→ x et x 7→ e−x qui sont toutes deux
définies sur R.

• g n’est ni paire, ni impaire donc on l’étudie sur R.
• g est dérivable (donc continue) sur R car g est le produit de x 7→ x et x 7→ e−x qui sont toutes

deux dérivables sur R.
• ∀x ∈ R g′(x) = 1 e−x − x e−x = e−x(1− x) du signe du binôme 1− x car ∀x ∈ R e−x > 0.
• lim

x 7→−∞
g(x) = −∞ car lim

x 7→−∞
x = −∞ et lim

x 7→−∞
e−x = +∞.

Etudions cette branche infinie :
lim

x 7→−∞

g(x)

x
= lim

x 7→−∞
e−x = +∞ donc la courbe E2 admet donc au voisinage de −∞ une branche

parabolique de direction l’axe des ordonnées.

• g(x) =
x

ex
donc lim

x 7→+∞
g(x) = 0 car lim

x 7→+∞

ex

x
= +∞

La courbe E2 admet donc au voisinage de +∞ une aymptote qui est l’axe des abscisses.
•

x −∞ 1 +∞
g′(x) + 0 −

1

e
g(x) ↗ ↘

−∞ 0

(b) Voici ci dessous la courbe représentative E2
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Partie 2

On pose a = 1. Soit f1(x) = (x2 + x− 1)e−x

1. D’après la partie 1 on a le tableau de variations suivant :

x −∞ −1 2 +∞
f ′1(x) − 0 + 0 −

+∞ f1(2) =
5

e2
f1(x) ↘ ↗ ↘

f1(−1) = −e 0

2. • ∀x ∈ R f1(x) − g(x) = (x2 + x − 1)e−x − x e−x = e−x(x2 + x − 1 − x) = (x2 − 1)e−x du signe de
x2 − 1 car ∀x ∈ R e−x > 0.

• ou bien x < −1 ou x > 1 alors f1(x)− g(x) > 0 donc C1 est au-dessus de E2.
• ou bien −1 < x < 1 alors f1(x)− g(x) < 0 donc C1 est en-dessous de E2.
• ou bien x = −1 ou x = 1 alors f1(x)− g(x) = 0 donc C1 rencontre E2

3. • f1(0) = (02 + 0− 1)e−0 = −1 donc C1 ∩ (Oy) =

ß
A

Å
0
−1

ã™
• f1(x) = 0 ⇐⇒ (x2 + x− 1)e−x = 0 ⇐⇒ x2 + x− 1 = 0 car ∀x ∈ R e−x ̸= 0

Le discriminant du trinôme x2 + x− 1 est ∆ = 12 − 4(1)(−1) = 1 + 4 = 5

Les solutions de x2 + x− 1 = 0 sont x =
−1−

√
5

2
et x =

−1 +
√
5

2
.

Par conséquent, C1 ∩ (Ox) =

D
Ñ

−1−
√
5

2
0

é
;C

Ñ
−1 +

√
5

2
0

é

4. (a) Déterminer les réels α et β tels que

∀x ∈ R f1(x) = αf”1(x) + βf ′1(x) + 2 e−x

(b) En déduire une primitive de la fonction f1 sur R
5. Soit t un réel supérieur à 1.

(a) Déterminer, en cm2 l’aire A(t) de l’ensemble des points M(x, y) tels que
ß

1 ≤ x ≤ t
0 ≤ y ≤ f1(x)

.

(b) Déterminer, si elle existe, la limite de A(t) lorsque t tend vers +∞.
(c) Interpréter géométriquement le résultat obtenu.
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13.18 Hyperbole

Soit R = (O; ı⃗, ȷ⃗) un repère orthonormal direct du plan.
Soit f la fonction numérique d’une variable réelle définie par

f(x) = −2x+
»

3(x2 − 1)

1. (a) Etudier les variations de f
(b) Soit Cf la courbe représentative de f dans le plan rapporté à R.

i. Démontrer que la droite (D1) : y = (−2 +
√
3)x est une asymptote à Cf au voisinage de +∞.

ii. Démontrer que la droite (D2) : y = (−2−
√
3)x est une asymptote à Cf au voisinage de −∞.

(c) Précisez les tangentes à Cf aux points d’abscisse −1 et 1.
(d) Construisez alors Cf .

2. Soit g la fonction numérique d’une variable réelle définie par

g(x) = −2x−
»

3(x2 − 1)

(a) Démontrer que sa courbe représentative Cg est l’image de Cf par la symétrie centrale de centre O.
(b) Démontrer que la courbe Γ = Cf ∪ Cg a pour équation

x2 + 4xy + y2 + 3 = 0

(c) Construisez alors Γ.
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13.19 Bac D Rennes Septembre 1976

Soit la fonction numérique d’une variable réelle f définie par

f(x) =
4

3
x+ 2 + ln

Å∣∣∣∣x− 2

x+ 2

∣∣∣∣ã
Partie A

1. Déterminer Df l’ensemble de définition de f .
2. Déterminer les limites de f aux bornes de Df .
3. Justifier la dérivabilité de f puis déterminer la fonction dérivée f ′ de f .
4. En déduire le tableau de variations de f .

Partie B
Soit Cf la courbe représentative de f dans un plan affine euclidien muni d’un repère orthonormé R = (O ; ı⃗ , ȷ⃗).
On prendra comme unité de longueur 2 cm.

1. Démontrer que la droite D d’équation y =
4

3
x+ 2 est une asymptote à Cf .

2. Démontrer que I le point de Cf d’abscisse x = 0 est un centre de symétrie de Cf .
3. Construire la tangente à Cf en I.
4. Construire ensuite Cf .

Partie C
Soit un réel a > 2.

1. A l’aide d’une intégration par parties, calculer F (a) =
∫ a

3

ln

Å
x− 2

x+ 2

ã
dx

2. Calculer, en cm2, l’aire du domaine limité par la courbe Cf , la droite (D) et les droites d’équation
x = 3 et x = 4. Donner une valeur approchée de cette aire.

Partie D
On appelle ϕ la restriction de f à ]2 ; +∞[.

1. Démontrer que ϕ admet une fonction réciproque ψ.
2. Donner l’ensemble de départ et l’ensemble d’arrivée de ψ.
3. Construire sur un graphique distinct de celui de la partie B, les courbes représentatives (H) et (H′)de
ϕ et de ψ

Partie E
Soit un point mobile M ayant pour coordonnées dans le repère R = (O ; ı⃗ , ȷ⃗)

x =
3

4
t

y = t+ 2 + ln

Å
8− 3t

8 + 3t

ã
où t ∈

ò
−8

3
;
8

3

ï
1. Démontrer que la trajectoire de M est une partie de Cf que l’on précisera.

2. Calculer , en fonction de t , les coordonnées du vecteur-vitesse
−−→
V (t) et du vecteur-accélaration

−−→
Γ(t) du

point M à la date t.
3. Etudier le mouvement de M .

NB - On donne ln(2) ≈ 0, 69 ; ln(3) ≈ 1, 10 ; ln(5) ≈ 1, 61 ; ln(7) ≈ 1, 95

THAT’S ALL FOLKS ! ! !
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13.20 Etude de fonctions

Etudier les fonctions suivantes :

1. f(x) = x+
1− ex

1 + e−x

2. f(x) =
x√

1 + x2

3. f(x) =
ß
x[ln(|x|)]2 si x ̸= 0
0 si x = 0

4. f(x) =
2x2 − 1

x+ 3

5. f(x) =

 ∣∣∣∣x− 1

x

∣∣∣∣
6. f(x) =

1

x− 1
+ ln(|x+ 1|)
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