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"On résoud les problèmes qu’on se pose et non les problèmes qui se posent"
Henri Poincaré

En sciences, deux façons de raisonner : - l’induction - la déduction

1 Le raisonnement par déduction

1.1 Définition

La déduction serait le procédé de l’esprit qui va du général au particulier.
Le raisonnement déductif consiste à prouver une implication du type H ⇒ C
H désigne les hypothèses et C la ou les conclusion(s).
Comment faire? on procède par un chaînage de déductions logiques :
H ⇒ C1 ⇒ C2 ⇒ C3 · · · ⇒ Cn ⇒ C
Comment fait-on pour trouver ce chaînage : de 2 façons :

1. soit par analyse-synthèse : on cherche à satisfaire le but C pour cela on cherche Cn
qui permet de satisfaire C puis on cherche Cn−1 qui permet de satisfaire Cn . On re-
monte ainsi jusqu’à H. Cette étape s’appelle l’analyse. Puis on redescend : H ⇒ C1 ⇒
C2 · · · ⇒ C4 ⇒ Cn ⇒ C
Cette deuxième étape obligatoire s’appelle la synthèse.

2. soit par synthèse directement :
H ⇒ C1 ⇒ C2 ⇒ C3 · · · ⇒ Cn ⇒ C
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1.2 Exercice

Démontrer que

∀x ∈ R+ ∀y ∈ R+ x
1 + y

=
y

x + y
=⇒ x = y

1.2.1 Corrigé
x

1 + y
=

y
x + y

=⇒ x
1 + y

− y
x + y

= 0

=⇒ x(1 + x)− y(1 + y)
(1 + y)(1 + x)

= 0.

=⇒ x(1 + x)− y(1 + y) = 0 =⇒ x + x2 − y − y2 = 0
=⇒ x2 − y2 + x − y = 0 =⇒ (x − y)(x + y) + (x − y) = 0
=⇒ (x − y)[x + y + 1] = 0 =⇒ x − y = 0 ou x + y + 1 + 0
=⇒ x − y = 0 car x + y + 1 ̸= 0 puisque x + y + 1 ≥ 1 car x ≥ 0 et y ≥ 0

1.2.2 Corrigé

Supposons que
x

1 + y
=

y
x + y

alors en utilisant l’égalité des termes moyen et des termes ex-

trêmes, on obtient :

1.3 Exercice

Soit f est une fonction numérique dérivable sur un intervalle ouvert I centré en 0.

1. Démontrer que si f est paire alors sa fonction dérivée f ′ est impaire.

2. Démontrer que si f est impaire alors sa fonction dérivée f ′ est paire.

Indication :
• Si u est dérivable sur un intervalle I
• Si u < I >⊂ J
• Si v est dérivable sur l’intervalle J

alors v ◦ u est dérivable sur I et ∀x ∈ I (v ◦ u)′(x) = u′(x) v′(u(x))

1.3.1 Corrigé

1. Supposons que f est paire.

(a) Soit la fonction x 7→ g(x) = f (−x) alors g est la composée de x 7→ −x et de f .
• x 7→ −x est dérivable sur I
• Lorsque x ∈ I alors −x ∈ I
• f est dérivable sur I

Alors g est dérivable sur I et g′(x) = −1( f ′(−x))

(b) Mais comme g(x) = f (x) puisque f (−x) = f (x) car f est paire alors g′(x) = f ′(x)

(c) Par conséquent, ∀x ∈ I on a : − x ∈ I et f ′(−x) = − f ′(x)

donc f ′ est impaire.

2. Supposons que f est impaire.
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(a) Soit la fonction x 7→ g(x) = f (−x) alors g est la composée de x 7→ −x et de f .
• x 7→ −x est dérivable sur I
• Lorsque x ∈ I alors −x ∈ I
• f est dérivable sur I

Alors g est dérivable sur I et g′(x) = −1( f ′(−x))

(b) Mais comme g(x) = − f (x) puisque f (−x) = − f (x) car f impaire alors g′(x) =
− f ′(x)

(c) Par conséquent, ∀x ∈ I on a : − x ∈ I et f ′(−x) = f ′(x)

donc f ′ est paire.

1.4 Conjectures forte et faible de Christian GOLDBACH - Allemagne - 1742

Soit la proposition p : "tout entier pair strictement supérieur à 4 est la somme de 2 entiers
premiers”. C’est ce que l’on appelle la conjecture forte de GOLDBACH.
Par exemple : 8 = 5 + 3 ; 12 = 5 + 7.
Soit la proposition q : "tout entier impair strictement supérieur à 7 est la somme de 3 entiers
premiers”. C’est ce que l’on appelle la conjecture faible de GOLDBACH.
Par exemple : 15 = 7 + 5 + 3
On ne sait pas pour l’instant si la proposition p (appelée conjecture forte de GOLDBACH) est
vraie.
En 2013, Harald HELFGOTT ( mathématicien péruvien né en 1977) a réussi à démontrer une
version « faible » de la conjecture de Goldbach.
Par contre, on sait démontrer facilement que la conjecture forte implique la conjecture faible :
l’implication ( p =⇒ q) est vraie en supposant que p est vraie.

1. Démontrer que (p ⇒ q) est vraie c’est-à-dire que si tout entier pair supérieur à 4 est
somme de 2 entiers premiers alors tout entier impair supérieur à 7 est somme de 3
entiers premiers.

2. On ne sait pas si p appelée la conjecture de Goldbach est vraie. Que peut-on alors dire
de q ?

1.4.1 Corrigé

Supposons que la proposition p : "tout entier pair strictement supérieur à 4 est la somme de 2
entiers premiers” est vraie.
Soit un entier n impair tel que n ≥ 7 . Donc n = 2k + 3 et n ≥ 7 donc 2k + 3 ≥ 7 donc 2k ≥ 4.
Or d’après p : tout entier pair strictement supérieur à 4 est la somme de 2 entiers premiers donc
2k = p1 + p2 où p1 et p2 sont premiers.
On a donc n = 2k + 3 = p1 + p2 + 3. CQFD. Donc q est vraie.
Par conséquent, l’implication ( p =⇒ q) est vraie. Mais l’on ne sait pas pour l’instant si q est
vraie.
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1.5 La contraposition

On peut au lieu de démontrer que p =⇒ q démontrer tout simplement sa contraposée :
non(q) =⇒ non(p) car ces deux propositions p =⇒ q et non(q) =⇒ non(p) sont logiquement
équivalentes.

1.5.1 Utilisation de la contraposition

1. Démontrer que si un entier n est pair alors son carré n2 est pair

2. Démontrer que si un entier n est impair alors son carré n2 est impair

3. En déduire du 1°) que si n2 est impair alors n est impair

4. En déduire du 2°) que si n2 est pair alors n est pair

5. Compléter n pair ⇐⇒ · · ·
6. Compléter n impair ⇐⇒ · · ·

1.5.2 Corrigé

1. Soit n entier pair alors ∃k ∈ N tel que n = 2k
donc n2 = (2k)2 = 4k2 = 2(2k2) = 2k′ où k′ = 2k2 est un entier naturel donc n2 est pair

2. Soit n entier impair alors ∃k ∈ N tel que n = 2k + 1
donc n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2k′ + 1 où k′ = 2k2 + 2k est un
entier naturel donc n2 est impair.

3. D’après la question 1 on a n pair =⇒ n2 pair
donc par contraposition on a n2 impair =⇒ n impair

4. D’après la question 2 on a n impair =⇒ n2 impair
donc par contraposition on a n2 pair =⇒ n pair

5. Comme n pair =⇒ n2 pair et n2 pair =⇒ n pair alors

n pair ⇐⇒ n2 pair

6. Comme n impair =⇒ n2 impair et n2 impair =⇒ n impair alors

n impair ⇐⇒ n2 impair
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2 Le raisonnement par disjonction de cas

2.1 Exercice

Soient a et b des réels. Démontrer que si ab = 0 alors a = 0 ou b = 0

2.1.1 Corrigé

Supposons ab = 0.

1. ou a = 0 CQFD.

2. ou a ̸= 0

On peut alors diviser les deux membres de ab = 0 par
1
a

.

Donc
ab
a

=
0
a

d’où b = 0. CQFD

2.2 Exercice

Démontrer que pour tout entier naturel n on a n2 + 3n est un entier pair.

2.2.1 Corrigé

• ou bien n est pair donc ∃k ∈ N n = 2k
alors n2 + 3n = (2k)2 + 3(2k) = 4k2 + 6k = 2(2k2 + 3k) de la fome 2k′ où k′ ∈ N

• ou bien n est impair donc ∃k ∈ N n = 2k + 1
alors n2 + 3n = (2k + 1)2 + 3(2k + 1) = 4k2 + 4k + 1 + 6k + 3 = 2(2k2 + 5k + 2) de la
fome 2k′ où k′ ∈ N

2.3 Exercice

Démontrer que le carré d’un entier naturel a la même parité que cet entier.

2.3.1 Corrigé

Soit n ∈ N.
• ou bien n est pair donc ∃k ∈ N n = 2k

alors n2 = (2k)2 = 4k2 = 2(2k2) de la fome 2k′ où k′ = 2k2 ∈ N

• ou bien n est impair donc ∃k ∈ N n = 2k + 1
alors n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1) de la fome 2k′ + 1 où k′ =
2k2 + 2 ∈ N
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2.4 Exercice

Démontrer que pour tout entier naturel n, l’entier A = n(n − 5)(n + 5) est divisible par 3.

2.4.1 Corrigé

Soit n ∈ N.
Pour cela, on distingue trois cas selon les valeurs possibles 0, 1 ou 2 du reste r de la division de
n par 3.

• ou bien ∃k ∈ N n = 3k
alors A = n(n − 5)(n + 5) = 3k(3k − 5)(3k + 5) de la forme 3k′ où k′ = k(3k − 5)(3k + 5)

• ou bien ∃k ∈ N n = 3k + 1
alorsA = n(n− 5)(n+ 5) = (3k+ 1)(3k+ 1− 5)(3k+ 1+ 5) = (3k+ 1)(3k− 4)(3k+ 6) =
(3k + 1)(3k − 4)3(k + 2) de la forme 3k′ où k′ = (3k + 1)(3k − 4)(k + 2)

• ou bien ∃k ∈ N n = 3k + 2
A = n(n − 5)(n + 5) = (3k + 2)(3k + 2 − 5)(3k + 2 + 5) = (3k + 2)(3k − 3)(3k + 7) =
(3k + 2)3(k − 1)(3k + 2 + 5) de la forme 3k′ où k′ = (3k + 2)(k − 1)(3k + 7)

2.5

Démontrer que ∀n ∈ N N = n(n + 1)(2n + 1) est un multiple de 3.

Pour cela, on distingue trois cas selon les valeurs possibles 0, 1 ou 2 du reste r de la division de
n par 3.

1. ou bien r = 0
Par conséquent, ∃k ∈ N n = 3k
N = 3k(3k + 1)(2(3k) + 1) = 3[k(3k + 1)(6k + 1)].
N est bien un multiple de 3

2. ou bien r = 1
Par conséquent, ∃k ∈ N n = 3k + 1
N = (3k + 1)(3k + 1 + 1)(2(3k + 1) + 1) = (3k + 1)(3k + 2)(6k + 3)
N = 3[(3k + 1)(3k + 2)(2k + 1)]
N est bien un multiple de 3

3. ou bien r = 2
Par conséquent, ∃k ∈ N n = 3k + 2
N = (3k + 2)(3k + 2 + 1)(2(3k + 2) + 1) = (3k + 2)(3k + 3)(6k + 5)
N = 3[(3k + 2)(k + 1)(6k + 5)]
N est bien un multiple de 3

On conclut par disjonction des cas que la propriété est vraie pour tout entier naturel n.
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2.6 Exercice

Soient a et b des réels.

1. Déterminer lim
x→+∞

ax3 + bx2 + x − 1
x − 1

2. Déterminer lim
x→1

ax3 + bx2 + x − 1
x − 1

2.6.1 Corrigé

1. • ou a ̸= 0

⋄ ou a > 0 lim
x→+∞

ax3 + bx2 + x − 1
x − 1

= lim
x→+∞

ax3

x
= lim

x→+∞
ax2 = +∞

⋄ ou a < 0 lim
x→+∞

ax3 + bx2 + x − 1
x − 1

= lim
x→+∞

ax3

x
= lim

x→+∞
ax2 = −∞

• ou a = 0
⋄ ou bien b ̸= 0

⋆ ou b > 0 lim
x→+∞

ax3 + bx2 + x − 1
x − 1

= lim
x→+∞

bx2

x
= lim

x→+∞
bx = +∞

⋆ ou b < 0 lim
x→+∞

ax3 + bx2 + x − 1
x − 1

= lim
x→+∞

bx2

x
= lim

x→+∞
bx = −∞

⋄ ou bien b = 0

lim
x→+∞

ax3 + bx2 + x − 1
x − 1

= lim
x→+∞

x − 1
x − 1

= 1

2. Déterminons lim
x→1

ax3 + bx2 + x − 1
x − 1

(a) Posons N(x) = ax3 + bx2 + x− 1 et D(x) = x− 1. Alors lim
x→1

N(x) = a + b et lim
x→1

D(x) = 0

(b) ou bien a + b = 0

• Par la méthode directe on aboutit à une indétermination du type
0
0

car lim
x→1

N(x) = 0

et lim
x→1

D(x) = 0

• Nous pouvons lever cette indétermination en remarquant que a = −b d’où

f (x) =
ax3 − ax2 + x − 1

x − 1
=

ax2(x − 1) + x − 1
x − 1

=
(x − 1)(ax2 + 1)

x − 1
= ax2 + 1

donc lim
x→1

f (x) = a + 1

(c) ou bien a + b ̸= 0

i. ou bien a + b > 0
• lim

x→1+
N(x) = a + b et lim

x→1+
D(x) = 0+

donc lim
x→1+

f (x) = +∞

• lim
x→1−

N(x) = a + b et lim
x→1−

D(x) = 0−

donc lim
x→1−

f (x) = −∞

ii. ou bien a + b < 0
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• lim
x→1+

N(x) = a + b et lim
x→1+

D(x) = 0+

donc lim
x→1+

f (x) = −∞

• lim
x→1−

N(x) = a + b et lim
x→1−

D(x) = 0−

donc lim
x→1−

f (x) = +∞

2.7 Fonction 1−lipschitzienne sur [0 ; 1]

Soit f une fonction numérique d’une variable réelle définie sur [0; 1] et vérifiant les propriétés
suivantes : {

f (0) = f (1)
∀x1 ∈ [0 ; 1] ∀x2 ∈ [0; 1] où x1 ̸= x2 | f (x1)− f (x2| < |x1 − x2|

Démontrer que ∀x1 ∈ [0 ; 1] ∀x2 ∈ [0 ; 1] avec 0 ≤ x1 < x2 ≤ 1 on a | f (x1)− f (x2)| ≤
1
2

2.7.1 Démonstration

Soient x1 ∈ [0 ; 1] et x2 ∈ [0 ; 1] avec 0 ≤ x1 < x2 ≤ 1.
De deux choses l’une :

• ou bien | x2 − x1 |< 1
2

. Or | f (x1)− f (x2 |<| x1 − x2 | donc | f (x1)− f (x2 |< 1
2

. CQFD.

• ou bien | x2 − x1 |≥ 1
2

Cela veut dire que x2 − x1 ≤ −1
2

ou x2 − x1 ≥ 1
2

.

Mais comme x2 > x1 alors il ne reste qu’un seul cas x2 − x1 ≥ 1
2

D’après l’inégalité triangulaire, on obtient :
| f (x1)− f (x2 |≤| f (x1)− f (0) | + | f (0)− f (1) | + | f (1)− f (x2) |
d’où | f (x1)− f (x2 |≤| x1 − 0 | + | 0 | + | 1 − x2 |
Donc | f (x1)− f (x2)| ≤ x1 + 1 − x2

Or x2 − x1 ≥ 1
2

donc x2 ≥ x1 +
1
2

d’où −x2 ≤ −x1 −
1
2

.

Par conséquent, x1 + 1 − x2 ≤ x1 + 1 − x1 −
1
2

Donc | f (x1)− f (x2| ≤
1
2

. CQFD.
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3 Le raisonnement par l’absurde

Pour démontrer que p ⇒ q est vraie et comme l’on sait que p ⇒ q équivaut à non(p) ou q on
va supposer que p et non(q) est vrai .On aboutit à une contradiction donc p et non(q) est faux
donc sa négation non(p) ou q est vraie donc p ⇒ q est vraie.

3.1 Exercice

Si (D) et (D′) sont des droites parallèles et si (D”) coupe (D) alors (D”) coupe (D′)

3.1.1 Corrigé

Supposons que (D”) ne coupe pas (D′) alors (D”) est parallèle à (D′). Or (D′) est parallèle à
(D).
Par transitivité du parallèlisme on a (D) et (D”) parallèles. On aboutit à une contradiction car
(D”) coupe (D) .
Donc la supposition (D”) ne coupe pas (D′) est fausse d’où (D”) coupe (D′). CQFD.

3.2
√

2 est irrationnel

1. Démontrer que si un entier n est pair alors son carré n2 est pair

2. Démontrer que si un entier n est impair alors son carré n2 est impair

3. En déduire du 1°) que si n2 est impair alors n est impair

4. En déduire du 2°) que si n2 est pair alors n est pair

5. Compléter n pair ⇐⇒ · · ·
6. Compléter n impair ⇐⇒ · · ·
7. Démontrer par l’absurde que

√
2 est un nombre irrationnel (c’est-à- dire ne peut se

mettre sous la forme
p
q

où p est un entier relatif et q un entier relatif non nul).

3.2.1 Corrigé

1. Soit n entier pair alors ∃k ∈ N tel que n = 2k
donc n2 = (2k)2 = 4k2 = 2(2k2) = 2k′ où k′ = 2k2 est un entier naturel donc n2 est pair

2. Soit n entier impair alors ∃k ∈ N tel que n = 2k + 1
donc n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2k′ + 1 où k′ = 2k2 + 2k est un
entier naturel donc n2 est impair.

3. D’après la question 1 on a n pair =⇒ n2 pair
donc par contraposition on a n2 impair =⇒ n impair

4. D’après la question 2 on a n impair =⇒ n2 impair
donc par contraposition on a n2 pair =⇒ n pair

5. Comme n pair =⇒ n2 pair et n2 pair =⇒ n pair alors

n pair ⇐⇒ n2 pair
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6. Comme n impair =⇒ n2 impair et n2 impair =⇒ n impair alors

n impair ⇐⇒ n2 impair

7. Supposons que
√

2 =
p
q

irréductible avec p ∈ N et q ∈ N∗ donc 2 =
p2

q2 .

Par conséquent p2 = 2q2 donc p2 est pair donc p est pair d’où ∃k ∈ N tel que p = 2k.
Comme p2 = 2q2 alors (2k)2 = 2q2.
On en déduit que q2 = 2k2 donc q2 est pair d’où ∃k′ ∈ N tel que q = 2k′

Mais alors la fraction
p
q

=
2k
2k′

=
k
k′

est réductible. Contradiction. Donc l’hypothèse
√

2 ∈ Q est fausse.
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3.3 Les racines carrées d’un nombre premier sont des irrationnels

Démontrer que si p est un entier naturel premier alors
√

p est un irrationnel.

3.3.1 Corrigé

Raisonnons par l’absurde. supposons que
√

p est un nombre rationnel.

Alors ∃n ∈ Z ∃d ∈ N∗ √
p =

n
d

Par conséquent, p =
n2

d2 donc pd2 = n2.

Or tout entier naturel est décomposable en produits d’entiers premiers ce qui est le cas de d2 et
de n2.
L’exposant de l’entier premier p dans les entiers n2 et dans d2 est pair .
Mais alors l’exposant de l’entier premier p dans l’entier pd2 est impair alors que cet exposant
est pair dans n2. Ce n’est pas possible car pd2 = n2.
Par conséquent,

√
p ne peut être un nombre rationnel. c’est donc un nombre irrationnel.
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3.4 Exercice

On veut résoudre le problème suivant :

∃n ≥ 3 ∃(x, y, z) ∈ Z3 x2 + y2 + z2 ≡ −1 (mod 2n)

.

1. Montrer qu’il n’y a pas de solution pour n = 3

2. On considère le cas n > 3

(a) Montrer d’abord que si (x, y, z) était solution de ce problème alors ou bien x, y et
z seraient tous trois impairs ou bien deux d’entre eux seraient pairs et le troisième
impair.

(b) Montrer que si deux d’entre eux seraient pairs et le troisième impair alors on aboutit
aussi à une contradiction.

(c) Montrer que si x, y et z seraient tous trois impairs alors on aboutit à une contradic-
tion.

3. Conclure qu’il n’y a pas de solution au problème posé.

3.4.1 Démonstration

1. Soit n = 3
• ou bien x, y et z sont impairs :

alors x2 + y2 + z2 = (2a + 1)2 + (2b + 1)2 + (2c + 1)2 = 4(a2 + a + b2 + b + c2 + c) +
3 = 4(a(a + 1) + b(b + 1) + c(c + 1)) + 3
Or le produit de 2 entiers consécutifs est pair ce qui est le cas de a(a + 1) ; b(b + 1) ;
c(c + 1).
Donc x2 + y2 + z2 = 8k + 3 donc x2 + y2 + z2 ≡ 3 (mod 23). Or 3 ≡ −5 (mod 23)
donc pas de solution au problème posé pour n = 3

• ou bien deux d’entre eux x, y sont impairs et z pair :
alors x2 + y2 + z2 = (2a + 1)2 + (2b + 1)2 + (2c)2 = 4(a2 + a + b2 + b + c2) + 3 =
4(a(a + 1) + b(b + 1) + c2) + 2
· · ·

• ou bien un seul est impair x et les deux autres y, z sont impairs :
alors x2 + y2 + z2 = (2a + 1)2 + (2b)2 + (2c)2 = 4(a2 + a + b2 + c2) + 1 = 4(a(a +
1) + b2 + c2) + 1
· · ·

• ou bien les trois sont pairs :
alors x2 + y2 + z2 = (2a)2 + (2b)2 + (2c)2 = 4(a2 + b2 + c2)
· · ·

2.

3. Supposons qu’il existe n > 3 pour lequel x2 + y2 + z2 ≡ −1 (mod 2n) aurait une solution
alors on aurait x2 + y2 + z2 = k2n − 1 donc x2 + y2 + z2 + 1 = k2n. Or x2 + y2 + z2 ≡ 3
(mod 8) donc x2 + y2 + z2 = 8q + 3 donc k2n = 8q + 3 impossible car k2n est pair et
8q + 3 est impair.
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3.5 Un mix d’absurde et de disjonction de cas

Démontrer que
√

2 n’est pas un nombre décimal.

Raisonnons par l’absurde. supposons que
√

2 est un décimal donc il a un développement déci-

mal fini. Soit x le dernier chiffre de ce développement décimal. On sait que
√

2
2
= 2 donc

• ou x = 1 donc le développement décimal de x2 se termine par 1 donc il est impossible
d’obtenir 2

• ou x = 2 donc le développement décimal de x2 se termine par 4 donc il est impossible
d’obtenir 2

• ou x = 3 donc le développement décimal de x2 se termine par 9 donc il est impossible
d’obtenir 2

• ou x = 4 donc le développement décimal de x2 se termine par 5 donc il est impossible
d’obtenir 2

• ou x = 6 donc le développement décimal de x2 se termine par 6 donc il est impossible
d’obtenir 2

• ou x = 7 donc le développement décimal de x2 se termine par 9 donc il est impossible
d’obtenir 2

• ou x = 8 donc le développement décimal de x2 se termine par 4 donc il est impossible
d’obtenir 2

• ou x = 9 donc le développement décimal de x2 se termine par 1 donc il est impossible
d’obtenir 2

Par conséquent, on aboutit à une contradiction donc
√

2 ne peut être un nombre décimal.

3.6 Exercice

Soit la suite un définie par : u0 = 1 ; u1 = cos(3) et pour tout entier n ≥ 2 par un = 2u1un−1 −
un−2.
Démontrer par récurrence que ∀n ∈ N l’on a un = cos(3n)
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4 Le raisonnement par équivalence logique

4.1 Equivalence logique directe

4.1.1 Minimiser MA + MB lorsque A et B de part et d’autre d’une droite où se trouve M

La ligne droite est le plus court chemin : A,B et M sont donc alignés.

14



4.1.2 Pb de Billard : A et B du même côté d’une droite où se trouve M

Une droite (D) partage le plan en deux demi-plans. Soient des points A et B situés dans le
même demi-plan. On crée un chemin AMB reliant A à B et passant par un point M situé sur
la droite (D).
Où placer M sur la droite (D) pour que ce chemin AMB soit le plus court possible?

Construisons le symétrique A′ du point A par rapport à la droite (D).
Comme la symétrie conserve les distances alors AM = A′M.
Par conséquent ,

Minimiser AM + MB ⇐⇒ Minimiser A′M + MB ⇐⇒ A′, M, B sont alignés.

car la ligne droite est le plus court chemin.
L’idée de base est que le plus court chemin est la ligne droite.
Soit B′ l’image de B par SD la symétrie orthogonale d’axe (D). Or SD(M) = M car M ∈ (D) .
Or une symétrie orthogonale est une isométrie donc conserve les distances donc MB = MB′.
MA + MB minimum ⇔ MA + MB′ minimum ⇔ M, A et B′ alignés.
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Le minimum est réalisé lorsque M ∈ (D)
⋂
(AB′) ou encore par analogie lorsque M ∈ (D)

⋂
(A′B)

où A′ l’image de A par SD

16



4.1.3 Pb de Billard : AM + MN + NB minimum

Soient (D) et (D′) deux demi-droites de même, origine. Déterminer la position d’un point M
sur (D) et la position d’un point N sur (D′) telles que MA + MN + NB soit minimum.

L’idée de base est toujours la même : le plus court chemin est la ligne droite.
Soit A′ l’image de A par SD la symétrie orthogonale d’axe (D). Or SD(M) = M car M ∈ (D) .
Or une symétrie orthogonale est une isométrie donc conserve les distances donc MA = MA′.

Soit B′ l’image de B par SD′ la symétrie orthogonale d’axe (D′).
Or SD(N) = N car N ∈ (D).
Or une symétrie orthogonale est une isométrie donc conserve les distances donc NB = NB′.

MA + MN + MB minimum

⇕
A′M + MN + NB′ minimum

⇕
A′, M, N, B′ alignés

⇕
M ∈ (D) ∩ (A′B′) et N ∈ (D′) ∩ (A′B′)

17



4.1.4 Inégalité classique

Démontrer que

∀n ∈ N∗ √
n + 1 −

√
n <

1
2
√

n

∀n ∈ N∗

(p) :
√

n + 1 −
√

n <
1

2
√

n
⇐⇒ (

√
n + 1 −

√
n)(

√
n + 1 +

√
n)√

n + 1 +
√

n
<

1
2
√

n

⇐⇒ n + 1 − n√
n + 1 +

√
n
<

1
2
√

n
⇐⇒ 1√

n + 1 +
√

n
<

1
2
√

n
⇐⇒ 2

√
n <

√
n + 1 +

√
n car la fonction inverse est décroissante sur R+∗

⇐⇒
√

n <
√

n + 1 ⇐⇒ n < n + 1 (q) car la fonction racine carrée est croissante sur R+∗

Comme (p) ⇐⇒ (q) est vraie et que (q) est vraie alors (p) est vraie . CQFD.

4.1.5 Une autre inégalité classique

Démontrer que

∀x ∈ R ∀y ∈ R xy ≤ x2 + y2

2

∀(x, y) ∈ R2

(p) : xy ≤ x2 + y2

2
⇐⇒ 2xy ≤ x2 + y2 ⇐⇒ 0 ≤ x2 + y2 − 2xy ⇐⇒ 0 ≤ (x − y)2 (q)

Comme (p) ⇐⇒ (q) est vraie et que (q) est vraie alors (p) est vraie . CQFD.
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4.2 Equivalence logique par double implication

Lorsque l’implication p ⇒ q et son implication réciproque q ⇒ p sont vraies on dira que les
propositions p et q sont équivalentes ou encore que p est une CNS(Condition nécessaire et
suffisante ) de q ce qui s’écrit p ⇔ q.
Il y a des équivalences logiques célèbres :

• Le triangle ABC est rectangle en A ⇔ BC2 = AB2 + AC2 (Egalité de Pythagore)
• I est le milieu de [AB] si et seulement si

−→
IA +

−→
IB = 0⃗

• Un produit de réels est nul si et seulement si l’un des facteurs est nul
ab = 0 ⇐⇒ a = 0 ou b = 0

• Deux polynômes P(x) et Q(x) sont égaux pour tout réel x si et seulement si les coeffi-
cients des monômes respectifs sont égaux.

4.2.1 Exemple

Démontrer que n est pair ⇐⇒ n2 est pair et que n est impair ⇐⇒ n2 est impair .

Corrigé
Soit n ∈ N.

• ou bien n est pair donc ∃k ∈ N n = 2k
alors n2 = (2k)2 = 4k2 = 2(2k2) de la fome 2k′ où k′ = 2k2 ∈ N

• ou bien n est impair donc ∃k ∈ N n = 2k + 1
alors n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1) de la fome 2k′ + 1 où k′ =
2k2 + 2 ∈ N

Par conséquent :

P1 : n est pair =⇒ n2 est pair est vraie

donc sa contraposée P2 : n2 est impair =⇒ n est impair est vraie

De même

P3 : n est impair =⇒ n2 est impair est vraie

donc sa contraposée P4 : n2 est pair =⇒ n est pair est vraie

.
• D’après P1 et P4 on a

n est pair ⇐⇒ n2 est pair

• D’après P3 et P2 on a
n est pair ⇐⇒ n2 est pair
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Attention aussi dans les résolutions de systèmes par addition :

• {
x + y = 6
x − y = 2 ⇒ 2x = 8

On perd ici l’équivalence logique. Donc on aura au bout de ce raisonnement S ⊂
{(4, 2)}.

• Il faudra absolument écrire la vérification : le couple (4, 2) est solution du système car
x + y = 4 + 2 = 6 et x − y = 4 − 2 = 2.
On aura alors {(4, 2)} ⊂ S .

• On pourra alors conclure : Comme S ⊂ {(4, 2)} et {(4, 2)} ⊂ S alors S = {(4, 2)}.
• Pour conserver l’équivalence logique tout au long du raisonnement et avoir directe-

ment S = {(4, 2)}, il faut utiliser une méthode hybride en conservant une des deux
équations initiales{

x + y = 6
x − y = 2 ⇔

{
x + y = 6
2x = 8 ⇔

{
x + y = 6
x = 4 ⇔

{
y = 2
x = 4

On en déduit directement que S = {(4, 2)}

4.2.2 Exemple

Déterminer le réel a tel que la fonction g définie sur R par g(x) = a x cos(x) soit solution de
l’équation différentielle

(E) : y” + y = sin(x)

• g est indéfiniment dérivable sur R

• ∀x ∈ R g′(x) = a cos(x)− a x sin(x)
• ∀x ∈ R g”(x) = −a sin(x)− a sin(x)− a x cos(x) = −2 a sin(x)− a x cos(x)
• g est solution de (E) ⇐⇒ ∀x ∈ R g”(x) + g(x) = sin(x)

⇐⇒ ∀x ∈ R − 2 a sin(x)− a x cos(x) + a x cos(x) = sin(x)
⇐⇒ ∀x ∈ R − 2 a sin(x) = sin(x) (∗)
⋄ Si a = −1

2
alors 2a = −1 donc ∀x ∈ R 2 a sin(x) = sin(x) donc a = −1

2
=⇒ (∗)

⋄ Si (∗) est vraie alors ∀x ∈ R l’on a − 2 a sin(x) = sin(x).
Donc cette propriété est vraie pour x =

π

2
donc 2a sin

(π

2

)
= sin

(π

2

)
donc −2a = 1

d’où a = −1
2

⋄ Par conséquent, (∗) ⇐⇒ a = −1
2

• On a donc démontré que

g est solution de (E) : g”(x) + g(x) = sin(x) ⇐⇒ a = −1
2
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5 Le raisonnement par analogie

Le raisonnement par analogie consiste à raisonner de telle sorte que l’on trouve un lien, une
correspondance, un rapport de sens entre 2 ou plusieurs objets (mots, figures,nombres,signes,...)

5.1 Exercice

Soit un triangle ABC . Soit I le milieu du segment [BC]. Soit H le pied de la hauteur issue de
B et soit K le pied de la hauteur issue de C.
Démontrer que le triangle IKH est isocèle.
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6 Le raisonnement par analyse-synthèse

"L’analyse et la synthèse consistent à démonter et à remonter une machine pour en
connaître tous les rouages"
Condillac

C’est un type de raisonnement permettant de déterminer l’existence et l’unicité d’un objet ma-
thématique vérifiant des propriétés données

6.1

Démontrer que toute fonction numérique définie sur R est la somme d’une fonction paire et
d’une fonction impaire.

6.1.1 Corrigé

• Analyse :
Supposons que f = p + i où p est paire et i est impaire. Alors
— ∀x ∈ R l’on a f (x) = p(x) + i(x)
— Or f est paire et i est impaire alors f (−x) = p(−x)+ i(−x) donc f (−x) = p(x)− i(x)
Par conséquent, {

f (x) = p(x) + i(x)
f (−x) = p(x)− i(x)

donc p(x) =
f (x) + f (−x)

2
et i(x) =

f (x)− f (−x)
2

• Synthèse :
Soit f définie sur R.

— soit p et i définies aussi sur R par p(x) =
f (x) + f (−x)

2
et i(x) =

f (x)− f (−x)
2

— p est paire
— i est impaire
— f = p + i

6.2

Démontrer que lim
x 7→+∞

ln(x) = +∞

6.2.1 Corrigé

• analyse : soit A > 0. Supposons ∃B > 0 tel que d’une part B ≥ 2n et d’autre part ∀x > B
ln(x) > A
Comme x > B alors x > 2n. Or ln est strictement croissante sur ]0;+∞[ donc ln(x) >
ln(2n) donc ln(x) > n ln(2).
Si l’on veut donc que ln(x) > A il suffit de prendre n tel que n ln(2) > A c’est-à-dire tel

que n >
A

ln(2)

• synthèse : soit A > 0. Soit B = 2n où n est la partie entière de
A

ln(2)
+ 1. Alors ∀x > B on

a ln(x) > A donc lim
x→+∞

ln(x) = +∞
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6.3

Soit (K,+,×) un corps commutatif. Par exemple, K = R ou C.
Démontrer que toute matrice carrée M ∈ Mn(K) se décompose de façon unique en la somme
d’une matrice carrée symétrique et d’une matrice carrée antisymétrique.

Démontrons maintenant par analyse-synthèse que Mn(R) = Sn(R) +An(R)

1. Analyse :
Supposons que M = S + A où S est une matrice symétrique (donc tS = S)et A une
matrice antisymétrique (donc t A = −A).
Alors t M = t(S + A) = tS + t A = S − A .
Comme {

M = S + A
t M = S − A

alors 
S =

1
2
(M + t M)

A =
1
2
(M − t M)

2. Synthèse :

Soit M une matrice carrée. Soit S =
1
2
(M + t M) et A =

1
2
(M − t M) alors

(a) M = S + A

(b) tS = t(
1
2
(M + t M)) =

1
2

t
(M + t M)) =

1
2
(t M + t(t M)) =

1
2
(t M + M) = S

donc S est symétrique.

(c) t A = t(
1
2
(M − t M)) =

1
2

t(M − t M)) =
1
2
(t M − t(t M)) =

1
2
(t M − M) = −A

donc A est antisymétrique.

3. Exemple :

Soit M =

−2 3 −1
5 4 −1
1 −3 2

 alors t M =

−2 5 1
3 4 −3
−1 −1 2




S =
1
2
(M + t M) =

−2 4 0
4 4 −2
0 −2 2

 est symétrique

A =
1
2
(M − t M) =

0 −1 −1
1 0 1
1 −1 0

 est antisymétrique

S + A = M
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7 Le raisonnement par récurrence

7.1 Axiome d’induction compléte

Soit E une partie de N vérifiant les deux conditions suivantes :

1. 0 ∈ E

2. si n ∈ E alors n + 1 ∈ E

alors E = N.

7.2 Théorème de récurrence faible

Soit Pr une propriété que peut vérifier un entier naturel k (ce que l’on notera Pr(k)) Soit n0 un
entier naturel.

1. Si Pr(n0) est vraie (c’est-à-dire que la propriété Pr est vraie en n0)

2. Si pour tout k entier ≥ n0, l’implication Pr(k) ⇒ Pr(k + 1) est vraie (c’est-à-dire que la
propriété est héréditaire )

Alors pour tout n ≥ n0 , Pr(n) est vraie .

7.2.1 Démonstration

. On fait cette démonstration dans le cas où n0 = 0.
Soit E = {n ∈ N / Pr(n) est vraie }.

1. 0 ∈ E car Pr(0) est vraie.

2. si n ∈ E alors n + 1 ∈ E puisque Pr(n) ⇒ Pr(n + 1)

donc d’après l’axiome d’induction complète, on a : E = N.
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7.3 Attention !

Il y a deux étapes dans ce type de démonstration.
• Dans l’étape 1, il faut vérifier que la propriété est vraie uniquement en n0
• Dans l’étape 2 , en considérant la table de vérité de l’implication logique

p q p ⇒ q
V V V
V F F
F V V
F F V

Comme il faut démontrer que l’implication est vraie, on procédera ainsi :
On supposera que pr(k) est vraie (c’est ce que l’on appelle l’hypothèse de récurrence)
et on raisonnera jusqu’à prouver que pr(k + 1) est vraie.
On aura ainsi démontré que l’implication (Pr(k) ⇒ Pr(k + 1)) est vraie

7.4 Théorème de récurrence double

Soit Pr une propriété que peut vérifier un entier naturel k (ce que l’on notera Pr(k)). Soit n0
un entier naturel.

1. Si Pr(n0) et Pr(n0 + 1) sont vraies

2. Si pour tout k entier ≥ n0, l’implication

[Pr(k)et Pr(k + 1)] ⇒ Pr(k + 2)

est vraie (c’est-à-dire que la propriété est doublement héréditaire )

Alors pour tout n ≥ n0 , Pr(n) est vraie .

7.5 Théorème de récurrence forte

Soit Pr une propriété que peut vérifier un entier naturel k (ce que l’on notera Pr(k)). Soit n0
un entier naturel.

1. Si Pr(n0) est vraie

2. Si pour tout k entier ≥ n0, l’implication

[Pr(n0) et Pr(n0 + 1) et · · · et Pr(k)] ⇒ Pr(k + 1)

est vraie

Alors pour tout n ≥ n0 , Pr(n) est vraie .
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7.6 Cardinal de P(E)

1. Déterminer l’ensemble des parties de E noté P(E) dans les cas suivants E1 = {a} ;
E2 = {a; b} ; E3 = {a; b; c}

2. Démontrer par récurrence que si E est un ensemble fini ayant n éléments alors l’en-
semble P(E) de ses parties a 2n éléments

3. En déduire P(∅) ; P(P(∅)) ; P(P(P(∅))) ; Card(P(P(P(P(∅))))

7.6.1 corrigé

1. Pour créer l’ensemble des parties P(E) d’un ensemble E,
• on place d’abord la seule partie à 0 éléments qui est l’ensemble vide ∅
• puis les parties à 1 élément qu’on appelle les singletons,
• les parties à 2 éléments qu’on appelle les paires,
• celles à 3 éléments ,
• ...
• celles à n − 1 éléments
• et enfin la seule partie à n éléments, la partie pleine c’est-à-dire l’ensemble E lui-

même.
Par conséquent,
• si E1 = {a} alors P(E1) = {∅; {a}}
• si E2 = {a; b} alors E2 = E1 ∪ {b} et P(E2) = {∅; {a}; {b}; {a; b}}
• si E3 = {a; b; c} alors E3 = E2 ∪{c} et P(E) = {∅; {a}; {b}; {c}; {a; b}; {a; c}; {b; c}; {a; b; c}}

On peut donc remarquer que lorsque l’on ajoute un élément rouge à un ensemble Ei
, alors l’ensemble des parties du nouvel ensemble Ei ∪ {x} est formé de toutes les an-
ciennes parties de Ei auxquelles on ajoute de nouvelles parties qui sont en fait formées
des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Donc il y a autant de nouvelles parties ayant ce nouvel élément rouge x que d’anciennes
parties n’ayant pas x.

2. On pose pr(n) :" le nombre de parties d’un ensemble ayant n éléments est 2n"
(a) Etape 1 : initialisation

A-t-on pr(0) ?
c’est-à-dire a-t-on le nombre de parties d’un ensemble ayant 0 éléments est 20 ?
Oui car si Card(E) = 0 c’est que E = ∅ donc P(E) = P(∅) = {∅}. P(E) n’a donc
qu’un seul élément.
Par conséquent pr(0) est vraie.

(b) Etape 2 : hérédité
Soit un certain entier k ≥ 0. A-t-on pr(k) =⇒ pr(k + 1) ?
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c’est-à-dire a-t-on le nombre de parties d’un ensemble ayant k éléments est 2k =⇒
que le nombre de parties d’un ensemble ayant k + 1 éléments est 2k+1

Supposons que l’hypothèse de récurrence suivante " le nombre de parties d’un en-
semble ayant k éléments est 2k " soit vraie.
Soit un ensemble F ayant k + 1 éléments. Isolons un élément x de F . Par conséquent
F = E ∪ {x} où E a k éléments.
Alors l’ensemble des parties du nouvel ensemble F = E ∪ {x} est formé de toutes
les anciennes parties de E auxquelles on ajoute de nouvelles parties qui sont en fait
formées des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Or d’après l’hypothèse de récurrence, Card(P(E)) = 2k et de plus il y a autant de
nouvelles parties ayant ce nouvel élément rouge que d’anciennes parties n’ayant pas
{x}
donc Card(P(F)) = 2k + 2k = 2(2k) = 21+k CQFD.

(c) Conclusion pr est initialisé en 0 et pr est héréditaire
donc pour tout entier naturel n, si Card(E) = n alors Card(P(E)) = 2n"

3. • P(∅) = {∅}
• P(P(∅)) = P({∅}) = {∅; {∅}}
• P(P(P(∅))) = P({∅; {∅}}) = {∅; {∅}; {{∅}}; {∅; {∅}}}
• Comme card(P(P(P(∅))) = 4 alors Card(P(P(P(P(∅)))) = 24 = 16
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7.7 Inégalité de Bernoulli

♡ ♡ ♡
Soit a un réel > 0.

1. Démontrer par récurrence que pour tout entier naturel n, l’on a :

(1 + a)n ≥ 1 + na

2. Redémontrer cette inégalité en utilisant la formule du binôme de Newton ci-dessous :
Si a et b sont des réels alors pour tout entier naturel n

(a + b)n =
n

∑
k=0

(
n
k

)
an−kbk

7.7.1 corrigé

1. On pose pr(n) : ”(1 + a)n ≥ 1 + na”

(a) Etape 1 : initialisation
A-t-on pr(0) ? c’est-à-dire a-t-on (1 + a)0 ≥ 1 + 0a ? c’est-à-dire a-t-on 1 ≥ 1? Oui.
Par conséquent pr(0) est vraie.

(b) Etape 2 : hérédité
Soit un certain entier k ≥ 0. A-t-on pr(k) =⇒ pr(k + 1) ?
c’est-à-dire a-t-on (1 + a)k ≥ 1 + ka =⇒ (1 + a)k+1 ≥ 1 + (k + 1)a
Supposons donc que (1 + a)k ≥ 1 + ka. Or (1 + a)k+1 = (1 + a)k(1 + a).
Comme (1 + a)k ≥ (1 + ka) comme (1 + a) > 0 car a > 0 donc (1 + a)k(1 + a) ≥
(1 + ka)(1 + a)
d’où (1 + a)k+1 ≥ 1 + ka + a + ka2 Mais ka2 ≥ 0 puisque k ≥ 0 et a > 0
donc 1 + ka + a + ka2 ≥ 1 + a + ka.
d’où (1 + a)k+1 ≥ 1 + (k + 1)a

(c) Conclusion pr est initialisé en 0 et pr est héréditaire donc pr est vraie pour tout entier
naturel n

2. D’après la formule du binôme de Newton,

(1 + a)n =
n

∑
k=0

(
n
k

)
1n−kak =

(
n
0

)
1na0 +

(
n
1

)
1n−1a1 +

n

∑
k=2

(
n
k

)
1n−kak = 1 + na +

n

∑
k=2

(
n
k

)
1n−kak

car
(

n
0

)
= 1 et

(
n
1

)
= n.

Or (1 + a)n =
n

∑
k=2

(
n
k

)
1n−kak =

n

∑
k=2

(
n
k

)
ak ≥ 0 donc (1 + a)n ≥ 1 + na
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7.8 Quelques sommes remarquables

Démontrer par récurrence que :

1. S1 =
n

∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

2. S2 =
n

∑
k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

3. S3 =
n

∑
k=1

k3 = 13 + 23 + 33 + · · ·+ n3 = S2
1 =

n2(n + 1)2

4

4.
n

∑
k=0

(2k + 1) = 1 + 3 + 5 + · · ·+ (2n + 1) = (n + 1)2

5.
n

∑
k=1

k(k!) = 1(1!) + 2(2!) + 3(3!) + · · ·+ n(n!) = (n + 1)! − 1

6. Soit une suite (un)n∈N∗ telle que :

∀n ≥ 1 un > 0 et
n

∑
k=1

u3
k =

(
n

∑
k=1

k

)2

Démontrer avec une récurrence forte que ∀n ≥ 1 un = n

7.8.1 corrigé

1. Notons pr(n) : ”
n

∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
”

(a) Etape 1 : Initialisation
A-t-on pr(1) ?

c’est-à-dire a-t-on
1

∑
k=1

k = 1 =
1(1 + 1)

2
? Oui car

1(1 + 1)
2

= 1

(b) Etape 2 : Hérédité
Supposons que pour un certain entier n ≥ 1 l’on ait pr(n) c’est-à-dire que 1+ 2+ 3+

· · ·+ n =
n(n + 1)

2
.

Alors 1 + 2 + 3 + · · ·+ n + (n + 1) = (1 + 2 + 3 + · · ·+ n)) + (n + 1) =
n(n + 1)

2
+

(n + 1) =
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
donc pr(n + 1) est vraie.

(c) Conclusion :{
pr est initialisée en 1
pr est héréditaire donc ∀n ∈ N∗ pr(n) est vraie.

Par conséquent, ∀n ∈ N∗ S1 =
n

∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
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2. Notons pr(n) : ”
n

∑
k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
”

(a) Etape 1 : Initialisation

A-t-on pr(1) ? c’est-à-dire a-t-on
1

∑
k=1

k2 = 1 =
1(1 + 1)(2(1) + 1)

6
?

Oui car
1(1 + 1)(2(1) + 1)

6
= 1

(b) Etape 2 : Hérédité
Supposons que pour un certain entier n ≥ 1 l’on ait pr(n) c’est-à-dire que 12 + 22 +

32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Alors 12 + 22 + 32 + · · ·+ n2 + (n + 1)2 =
(
12 + 22 + 32 + · · ·+ n2)

)
+ (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6
=

(n + 1) (n(2n + 1) + 6(n + 1))
6

=
(n + 1)

(
2n2 + 7n + 6

)
6

=

(n + 1)(n + 2)(2n + 3)
6

donc pr(n + 1) est vraie.

(c) Conclusion :{
pr est initialisée en 1
pr est héréditaire donc ∀n ∈ N∗ pr(n) est vraie.

Par conséquent, S2 =
n

∑
k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

3. Notons pr(n) : ”
n

∑
k=1

k3 = 13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
”

(a) Etape 1 : Initialisation

A-t-on pr(1) ? c’est-à-dire a-t-on
1

∑
k=1

k3 = 1 =
12(1 + 1)2

4
? Oui car

12(1 + 1)2

4
= 1

(b) Etape 2 : Hérédité
Supposons que pour un certain entier n ≥ 1 l’on ait pr(n) c’est-à-dire que 13 + 23 +

33 + · · ·+ n3 =
n2(n + 1)2

4
.

Alors 13 + 23 + 33 + · · ·+ n3 + (n + 1)3 =
(
13 + 23 + 33 + · · ·+ n3)

)
+ (n + 1)3

=
n2(n + 1)2

4
+(n+ 1)3 =

n2(n + 1)2 + 4(n + 1)3

4
=

(n + 1)2 (n2 + 4n + 1
)

4
=

(n + 1)2(n + 2)2

4
donc pr(n + 1) est vraie.

(c) Conclusion :{
pr est initialisée en 1
pr est héréditaire donc ∀n ∈ N∗ pr(n) est vraie.

Par conséquent, S3 =
n

∑
k=1

k3 = 13 + 23 + 33 + · · ·+ n3 = S2
1 =

n2(n + 1)2

4
= S2

1

4.
n

∑
k=0

(2k + 1) = 1 + 3 + 5 + · · ·+ (2n + 1) = (n + 1)2
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5.
n

∑
k=1

k(k!) = 1(1!) + 2(2!) + 3(3!) + · · ·+ n(n!) = (n + 1)! − 1

6. Soit la propriété pr(n) : ”un = n”

(a) Etape 1 Initialisation : Démontrons que pr(1) est vraie c’est-à-dire que u1 = 1.

Comme
1

∑
k=1

u3
k =

(
1

∑
k=1

k

)2

donc u3
1 = u2

1 donc u3
1 − u2

1 = 0 d’où u2
1(u1 − 1) = 0. or

u2
1 > 0 car u1 > 0 puisque ∀n ≥ 1 un > 0.

Par conséquent u1 − 1 = 0 donc u1 = 1. CQFD.

(b) Soit un certain n ≥ 1. Supposons que pour tout entier naturel k ≤ n, l’implication
pr(k) est vraie.
Démontrons qu’alors pr(k + 1) est vraie.

On sait que
n+1

∑
k=1

u3
k =

(
n+1

∑
k=1

k

)2

donc u3
1 + u3

2 + · · ·+ u3
n + u3

n+1 = (u1 + u2 + · · ·+ un + un+1)
2

d’où (u1 +u2 + · · ·+un)2 +u3
n+1 = (u1 +u2 + · · ·+un)2 + 2(u1 +u2 + · · ·+un)(un+1)+

u2
n+1

Alors u3
n+1 = 2(u1 + u2 + · · ·+ un)(un+1) + u2

n+1
Par conséquent, u3

n+1 −u2
n+1 − 2(1+ 2+ · · ·+n)(un+1) = 0 d’où un+1

(
u2

n+1 − un+1 − n(n + 1)
)
=

0
Posons X = un+1.
Nous devons donc résoudre l’équation X2 − X − n(n + 1) = 0
δ = (−1)2 − 4(−n(n + 1)) = 1 + 4n(n + 1) = 4n2 + 4n + 1 = (2n + 1)2

L’équation du second degré admet donc 2 solutions :

X′ =
1 − (2n + 1)

2
= −2n

2
= −n

X” =
1 + (2n + 1)

2
=

2n + 2
2

= n + 1

Comme un+1 > 0 alors on rejette X′ donc un+1 = X” = n + 1 CQFD.

(c) pr est initialisée en 1 et pr est bien héréditaire donc pr est vraie pour tout entier naturel
n ≥ 1
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7.9 Fausse récurrence

Soit la propriété pr(n) : « 5n + 1 est un multiple non nul de 4 »

1. Cette propriété est-elle vraie pour n = 0?

2. Démontrer que pour tout entier naturel k, l’implication pr(k) ⇒ pr(k + 1) est vraie.

3. Conclusion?

7.9.1 corrigé

Soit la propriété pr(n) : « 5n + 1 est un multiple non nul de 4 »

1. pr(0) est fausse car 50 + 1 = 2 n’est pas un multiple non nul de 4

2. Et pourtant, pour tout entier naturel k, l’implication pr(k) ⇒ pr(k + 1) est vraie.
en effet, supposons que pour un certain entier k ≥ 0 l’on ait pr(k) c’est-à-dire que 5k + 1
est un multiple non nul de 4 donc ∃q ∈ Z∗ tel que 5k + 1 = 4q d’où 5k = 4q − 1
Alors 5k+1 + 1 = 5(5k) + 1 = 5(4q − 1) + 1 = 20q − 5 + 1 = 20q − 4 = 4(5q − 1) = 5q′

où q′ = 5q − 1 ∈ Z∗. Donc pr(k + 1) est vraie CQFD.

3. On est en présence d’une fausse récurrence car pr est bien héréditaire mais n’est pas
initialisée en 0

32



7.10 Encore une fausse récurrence

1. Démontrer par récurrence que pour tout entier naturel n la propriété suivante :"10n − 1
est un multiple de 9" est vraie.

2. On s’intéresse maintenant à une autre propriété :"10n + 1 est divisible par 9"

(a) Démontrer que, pour tout entier naturel n,
l’implication suivante : " 10n + 1 est divisible par 9 ⇒ 10n+1 + 1 est divisible par 9
" est vraie.

(b) Déduire du 1°) que, pour tout entier naturel n la propriété "10n + 1 est divisible par
9" n’est jamais vraie.

(c) Conclusion?

7.10.1 Corrigé

1. Démontrons par récurrence que pour tout entier naturel n la propriété suivante :"10n − 1
est un multiple de 9" est vraie. Notons pr(n) : ”10n − 1 est un multiple de 9.

(a) Initialisation :
100 − 1 = 1 − 1 = 0 = 9 × 0 donc la propriété pr est initialisée en n = 0

(b) Hérédité :
Supposons que pour un certain n ∈ N∗ l’on ait pr(n) alors ∃k ∈ N 10n − 1 = 9k
Par conséquent, 10n+1 − 1 = 10(10n)− 1 = 10(9k+ 1)− 1 = 90k+ 10− 9 = 90k+ 9 =
9(10k + 1) = 9k′ où k′ ∈ N donc pr(n + 1) est vraie.

(c) Conclusion :
pr est initialisée en 0 et pr est héréditaire donc pr est vraie pour tout entier naturel
n ∈ N

(d) On s’intéresse maintenant à une autre propriété :"10n + 1 est divisible par 9"

i. Supposons que pour un certain n ∈ N l’on ait ∃k ∈ N 10n − 1 = 9k
Par conséquent, 10n+1 − 1 = 10(10n) − 1 = 10(9k + 1) − 1 = 90k + 10 − 1 =
90k+ 9 = 9(10k+ 1) = 9k′ où k′ ∈ N l’implication suivante : " 10n + 1 est divisible
par 9 ⇒ 10n+1 + 1 est divisible par 9 " est vraie.

ii. Pour tout entier naturel n la propriété "10n + 1 est divisible par 9" n’est jamais
vraie car
10n + 1 = 10n − 1 + 2 = 9k + 2

iii. En conclusion, pour la propriété "10n + 1 est divisible par 9"on a une fausse récur-
rence.
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7.11 Le nombre de diagonales d’un polygône convexe

Soit un polygône convexe de n côtés. Démontrer par récurrence que si n est un entier supé-

rieur ou égal à 3 alors le nombre de diagonales est
n(n − 3)

2
NB – Un polygone est convexe lorsque quelques soient les points M et N situés dans l’inté-
rieur de ce polygône, le segment [MN] est inclus dans cet intérieur.

7.11.1 corrigé

Notons Dn le nombre de diagonales. Soit la propriété pr(n) : " Dn =
n(n − 3)

2
"

1. pr(3) est vraie car D3 = 0 =
3(3 − 3)

2
. Dans un triangle, il n’y a aucune diagonale.

2. Supposons que pour un certain entier k ≥ 3 l’on ait Dk =
k(k − 3)

2
. Considérons alors

un polygône R convexe de k + 1 côtés. Donc ce polygône R a k + 1 sommets. Notons
ces sommets A1, A2, · · · , Ak, Ak+1. Soit Q le polygône A1, A2, · · · , Ak. Ce polygône Q a
donc Dk diagonales. On construit R à partir de Q en ajoutant le sommet Ak+1. On trace
les segments [A1 Ak+1] et [Ak Ak+1]. Mais alors l’ancien côté [A1 Ak] de Q devient alors
une diagonale de R. Le nombre Dk+1 de R est Dk + k − 2 + 1 où

(a) Dk est le nombre de diagonales de Q

(b) k : le nombre de segments partant de Ak+1 vers les k autres sommets A1, A2, · · · , Ak.

(c) il faut enlever −2 correspondants aux deux nouveau côtés [A1 Ak+1] et [Ak Ak+1]

(d) il faut rajouter +1 correspondant à la nouvelle diagonale [A1 Ak]

Or Dk + k− 2+ 1 =
k(k − 3)

2
+ k− 1 =

k2 − 3k + 2k − 2
2

=
k2 − k + 2k − 2

2
=

(k + 1)(k − 2)
2

.

Par conséquent, Dk+1 =
(k + 1)(k + 1 − 3)

2
. CQFD.

3. La propriété est initialisée en 3 et héréditaire donc elle est vraie pour tout entier naturel
n ≥ 3
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7.12 Multiples de 11

Démontrer par récurrence que pour tout entier naturel n, 10n − (−1)n est un multiple de 11

7.13 Corrigé

On pose pr(n) : ”10n − (−1)n = 11q” où q ∈ Z

1. Etape 1 : initialisation
A-t-on pr(0) ? c’est-à-dire a-t-on 100 − (−1)0 = 11q ? c’est-à-dire a-t-on 1 − 1 = 11q ?
c’est-à-dire a-t-on 0 = 11q ? Oui car 0 = 11 × 0
Par conséquent pr(0) est vraie.

2. Etape 2 : hérédité
Soit un certain entier k ≥ 0. A-t-on pr(k) =⇒ pr(k + 1) ?
c’est-à-dire a-t-on ∃q ∈ Z 10k − (−1)k = 11q =⇒ ∃q′ ∈ Z 10k+1 − (−1)k+1 = 11q′

Supposons donc que 10k − (−1)k = 11q.
Alors 10k+1 − (−1)k+1 = 10(10k)− (−1)k(−1) = 10[11q + (−1)k] + (−1)k = 10 × 11q +
11(−1)k = 11[10q + (−1)k] = 11q′ où q′ = 10q + (−1)k est un entier car (−1)k est un
entier qui vaut soit 1 soit −1 et 10q est un entier relatif car q est un entier relatif.

3. Conclusion pr est initialisé en 0 et pr est héréditaire donc pr est vraie pour tout entier
naturel n

7.14 Inégalité

Démontrer par récurrence que pour tout entier naturel n ≥ 3 que n2 > 2n + 1

7.14.1 Corrigé

1. Etape 1 : initialisation
A-t-on pr(3) ? c’est-à-dire a-t-on 32 > 2(3) + 1? c’est-à-dire a-t-on 9 > 7? Oui, par consé-
quent pr(3) est vraie.

2. Etape 2 : hérédité
Soit un certain entier k ≥ 3. A-t-on pr(k) =⇒ pr(k + 1) ?
c’est-à-dire a-t-on n2 > 2n + 1 =⇒ (n + 1)2 > 2(n + 1) + 1
Supposons donc que n2 > 2n + 1.
Alors (n + 1)2 = n2 + 2n + 1.
Comme n2 > 2n + 1 alors (n + 1)2 > 2n + 1 + 2n + 1 .
Or n ≥ 3 donc 2n ≥ 6 donc 2n > 1 donc 1 + 2n + 1 > 1 + 1 + 1 .
Par conséquent 2n + 1 + 2n + 1 > 2n + 3 donc (n + 1)2 > 2n + 3 CQFD.

3. Conclusion pr est initialisé en 3 et pr est héréditaire donc pr est vraie pour tout entier
naturel n ≥ 3
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7.15 Graphe orienté

Son considère n villes A1, A2, · · · , An où n ≥ 2.
On suppose qu’entre deux villes quelconques, il y a toujours une route à sens unique.
Démontrer par récurrence que pour tout entier naturel n ≥ 2 il existe toujours au moins une
ville notée Cn parmi ces n villes à laquelle on peut aller en partant de toutes les autres villes ,
soit à l’aide d’un chemin direct, soit en visitant une seule ville intermédiaire.

7.15.1 corrigé

Soit pr la propriété recherchée.

1. Etape 1 : initialisation
A-t-on pr(2) ? oui car entre 2 villes A1 et A2 il y a deux cas possibles :
• ou bien le chemin va de A1 vers A2 donc C2 = A2
• ou bien le chemin va de A2 vers A1 donc C2 = A1

2. Etape 2 : hérédité
Soit un certain entier n ≥ 2. Supposons donc qu’il existe toujours au moins une ville
notée Cn parmi n villes à laquelle on peut aller en partant de toutes les autres villes , soit
à l’aide d’un chemin direct, soit en visitant une seule ville intermédiaire.
Considérons une ville supplémentaire An+1 Il y a un chemin de An+1 vers Cn
• ou bien le chemin va de An+1 vers Cn donc Cn+1 = Cn

• ou bien le chemin va de Cn vers An+1 donc Cn+1 = An+1

CQFD.

3. Conclusion pr est initialisé en 2 et pr est héréditaire donc pr est vraie pour tout entier
naturel n ≥ 2
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7.16 Suite de Fibonacci alias Léonard de Pise

Soit une suite (un) définie par :
• u1 = 1
• u2 = 1
• ∀n entier ≥ 3 un = un−1 + un−2

1. Résoudre l’équation d’inconnue x réelle : x2 = x + 1.
On note Φ la solution positive et Ψ l’autre solution.

2. Démontrer par une récurrence double que pour tout entier naturel n :

un =
1√
5
(Φn − Ψn) Formule de BINET

Corrigé :

1. Soit l’équation : x2 − x − 1 = 0 d’inconnue réelle x.
(a) Le discriminant ∆ = b2 − 4ac = (−1)2 − 4(1)(−1) = 5.

Comme ∆ > 0 alors cette équation a deux solutions réelles :

Φ =
1 +

√
5

2
et Ψ =

1 −
√

5
2

(b) Φ + Ψ = − b
a
= 1, ΦΨ =

c
a
= −1 , Φ − Ψ =

1 +
√

5
2

− 1 −
√

5
2

=
√

5

(c) Comme Φ est solution de x2 − x − 1 = 0 alors Φ2 = Φ + 1.
(d) Comme Ψ est solution de x2 − x − 1 = 0 alors Ψ2 = Ψ + 1.

2. Démontrer par récurrence que pour tout entier naturel n :

un =
1√
5
(Φn − Ψn)

(a) Initialisation double : La propriété recherchée est vraie pour les deux premières va-
leurs :

1√
5
(Φ1 − Ψ1) =

1√
5
(Φ − Ψ) =

1√
5

√
5 = 1 = u1

1√
5
(Φ2 − Ψ2) =

1√
5
((Φ + 1)− (Ψ + 1)) =

1√
5
(Φ − Ψ) = 1 = u2

(b) Hérédité : supposons que pour un certain entier k ≥ 1 l’on a :

uk =
1√
5
(Φk − Ψk) et uk+1 =

1√
5
(Φk+1 − Ψk+1)

alors uk+2 = uk + uk+1 =
1√
5
(Φk − Ψk) +

1√
5
(Φk+1 − Ψk+1)

donc uk+2 =
1√
5
((Φk + Φk+1)− (Ψk + Ψk+1)) =

1√
5
((Φk(1 + Φ)− Ψk(1 + Ψ))

Or 1 + Φ = Φ2 et 1 + Ψ = Ψ2 donc uk+2 =
1√
5
(Φk+2 − Ψk+2)

(c) On a démontré par récurrence que pour tout entier naturel n ≥ 1 l’on a :

un =
1√
5
(Φn − Ψn)
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7.17 Puissance d’une matrice

Soit la matrice A =

(
1 1
0 1

)
.

Démontrer par récurrence que pour tout entier naturel n ̸= 0 l’on a :

An =

(
1 n
0 1

)

7.17.1 corrigé

Notons pr(n) : ”An =

(
1 n
0 1

)
1. Initialisation :

A1 = A =

(
1 1
0 1

)
donc la propriété pr est initialisée en n = 1

2. Hérédité :

Supposons que pour un certain n ∈ N∗ l’on ait pr(n) alors An =

(
1 n
0 1

)
Par conséquent, An+1 = AAn =

(
1 1
0 1

)(
1 n
0 1

)
=

(
1 n + 1
0 1

)
donc pr(n + 1) est

vraie.

3. Conclusion :
pr est initialisé en 1 et pr est héréditaire donc pr est vraie pour tout entier naturel n ∈ N∗
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7.18 Formule du binôme de Newton(1642-1727)

Soient a et b des nombres réels donc ab = ba. Alors :

∀n ∈ N (a + b)n =
n

∑
i=0

(
n
i

)
ai bn−i

Or
(

n
p

)
=

(
n

n − p

)
donc

∀n ∈ N (a + b)n =
n

∑
j=0

(
n
j

)
an−j bj

en effectuant le changement d’indice j = n − i

7.18.1 Corrigé

Notons pr(n) : (a + b)n =
n

∑
i=0

(
n
i

)
ai bn−i.

1. Initialisation : elle est vraie en n = 0 car :

(a + b)0 = 1 =

(
0
0

)
a0 b0−0

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k ≥ 0 c’est-à-dire que :

(a + b)k =
k

∑
i=0

(
k
i

)
ak bn−k

Alors (a + b)k+1 = (a + b)(a + b)k = (a + b)[
k

∑
i=0

(
k
i

)
ak bn−k]

= (a+ b)(
(

k
0

)
a0bk +

(
k
1

)
a1 bk−1 + · · ·+

(
k
i

)
ai bk−i + · · ·+

(
k

k − 1

)
ak−1 b1 +

(
k
k

)
akb0)

= (a + b)(bk +

(
k
1

)
a1 bk−1 + · · ·+

(
k
i

)
ai bk−i + · · ·+

(
k

k − 1

)
ak−1 b1 + ak)

= (abk +

(
k
1

)
a2 bk−1 + · · ·+

(
k
i

)
ai+1 bk−i + · · ·+

(
k

k − 1

)
ak b1 + ak+1

+bk+1 +

(
k
1

)
a1 bk + · · ·+

(
k
i

)
ai bk−i+1 + · · ·+

(
k

k − 1

)
ak−1 b2 + akb)

= bk+1 + abk[

(
k
1

)
+

(
k
0

)
] + a2 bk−1[

(
k
2

)
+

(
k
1

)
] + · · · + ai bk−i+1[

(
k
i

)
+

(
k

i − 1

)
] +

ai+1 bk−i[

(
k
i

)
+

(
k

i + 1

)
] + · · ·+ ak b1[

(
k
k

)
+

(
k

k − 1

)
] + ak+1

= bk+1 + abk
(

k + 1
1

)
+ a2 bk−1

(
k + 1

2

)
+ · · ·+ ai bk−i+1

(
k + 1

i

)
+ ai+1 bk−i

(
k + 1
i + 1

)
+

· · ·+ ak b1
(

k + 1
k

)
+ ak+1

=

(
k + 1

0

)
a0bk+1 + abk

(
k + 1

1

)
+ a2 bk−1

(
k + 1

2

)
+ · · ·+ ai bk−i+1

(
k + 1

i

)
+ ai+1 bk−i

(
k + 1
i + 1

)
+

· · ·+ ak b1
(

k + 1
k

)
+

(
k + 1
k + 1

)
ak+1b0
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3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n ≥ 0

Cette formule est valable pour tous éléments a et b d’un anneau à condition que ces éléments
soient commutables c’est-à-dire que ab = ba.
C’est le cas pour des matrices carrées d’ordre n : A et B à condition d’avoir vérifié que AB =
BA.
Souvent A = I la matrice de l’identité donc IB = B et BI = B donc IB = BI donc

∀n ∈ N (I + B)n =
n

∑
j=0

(
n
j

)
In−j Bj =

n

∑
j=0

(
n
j

)
I Bj =

n

∑
j=0

(
n
j

)
Bj

Si en plus, B est nilpotente par exemple, si B3 = O
donc ∀n ≥ 3 Bn = B3Bn−3 = O d’où

(I + B)n =

(
n
0

)
B0 +

(
n
1

)
B1 +

(
n
2

)
B2 = I + nB +

n(n − 1)
2

B2
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7.19 Formule de Leibniz

Soient des fonctions f et g dérivables indéfiniment sur R. Alors leur produit f g est aussi
indéfiniment dérivable sur R et

∀n ∈ N∗ ( f g)(n) =
n

∑
i=0

(
n
i

)
f (i) g(n−i)

7.19.1 Corrigé

Notons pr(n) : ( f g)(n) = ∑n
i=0

(
n
i

)
f (i) g(n−i).

1. Initialisation : elle est vraie en n = 1 car :

( f g)′ = f g′ + f ′g =

(
1
0

)
f (0) g(1−0) +

(
1
1

)
f (1) g(1−1) =

1

∑
i=0

(
1
i

)
f (i) g(1−i)

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k ≥ 1 c’est-à-dire que :

( f g)(k) =
k

∑
i=0

(
k
i

)
f (i) g(k−i).

Alors ( f g)(k+1) = [( f g)(k)]′ = [
k

∑
i=0

(
k
i

)
f (i) g(k−i)]′ =

k

∑
i=0

[

(
k
i

)
f (i) g(k−i)]′.

=
k

∑
i=0

(
k
i

)
[ f (i) g(k−i)]′ =

k

∑
i=0

[

(
k
i

)
[ f (i+1) g(k−i) + f (i) g(k−i+1)]

=
k

∑
i=0

(
k
i

)
f (i+1) g(k−i) +

k

∑
i=0

(
k
i

)
f (i) g(k−i+1)

=
k+1

∑
j=1

(
k

j − 1

)
f (j) g(k−j+1) +

k

∑
j=0

(
k
j

)
f (j) g(k+1−j) en effectuant le changement d’indice

j = i + 1 dans la première somme et j = i dans la deuxième somme.

Donc ( f g)(k+1) =

(
k
0

)
f (0) g(k+1) +

k

∑
j=1

[

(
k

j − 1

)
+

(
k
j

)
] f (j) g(k+1−j) +

(
k
k

)
f (k+1) g(0)

( f g)(k+1) =

(
k + 1

0

)
f (0) g(k+1) +

k

∑
j=1

(
k + 1

j

)
f (j) g(k+1−j) +

(
k + 1
k + 1

)
f (k+1) g(0)

n+1

∑
i=0

(
n + 1

i

)
f (i) g(n+1−i) donc pr(n + 1) est vraie.

3. Conclusion : pr étant initialisée en 1 et étant héréditaire est donc vraie pour tout entier
naturel n ≥ 1

Applications : On vérifie aisément cette formule sur quelques cas particuliers :

1. ( f g)′ = f ′g + f g′

2. ( f g)′′ = ( f ′g + f g′)′ = f ′′g + f ′g′ + f ′g′ + f g′′ = f ′′g + 2 f ′g′ + f g′′

3. ( f g)(3) = (( f g)′′)′ = f ′′′g+ f ′′g′+ 2 f ′′g′+ 2 f ′g′′+ f ′g′′+ f g′′′ = f ′′′g+ 3 f ′′g′+ 3 f ′g′′+
f g′′′
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7.20 Factorisation de an − bn

1. Soient a et b des réels.
Démontrer par récurrence que pour tout entier n ≥ 2 l’on a :
an − bn = (a − b)(an−1 + an−2b + an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1)
Indication : pour l’hérédité, on pourra utiliser l’astuce suivante :
ak+1 − bk+1 = aak − abk + abk − bbk

2. En déduire une factorisation de 1 − xn pour tout entier n ≥ 2

3. Soit un entier n ≥ 2 , soient la fonction numérique f d’une variable réelle définie par
f (x) = 1 + x + x2 + · · ·+ xn

et la fonction numérique g définie par
g(x) = 1 + 2x + 3x2 + · · ·+ nxn−1

(a) Quel est l’ensemble de définition de f ? Quel est l’ensemble de définition de g ?

(b) Si l’on suppose que x = 1, que vaut f (x) et que vaut g(x) ?

(c) Si l’on suppose que x ̸= 1 :
• Déterminer une expression simplifiée de f (x) sous forme d’un quotient.
• Déterminer une expression simplifiée de g(x) sous forme d’un quotient.
• En utilisant le produit x f (x) retrouver l’expression simplifiée de f (x)

7.20.1 Corrigé

1. Soient a et b des réels.
Démontrer par récurrence que pour tout entier n ≥ 2 l’on a :
an − bn = (a − b)(an−1 + an−2b + an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1)

• Etape 1 : pour n = 2, comme a2 − b2 = (a − b)(a + b) alors la propriété est vraie au
rang n = 2

• Etape 2 : soit un entier n ≥ 2 tel que l’on a :
an − bn = (a − b)(an−1 + an−2b + an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1)
Alors an+1 − bn+1 = aan − abn + abn − bbn = a(an − bn) + (a − b)bn

= a(a − b)(an−1 + an−2b + an−3b2 + · · ·+ a2bn−3 + abn−2 + bn−1) + (a − b)bn

= (a − b)(an + an−1b + an−2b2 + · · ·+ a3bn−3 + a2bn−2 + abn−1) + (a − b)bn

= (a − b)(an + an−1b + an−2b2 + · · ·+ a3bn−3 + a2bn−2 + abn−1 + bn)
donc la propriété est vraie au rang n + 1

• La propriété étant initialisée en 2 et étant héréditaire est donc vraie pour tout entier
n ≥ 2

2. En déduire une factorisation de 1 − xn pour tout entier n ≥ 2
On en déduit en posant a = 1 et b = x et étant tenant compte du fait que ∀k 1k = 1
1 − xn = (1 − x)(1 + x + x2 + · · ·+ xn−3 + xn−2 + xn−1)

3. Soit un entier n ≥ 2 , soient la fonction numérique f d’une variable réelle définie par
f (x) = 1 + x + x2 + · · ·+ xn

et la fonction numérique g définie par
g(x) = 1 + 2x + 3x2 + · · ·+ nxn−1

(a) Quel est l’ensemble de définition de f ? Quel est l’ensemble de définition de g ?
f est une fonction polynôme de degré n donc est définie sur R

g est une fonction polynôme de degré n − 1 donc est définie sur R
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(b) Si l’on suppose que x = 1, que vaut f (x) et que vaut g(x) ?
f (1) = 1 + 11 + 12 + · · ·+ 1n = 1 + 1 + · · ·+ 1 = n + 1

g(1) = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

(c) Si l’on suppose que x ̸= 1 :
• Déterminer une expression simplifiée de f (x) sous forme d’un quotient.

Comme 1 − xn = (1 − x)(1 + x + x2 + · · ·+ xn−3 + xn−2 + xn−1) alors
1 − xn+1 = (1 − x)(1 + x + x2 + · · ·+ xn−3 + xn−2 + xn−1 + xn)

f (x) =
1 − xn+1

1 − x
car x ̸= 1

• Déterminer une expression simplifiée de g(x) sous forme d’un quotient.
Comme f est une fonction polynôme de degré n alors f est dérivable sur R et

f ′(x) = g(x) donc g(x) =
−(n + 1)xn(1 − x)− (−1)(1 − xn+1)

(1 − x)2

En simplifiant g(x) =
xn(−n − 1 + nx) + 1

(1 − x)2

• En utilisant le produit x f (x) retrouver l’expression simplifiée de f (x)
f (x) = 1 + x + x2 + · · ·+ xn

x f (x) = x + x2 + x3 + · · ·+ xn + xn+1

donc f (x)− x f (x) = 1− xn+1 d’où f (x)(1− x) = 1− xn+1 donc f (x) =
1 − xn+1

1 − x
car x ̸= 1
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7.21 Exponentielle

Soit un réel x ≥ 0.
Démontrer par récurrence que

∀n ∈ N
n

∑
k=0

xk

k!
≤ ex

7.21.1 Corrigé

Notons pr(n) : ”∀n ∈ N
n

∑
k=0

xk

k!
≤ ex”

1. Etape 1 : Initialisation en n = 0 :

A-t-on pr(0) ? c’est-à-dire a-t-on ∀n ∈ N
0

∑
k=0

xk

k!
≤ ex ? c’est-à-dire a-t-on

x0

0!
≤ ex c’est-

à-dire a-t-on 1 ≤ ex ?
oui car comme x ≥ 0 alors exp étant une fonction croissante alors exp(x) ≥ exp(0) donc
ex ≥ 1.
La propriété est vraie au rang n = 0

2. Etape 2 : Hérédité :
Soit un entier n ≥ 0 .

Supposons que pr(n) est vraie c’est-à-dire que
n

∑
k=0

xk

k!
≤ ex.

Démontrons que pr(n + 1) est vraie c’est-à-dire que
n+1

∑
k=0

xk

k!
≤ ex.

Notons Pn(x) =
n

∑
k=0

xk

k!
alors Pn+1(x) =

n+1

∑
k=0

xk

k!
P′

n+1(x) = [
n+1

∑
k=0

xk

k!
]′ =

n+1

∑
k=0

[
xk

k!
]′ =

n+1

∑
k=0

k
xk−1

k!

P′
n+1(x) =

n+1

∑
k=1

k
xk−1

k!
=

n+1

∑
k=1

xk−1

(k − 1)!
=

n

∑
j=0

xj

j!
en posant j = k − 1

D’après l’hypothèse de récurrence :
n

∑
k=0

xk

k!
≤ ex donc P′

n+1(x) ≤ ex

Posons f (x) = Pn+1(x)− ex alors f ′(x) = P′
n+1 − ex ≤ 0 d’où

x 0 +∞
f ′(x) −

0
f (x) ↘

car f (0) = Pn+1(0)− e0 = 1 − 1 = 0.
Par conséquent, f (x) ≤ 0 donc Pn+1 ≤ ex donc pr(n + 1) est vraie.

3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n ≥ 0
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7.22 Récurrence forte

Soit une suite (un) définie sur N par u0 = 1 et ∀n ∈ N un+1 =
n

∑
i=0

2n−iui

1. Déterminer les valeurs de u1 ; u2 et u3

2. Démontrer par une récurrence forte que ∀n ∈ N∗ un = 3n−1

7.22.1 Corrigé

1. u0 = 1; u1 = u0+1 =
0

∑
i=0

20−iui = 20−0u0 = 1 = 31−1

2. u2 = u1+1 =
1

∑
i=0

21−iui = 21−0u0 + 21−1u1 = 21(1) + 20(1) = 3 = 32−1

3. u3 = u2+1 =
2

∑
i=0

22−iui = 22−0u0 + 22−1u1 + 22−2u2 = 22(1) + 21(1) + 20(3) = 4 + 2 + 3 = 9 = 33−1

4. Soit n ∈ N∗. Posons pr(n) : ”un = 3n−1”
• Initialisation : Cette propriété est vraie au rang 1 car u1 = 1 = 31−1

• Hérédité Soit un certain entier n ≥ 1 supposons que pr(i) est vraie pour tout entier
1 ≤ i ≤ n c’est-à-dire que pour tout entier 1 ≤ i ≤ n l’on a : ui = 3i−1.

Alors un+1 =
n

∑
i=0

2n−iui

un+1 = 2n−0u0 + 2n−1u1 + 2n−2u2 + · · ·+ 2n−(n−1)un−1−1 + 2n−nun
un+1 = 2n−0 + 2n−131−1 + 2n−232−1 + · · ·+ 2n−(n−1)3n−1−1 + 2n−n3n−1

Or 2n−130 + 2n−231 + · · · + 213n−2 + 203n−1 est la somme de n termes consécutifs

d’une suite géométrique de premier terme 2n−1 et de raison q =
3
2

donc un+1 = 2n + 2n−1
1 −

(
3
2

)n

1 − 3
2

Par conséquent, un+1 = 2n + 2n−1
1 −

(
3
2

)n

−1
2

un+1 = 2n + 2n−1

(
3
2

)n
− 1

1
2

un+1 = 2n + 2n 3n − 2n

2n = 2n + 3n − 2n = 3n. CQFD

• pr est initialisée en 1 et est héréditaire donc est vraie pour tout n ∈ N∗
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