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"On résoud les problémes qu’on se pose et non les problémes qui se posent”
Henri Poincaré

En sciences, deux facons de raisonner : - I'induction - la déduction

1 Leraisonnement par déduction
1.1 Définition

La déduction serait le procédé de I’esprit qui va du général au particulier.

Le raisonnement déductif consiste a prouver une implication du type H = C
H désigne les hypotheses et C la ou les conclusion(s).

Comment faire? on procede par un chainage de déductions logiques :
H=C=>G=C---=(C,=C

Comment fait-on pour trouver ce chainage : de 2 facons :

1. soit par analyse-synthése : on cherche a satisfaire le but C pour cela on cherche C,
qui permet de satisfaire C puis on cherche C,_; qui permet de satisfaire C;, . On re-
monte ainsi jusqu’a H. Cette étape s’appelle I'analyse. Puis on redescend : H = C; =
C--=C=>C,=>C
Cette deuxieme étape obligatoire s’appelle la synthése.

2. soit par synthese directement :
H=C=G=GCG --=C=C




1.2 Exercice

Démontrer que

+ + X _ _
Vxe R™ VyeR Tty x+y:>x y

1.21 Corrigé

X ¥ X y

= _— _ —

1+y x+y 1+y x+y

x(1+x)—y(1+y)

(1+y)(1+x)

= x(1+x)—y(l+y)=0=x+22—y—y> =0

=2y +x-y=0= (x—y)(x+y)+(x—y) =0

= (x—y)x+y+1]=0=x—y=00ux+y+1+0

= x—y=0carx+y+1#0puisquex+y+1>1carx >0ety >0

1.2.2 Corrigé
Y

x . Faeali b
Supposons que T4y = ¥ y alors en utilisant 1’égalité des termes moyen et des termes ex-
trémes, on obtient :

1.3 Exercice

Soit f est une fonction numérique dérivable sur un intervalle ouvert I centré en 0.
1. Démontrer que si f est paire alors sa fonction dérivée f’ est impaire.
2. Démontrer que si f est impaire alors sa fonction dérivée f’ est paire.
Indication :
* Siu est dérivable sur un intervalle [
e Siu<I>C]

¢ Si v est dérivable sur l'intervalle |
alors v o uestdérivablesur [ etVx € I (v o u)'(x) = u/(x) v'(u(x))

1.3.1 Corrigé

1. Supposons que f est paire.

(a) Soitla fonction x — g(x) = f(—x) alors g est la composée de x — —x et de f.
* x — —x est dérivable sur I
* Lorsque x € Ialors —x € I
* f estdérivable sur |
Alors g est dérivable sur I et ¢’(x) = —1(f'(—x))
(b) Mais comme g(x) = f(x) puisque f(—x) = f(x) car f est paire alors ¢’(x) = f'(x)
(c) Par conséquent, Vx € Tona: —x € [et f'(—x) = —f/(x)
donc f’ est impaire.

2. Supposons que f est impaire.



(a) Soit la fonction x — g(x) = f(—x) alors g est la composée de x — —x et de f.
* x +— —x est dérivable sur I
* Lorsque x € [alors —x € I
e f estdérivable sur I
Alors g est dérivable sur I et ¢'(x) = —1(f'(—x))

(b) Mais comme g(x) = —f(x) puisque f(—x) = —f(x) car f impaire alors g'(x) =
—f'(x)

(c) Par conséquent, Vx € Tona: —x € I et f'(—x) = f'(x)

donc f’ est paire.

1.4 Conjectures forte et faible de Christian GOLDBACH - Allemagne - 1742

Soit la proposition p : "tout entier pair strictement supérieur a 4 est la somme de 2 entiers
premiers”. C’est ce que 1'on appelle la conjecture forte de GOLDBACH.

Par exemple: 8 =5+43;12=5+7.

Soit la proposition q : "tout entier impair strictement supérieur a 7 est la somme de 3 entiers
premiers”. C’est ce que l'on appelle la conjecture faible de GOLDBACH.

Par exemple:15=7+543

On ne sait pas pour l'instant si la proposition p (appelée conjecture forte de GOLDBACH) est
vraie.

En 2013, Harald HELFGOTT ( mathématicien péruvien né en 1977) a réussi a démontrer une
version « faible » de la conjecture de Goldbach.

Par contre, on sait démontrer facilement que la conjecture forte implique la conjecture faible :
I'implication ( p = g) est vraie en supposant que p est vraie.

1. Démontrer que (p = q) est vraie c’est-a-dire que si tout entier pair supérieur a 4 est
somme de 2 entiers premiers alors tout entier impair supérieur a 7 est somme de 3
entiers premiers.

2. On ne sait pas si p appelée la conjecture de Goldbach est vraie. Que peut-on alors dire
deg?

141 Corrigé

Supposons que la proposition p : "tout entier pair strictement supérieur a 4 est la somme de 2
entiers premiers” est vraie.

Soit un entier n impair tel que n > 7. Donc n = 2k + 3 et n > 7 donc 2k + 3 > 7 donc 2k > 4.
Or d’apres p : tout entier pair strictement supérieur a 4 est la somme de 2 entiers premiers donc
2k = p1 + p2 ol p;1 et pp sont premiers.

Onadoncn =2k+3 = p; + p2 + 3. CQFD. Donc g est vraie.

Par conséquent, l'implication ( p = ¢) est vraie. Mais 1’on ne sait pas pour l'instant si g est
vraie.



1.5 La contraposition

On peut au lieu de démontrer que p = g démontrer tout simplement sa contraposée :
non(q) == non(p) car ces deux propositions p = q et non(q) = non(p) sont logiquement
équivalentes.

1.5.1 Utilisation de la contraposition

1.5.2

o Ul A W N R

. Démontrer que si un entier 1 est pair alors son carré n? est pair
. Démontrer que si un entier 7 est impair alors son carré n? est impair

. En déduire du 1°) que si n? est impair alors n est impair

En déduire du 2°) que si n? est pair alors 1 est pair

. Compléter n pair <= ---
. Compléter n impair <= ---

Corrigé

. Soit n entier pair alors 3k € IN tel que n = 2k

donc n? = (2k)? = 4k? = 2(2k?) = 2k’ ot k' = 2k? est un entier naturel donc 1? est pair

Soit n entier impair alors 3k € N tel que n = 2k + 1

donc n? = (2k +1)% = 4k?> + 4k +1 = 2(2k?> +2k) +1 = 2k’ + 1 ot k' = 2k? + 2k est un
entier naturel donc % est impair.

D’apreés la question 1 on a n pair = n? pair

donc par contraposition on a n? impair = n impair

D’apres la question 2 on a 7 impair = n? impair

donc par contraposition on a n? pair = n pair

Comme 7 pair = n? pair et n> pair = n pair alors
npair <= n? pair
Comme 7 impair = n? impair et n* impair = n impair alors

2

nimpair <= n° impair



2 Leraisonnement par disjonction de cas
2.1 Exercice
I Soient a et b des réels. Démontrer que si ab = 0 alorsa = 0ou b = 0

211 Corrigé

Supposons ab = 0.
1. oua = 0 CQFD.
2. oua #0

1
On peut alors diviser les deux membres de ab = 0 par —

Donc aa—b = g d’ou b = 0. CQFD

2.2 Exercice
I Démontrer que pour tout entier naturel # on a n? + 3n est un entier pair.

221 Corrigé

® oubien n est pairdonc 3k € N n =2k
alors n% + 3n = (2k)? + 3(2k) = 4k? + 6k = 2(2k? + 3k) de la fome 2k’ ot k' € N

¢ oubien n estimpair donc 3k € N 7 =2k +1
alors n> +3n = (2k+1)2 +3(2k +1) = 4k?> + 4k + 1+ 6k + 3 = 2(2k*> + 5k +2) de la
fome 2k’ ou k' € N

2.3 Exercice

I Démontrer que le carré d’un entier naturel a la méme parité que cet entier.

2.3.1 Corrigé

Soit n € IN.
* oubien n est pairdonc Gk € N n =2k
alors n? = (2k)? = 4k*> = 2(2k?) de la fome 2k’ ot k' = 2k*> € N
* oubienn estimpairdonc3k € N n =2k+1
alors n? = (2k +1)? = 4k?> + 4k +1 = 2(2k* 4+ 2k) + 1) de la fome 2k’ + 1 ot k' =
2k*+2€N



2.4 Exercice
I Démontrer que pour tout entier naturel 1, 'entier A = n(n — 5)(n + 5) est divisible par 3.

241 Corrigé

Soit n € IN.
Pour cela, on distingue trois cas selon les valeurs possibles 0,1 ou 2 du reste r de la division de
n par 3.
e oubiendk e N n =3k
alors A = n(n —5)(n+5) = 3k(3k — 5)(3k + 5) de la forme 3k’ ou k' = k(3k — 5)(3k +5)
e oubiendkeIN n=3k+1
alorsA =n(n—>5)(n+5) = (3k+1)(3k+1—5)(3k+1+5) = (3k+1)(3k—4)(3k+6) =
(3k 4+ 1)(3k — 4)3(k + 2) de la forme 3k’ ou k' = (3k +1)(3k — 4)(k +2)
e oubiendkeIN n=23k+2
A=n(n—-5)(n+5) = Bk+2)(8k+2—-5)(3k+2+5) = (3k+2)(3k—3)(3k+7) =
(3k +2)3(k —1)(3k +2 4 5) de la forme 3k’ ou k' = (3k +2)(k — 1)(3k + 7)

2.5
I Démontrer que Vn € N N = n(n+1)(2n + 1) est un multiple de 3.

Pour cela, on distingue trois cas selon les valeurs possibles 0,1 ou 2 du reste r de la division de
n par 3.

1. oubienr =0
Par conséquent, 3k € N n = 3k
N = 3k(3k+1)(2(3k) +1) = 3[k(3k + 1) (6k +1)].
N est bien un multiple de 3
2. oubienr =1
Par conséquent, 3k € N n =3k+1
N = (8k+1)(Bk+1+1)(2(3k+1)+1) = (8k +1)(3k +2)(6k +3)
N =3[(3k+1)(3k +2)(2k +1)]
N est bien un multiple de 3
3. oubienr =2
Par conséquent, 3k e N n =3k+2
N = (3k+2)(8k+2+1)(2(3k+2) +1) = (3k+2)(3k + 3)(6k +5)
N =3[(3k+2)(k+1)(6k + 5)]
N est bien un multiple de 3

On conclut par disjonction des cas que la propriété est vraie pour tout entier naturel n.



2.6 Exercice

Soient a et b des réels.

3 2 _
1. Déterminer lim B LB e

X—+00 x—1
ax3 +bx2+x—1
2. Déterminer lim
x—1 x—1
2.6.1 Corrigé
1. e oua#0
3 4 py2 1 3
o oua>0 lim ax” + bx” +x = lim &:hm ax? = 4o
x—+00 x—1 x—+oo X x— 400
a4+l +x—1 o oax® ) 5
ooua<0 lim = lim — = lim ax* = —c
x—+oo x—1 x—+oo X x—+00
e oua=20
© oubienb # 0
3 2 2
ax® +bxc+x—1 bx
*oub>0 lim * * = lim — = lim bx = 4o
x—+00 x—1 x—4o0 X x—400
3 4+ bx? -1 bx?
* oub <0 lim ax” + bx” 4 x zlimizlim bx = —o0
x——+o0 x—1 X——+oo X X—>+00

o oubienb =0

Cooaxd bl +x—1 |
lim = lim =1
x—r+o0 x—1 x—+oo x — 1
3 2 -1
2. Déterminons lim ax” +bx” +x
x—1 x—1

(a) Posons N(x) = ax®+bx?>+x—1etD(x) = x — 1. Alors lirri N(x)=a+bet lin} D(x)=0
X— X—r
(b) oubiena+b =0

* Parla méthode directe on aboutit a une indétermination du type g car hn% N(x)=0
xX—

etlim D(x) =0
x—1

* Nous pouvons lever cette indétermination en remarquant que a = —b d’oit
3 2 2 2
ax’ —ax*+x—1 ax*(x—1)+x—-1 (x—1)(ax*+1)
fx) = x—1 - x—1 - x—1 = +1

donc lim f(x) =a+1
x—1

(c) oubiena+b #0

i. oubiena+b >0
e lim N(x)=a+bet lim D(x) =07

x—1+ x—1+
donc lim f(x) = 4o
x—1+
e lim N(x)=a+bet lim D(x) =0"
x—1- x—1-
donc lim f(x) = —oc0
x—1"

ii. oubiena+b <0



e lim N(x)=a+bet lim D(x) =07

x—1+ x—1+
donc lim f(x) = —c0
x—1+
e lim N(x)=a+bet lim D(x) =0"
x—1~ x—1"

donc lim f(x) = +oco
x—1-

2.7 Fonction 1—-lipschitzienne sur [0 ;1]

Soit f une fonction numérique d’une variable réelle définie sur [0; 1] et vérifiant les propriétés
suivantes :

{ f(0) = £(1)
Vx1 € [0;1] Vxp € [0;1] ottxg # x2 |f(x1) — f(x2| < [x1 — %2

NI —

Démontrer que Vx; € [0;1] Vxp € [0;1]avec0 < x3 <xp <1 ona l|f(x1) — f(x2)]| <

2.7.1 Démonstration
Soientx; € [0;1] etxp € [0;1] avec0 < x7 < xp < 1.
De deux choses 'une :

® oubien| x; —x1 [< =.0r| f(x1) — f(x2 |<| x1 —x2 | donc | f(x1) — f(x2 |< %.CQFD.

N =N =

e oubien | x; —x1 |>
. 1
Cela veut dire que x; — x1 < —5 ouxy; — x| > 5

Mais comme x, > x; alors il ne reste qu'un seul cas x, — x1 >

N =

D’apres l'inégalité triangulaire, on obtient :

| f(x1) = flxa [<] f(x1) = £(0) | + ] f(O) = fF(1) | + [ f(1) = f(x2) |
d'ott| f(x1) = f(x2 [<|x1 =0 [+ [0+ |1 —x |

Donc [f(x1) — f(x2)| <x14+1—x

Orx;, —x; > idonchle—i—Ed’oﬂ—ng—xl—i.

Par conséquent, x1 +1 —xp < x1+1—2x1 — 5

Done |f(x1) — f(xa| < % CQFD.



3 Le raisonnement par 1’absurde

Pour démontrer que p = ¢ est vraie et comme 1'on sait que p = g équivaut a non(p) ou g on
va supposer que p et non(q) est vrai .On aboutit & une contradiction donc p et non(q) est faux
donc sa négation non(p) ou q est vraie donc p = g est vraie.

3.1 Exercice
I Si (D) et (D') sont des droites paralleles et si (D”) coupe (D) alors (D”) coupe (D’)

3.1.1 Corrigé

Supposons que (D”) ne coupe pas (D’) alors (D”) est parallele a (D’). Or (D’) est parallele a
(D).

Par transitivité du parallelisme on a (D) et (D”) paralleles. On aboutit & une contradiction car
(D”) coupe (D) .

Donc la supposition (D”) ne coupe pas (D’) est fausse d’ot1 (D”) coupe (D’). CQFD.

3.2 /2 estirrationnel

. Démontrer que si un entier 1 est pair alors son carré n? est pair

. Démontrer que si un entier 7 est impair alors son carré n? est impair
. En déduire du 1°) que si n? est impair alors n est impair

En déduire du 2°) que si n? est pair alors 7 est pair

Compléter n pair <= ---

. Compléter n impair <= ---

N o U W N e

. Démontrer par l'absurde que /2 est un nombre irrationnel (c’est-a- dire ne peut se

mettre sous la forme g oll p est un entier relatif et g un entier relatif non nul).

3.21 Corrigé
1. Soit n entier pair alors 3k € IN tel que n = 2k
donc n? = (2k)? = 4k? = 2(2k?) = 2k’ ot k' = 2k? est un entier naturel donc 1? est pair

2. Soit n entier impair alors 3k € IN tel que n =2k 41
donc n? = (2k +1)% = 4k? + 4k +1 = 2(2k?> +2k) +1 = 2k’ + 1 ot k' = 2k? + 2k est un
entier naturel donc % est impair.

3. D’aprés la question 1 on a n pair = n? pair
donc par contraposition on a n? impair == n impair

4. D’apres la question 2 on a n impair = n? impair
donc par contraposition on a n? pair = n pair

5. Comme 7 pair = n? pair et n? pair = n pair alors

npair <= n? pair



6. Comme 7 impair = n? impair et n? impair = n impair alors

2

nimpair <= n°impair

2
7. Supposons que v/2 = P irreductible avec peNetge N*donc2 = %
Par conséquent p? = 24% donc p? est pair donc p est pair d’ott Fk € IN tel que p = 2k.
Comme p? = 242 alors (2k)? = 24°.
On en déduit que g% = 2k* donc g2 est pair d’ott Ik’ € N tel que g = 2k’
p 2k

Mais alors la fraction 7 = = — est réductible. Contradiction. Donc I'hypothese

2k K
V2 € Q est fausse.

10



3.3 Les racines carrées d’un nombre premier sont des irrationnels

I Démontrer que si p est un entier naturel premier alors ,/p est un irrationnel.

3.3.1 Corrigé

Raisonnons par I’absurde. supposons que ,/p est un nombre rationnel.

n
Al * ==
orsdnecZ 3JdeN VP 7
n2
Par conséquent, p = = donc pd? = n?.

Or tout entier naturel est décomposable en produits d’entiers premiers ce qui est le cas de d° et
de n2.

L'exposant de I'entier premier p dans les entiers n? et dans d? est pair .

Mais alors l'exposant de I'entier premier p dans I'entier pd? est impair alors que cet exposant
est pair dans 1. Ce n’est pas possible car pd? = n?.

Par conséquent, /p ne peut étre un nombre rationnel. c’est donc un nombre irrationnel.

11



3.4 Exercice

On veut résoudre le probléme suivant :

In>3 Ixyz)eZ +y*+z22=-1 (mod2")

1. Montrer qu’il n’y a pas de solution pour n = 3
2. On considere le cas n > 3

(a) Montrer d’abord que si (x,y,z) était solution de ce probleme alors ou bien x,y et

z seraient tous trois impairs ou bien deux d’entre eux seraient pairs et le troisieme
impair.

(b) Montrer que si deux d’entre eux seraient pairs et le troisiéme impair alors on aboutit

aussi a une contradiction.

(c) Montrer que si x, y et z seraient tous trois impairs alors on aboutit & une contradic-

tion.

3. Conclure qu’il n’y a pas de solution au probleme posé.

3.4.1 Démonstration

1. Soitn =3

2.

® ou bien x, y et z sont impairs :

alors x> +y? +22 = (2a+1)2+ (2b+ 1)+ (2c+ 1)> =4(a®> +a+ b2+ b+ +c) +
3=4(a(a+1)+bb+1)+c(c+1))+3

Or le produit de 2 entiers consécutifs est pair ce qui est le cas de a(a +1); b(b+1);
cc+1).

Donc x? + y? + z? = 8k + 3 donc x? + y? + 2% = 3 (mod 23). Or 3 = —5 (mod 2%)
donc pas de solution au probléme posé pour n = 3

ou bien deux d’entre eux x, y sont impairs et z pair :

alors x> +y> +22 = (20 +1)2+ (2b +1)>+ (20)> = 4(a®> +a+ B> +b+?) +3 =
4(ala+1)+b(b+1)+c)+2

ou bien un seul est impair x et les deux autres y, z sont impairs :

alors x> + y> + 22 = (2a+1)2 + (2b)> + (2¢)> = 4(@® +a+b* +c*) +1 = 4(a(a +
1) +b2+c?)+1

ou bien les trois sont pairs :

alors x? + y? + z2 = (2a)? + (2b)% + (2¢)? = 4(a® + b* + ¢?)

3. Supposons qu'il existe n > 3 pour lequel x> + 1> +z2 = —1 (mod 2") aurait une solution

alors on aurait x> + y? +2z> = k2" —1donc x> + > + 22+ 1 =k2". Or x> + y> + 2> =3
(mod 8) donc x? + y2 + z? = 87 + 3 donc k2" = 87 + 3 impossible car k2" est pair et
8g + 3 est impair.

12



3.5 Un mix d’absurde et de disjonction de cas
I Démontrer que v/2 n’est pas un nombre décimal.

Raisonnons par ’absurde. supposons que /2 est un décimal donc il a un développement déci-

mal fini. Soit x le dernier chiffre de ce développement décimal. On sait que \@2 = 2donc
* ou x = 1 donc le développement décimal de x* se termine par 1 donc il est impossible
d’obtenir 2
* ou x = 2 donc le développement décimal de x* se termine par 4 donc il est impossible
d’obtenir 2
e ou x = 3 donc le développement décimal de x? se termine par 9 donc il est impossible
d’obtenir 2
* ou x = 4 donc le développement décimal de x* se termine par 5 donc il est impossible
d’obtenir 2
¢ ou x = 6 donc le développement décimal de x? se termine par 6 donc il est impossible
d’obtenir 2
e ou x = 7 donc le développement décimal de x? se termine par 9 donc il est impossible
d’obtenir 2
* ou x = 8 donc le développement décimal de x* se termine par 4 donc il est impossible
d’obtenir 2
e ou x = 9 donc le développement décimal de x? se termine par 1 donc il est impossible
d’obtenir 2
Par conséquent, on aboutit a une contradiction donc /2 ne peut étre un nombre décimal.

3.6 Exercice
Soit la suite u,, définie par : ug = 1; u; = cos(3) et pour tout entier n > 2 par u, = 2uju, 1 —

Uy_2.
Démontrer par récurrence que Vi € N 1'on a u, = cos(3n)

13



4 Le raisonnement par équivalence logique

4.1 Equivalence logique directe

41.1 Minimiser MA + MB lorsque A et B de part et d’autre d’une droite ou se trouve M

M D)

I La ligne droite est le plus court chemin : A,B et M sont donc alignés.

14



4.1.2 Pb de Billard : A et B du méme c6té d’une droite ou se trouve M

Une droite (D) partage le plan en deux demi-plans. Soient des points A et B situés dans le
méme demi-plan. On crée un chemin AMB reliant A a B et passant par un point M situé sur
la droite (D).

Ou placer M sur la droite (D) pour que ce chemin AMB soit le plus court possible?

M D)

Construisons le symétrique A’ du point A par rapport a la droite (D).
Comme la symétrie conserve les distances alors AM = A’ M.
Par conséquent ,

Minimiser AM + MB <= Minimiser A’M + MB <= A’, M, B sont alignés.

car la ligne droite est le plus court chemin.

L’idée de base est que le plus court chemin est la ligne droite.

Soit B’ I'image de B par Sp la symétrie orthogonale d’axe (D). Or Sp(M) = M car M € (D).
Or une symétrie orthogonale est une isométrie donc conserve les distances donc MB = MB'.
MA + MB minimum < MA + MB’ minimum < M, A et B’ alignés.

BI



=

BI

Le minimum est réalisé lorsque M € (D) ((AB’) ou encore par analogie lorsque M € (D) "N(A’B)

ou A’ 'image de A par Sp
A
\ / B
i)

E'

AI
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4.1.3 Pb deBillard: AM + MN + NB minimum

Soient (D) et (D’) deux demi-droites de méme, origine. Déterminer la position d'un point M
sur (D) et la position d’un point N sur (D) telles que MA + MN + NB soit minimum.

L’idée de base est toujours la méme : le plus court chemin est la ligne droite.
Soit A’ I'image de A par Sp la symétrie orthogonale d’axe (D). Or Sp(M) = M car M € (D).
Or une symétrie orthogonale est une isométrie donc conserve les distances donc MA = MA'.

Soit B’ I'image de B par Sp/ la symétrie orthogonale d’axe (D).
Or Sp(N) =Ncar N € (D).
Or une symétrie orthogonale est une isométrie donc conserve les distances donc NB = NB'.

MA + MN + MB minimum

(3
A’'M + MN + NB’' minimum

(3
A’, M, N, B' alignés

T
Me (D)Nn(A'B)etN € (D')N(A'B)
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414 Inégalité classique

Démontrer que

1
A IN* — —
ne Vn+ \/ﬁ<2\/H

Vn € IN*
_ 1 (Vn+1—+/n)(Vn+1+/n) 1
24 ””1 _ﬁ<21\/ﬁ(:’ Vel <o
n+1l—n

— Vn4+1+n < 2\n = Vn+1+4n = 2yn

<= 2y/n < V/n+ 1+ +/n car la fonction inverse est décroissante sur R**

— yn<yn+l <<= n<n+l (q) car la fonction racine carrée est croissante sur R**
Comme (p) <= (q) est vraie et que () est vraie alors (p) est vraie . CQFD.

4.1.5 Une autre inégalité classique

Démontrer que

Vxe R VyeR xy <

V(x,y) € R?
x2 +y? 2, 2 2. .2 2
(p): xy< 5 = Yy < x4y = 0<x"+y —2xy <= 0< (x—y)° (9

Comme (p) <= (q) est vraie et que () est vraie alors (p) est vraie . CQFD.
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4.2 Equivalence logique par double implication

Lorsque l'implication p = g et son implication réciproque g = p sont vraies on dira que les
propositions p et g sont équivalentes ou encore que p est une CNS(Condition nécessaire et
suffisante ) de g ce qui s’écrit p < 4.
Il y a des équivalences logiques célebres :
* Le triangle ABC est rectangleen A <+ BC? = AB? + AC? (Egalité de Pythagore)
e [ estle milieu de [AB] si et seulement si IA + IB=0
* Un produit de réels est nul si et seulement si I'un des facteurs est nul
ab=0 <= a=00ub=0
e Deux polyndomes P(x) et Q(x) sont égaux pour tout réel x si et seulement si les coeffi-
cients des mondmes respectifs sont égaux.

4.2.1 Exemple
I Démontrer que 1 est pair <= 12 est pair et que n est impair <= n? est impair .

Corrigé
Soit n € IN.
* oubien n est pairdonc 3k € N n =2k
alors n? = (2k)? = 4k?> = 2(2k?) de la fome 2k’ ot1 k' = 2k*> € N
* oubien 1 estimpairdonc 3k € N n =2k +1
alors n? = (2k +1)? = 4k*> + 4k +1 = 2(2k* +2k) + 1) de la fome 2k’ +1 ot k' =
2k*+2€N
Par conséquent :

Py : 1 est pair = 1 est pair est vraie
donc sa contraposée P, : n? est impair = 7 est impair est vraie
De méme
Ps: n estimpair = n? est impair est vraie
donc sa contraposée Py : n? est pair = n est pair est vraie

* D’apres P; et Pyona
n est pair <= n? est pair

* D’apres P; et P, ona
n est pair <= n? est pair
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Attention aussi dans les résolutions de systémes par addition :

{x+y:6 =2x=28

On perd ici I'équivalence logique. Donc on aura au bout de ce raisonnement S C
{(42)}.

e Il faudra absolument écrire la vérification : le couple (4,2) est solution du systéme car
xX+y=4+2=6etx—y=4-2=2.
On aura alors {(4,2)} C S.

* On pourra alors conclure : Comme S C {(4,2)} et {(4,2)} C Salors S = {(4,2)}.

* Pour conserver 1’équivalence logique tout au long du raisonnement et avoir directe-
ment S = {(4,2)}, il faut utiliser une méthode hybride en conservant une des deux
équations initiales

x+y==6 x+y==6 x+y==6 y=2
{x—y:Z <:>{2x:8 <:>{x:4 T\ x=4

On en déduit directement que S = {(4,2)}

4.2.2 Exemple

Déterminer le réel a tel que la fonction g définie sur R par g(x) = a x cos(x) soit solution de
I'équation différentielle

(E) : Yy’ +y =sin(x)

¢ ¢ estindéfiniment dérivable sur R
e VxeR ¢'(x) =acos(x) —axsin(x)
e VxeR g"(x) = —asin(x) —asin(x) —axcos(x) = —2asin(x) —a x cos(x)
e gestsolutionde (E) < Vx € R g"(x)+ g(x) = sin(x)
< VxeR —2asin(x)—axcos(x)+axcos(x)=sin(x)

<= VxeR —2asin(x) = sin(x) (%)
o Sia= —% alors 2a = —1doncVx € R 2asin(x) = sin(x) donca = —% = (%)
o Si (*) est vraie alors Vx € Rl'ona — 2 asin(x) = sin(x).

Donc cette propriété est vraie pour x = g donc 2a sin (g) = sin (g) donc —2a =1

1

d/ N — _ =
oua 5 1
o Par conséquent, (x) <= a = —3

* On a donc démontré que

gestsolutionde (E): g”(x) +g(x) =sin(x) <= a=—=
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5 Leraisonnement par analogie

Le raisonnement par analogie consiste a raisonner de telle sorte que 'on trouve un lien, une
correspondance, un rapport de sens entre 2 ou plusieurs objets (mots, figures,nombres,signes,...)

5.1 Exercice

Soit un triangle ABC . Soit I le milieu du segment [BC]. Soit H le pied de la hauteur issue de
B et soit K le pied de la hauteur issue de C.
Démontrer que le triangle IKH est isocele.
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6 Le raisonnement par analyse-synthése

"L’analyse et la synthése consistent a démonter et a remonter une machine pour en
connaitre tous les rouages"
Condillac

C’est un type de raisonnement permettant de déterminer 1’existence et I'unicité d’un objet ma-
thématique vérifiant des propriétés données

6.1

Démontrer que toute fonction numérique définie sur R est la somme d’une fonction paire et
d’une fonction impaire.

6.1.1

6.2

Corrigé

Analyse :

Supposons que f = p + i ol1 p est paire et i est impaire. Alors

— Vx e Rl'ona f(x) = p(x) +i(x)

— Or f est paire et i estimpaire alors f(—x) = p(—x) +i(—x) donc f(—x) = p(x) —i(x)

Par conséquent,
{f(X)= (x()+i(X)

Il <

f(=x) = p(x) —i(x)

done pl) = FTSED oy - SO FE0)

Synthese :

Soit f définie sur IR.

— soit p et i définies aussi sur R par p(x) =
— p est paire

— i est impaire

— f=p+i

X+—>+400

I Démontrer que lim In(x) = +oo

6.2.1

Corrigé

¢ analyse : soit A > 0. Supposons 3B > 0 tel que d'une part B > 2" et d’autre part Vx > B

In(x) > A

Comme x > B alors x > 2". Or In est strictement croissante sur |0; +oo[ donc In(x) >
In(2") donc In(x) > n In(2).

Sil'on veut donc que In(x) > A il suffit de prendre n tel que n In(2) > A c’est-a-dire tel

quen>m

A
synthese : soit A > 0. Soit B = 2" ol1 1 est la partie entiere de () + 1. Alors Vx > Bon

aln(x) > Adonc lim In(x) = +oo
X—r+00
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6.3

Soit (K, +, x) un corps commutatif. Par exemple, K = R ou C.
Démontrer que toute matrice carrée M € M,,(K) se décompose de fagon unique en la somme
d’une matrice carrée symétrique et d’une matrice carrée antisymétrique.

Démontrons maintenant par analyse-synthese que M, (R) = S, (R) + A, (R)

1. Analyse:
Supposons que M = S + A ol S est une matrice symétrique (donc /S = S)et A une
matrice antisymétrique (donc YA = —A).
Alors'M = (S+ A) =S+ TA=S5—A.
Comme
M=S+A
IM=S—-A
alors .
S=5(M+ M)
1 t
A=-(M—-"M)
2
2. Synthese :
1 1
Soit M une matrice carrée. Soit S = E(M + M)etA = E(M — M) alors
(@@ M=S+A
t il t 1 t Lo tt Lo
b) 'S="'GM+ M) =7 M+ M) =5(M+ (M) =5(M+M)=S5
donc S est symétrique.
1 1 1 1
(©) A= (5(M~ M) = 2 (M~ M) = 2 (M~ (M) = (M~ M) =-A

donc A est antisymétrique.

3. Exemple :
-2 3 -1 -2 5 1
SoitM=|5 4 —1|alorsiM=|3 4 -3
1 -3 2 -1 -1 2
1 -2 4 0
S=-(M+'M)=|( 4 4 -2 estsymétrique
2
o -2 2
1 0 -1 -1
=-(M—-'™™)=1[1 0 1 | estantisymétrique
2
1 -1 0
S+A=M
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7 Le raisonnement par récurrence
7.1 Axiome d’induction compléte

Soit E une partie de IN vérifiant les deux conditions suivantes :
1.0 E
2.sin€ Ealorsn+1 € E

alors E = IN.

7.2 Théoréme de récurrence faible

Soit Pr une propriété que peut vérifier un entier naturel k (ce que ’on notera Pr(k)) Soit 19 un
entier naturel.

1. Si Pr(ng) est vraie (c’est-a-dire que la propriété Pr est vraie en 1)
2. Sipour tout k entier > 1, I'implication Pr(k) = Pr(k + 1) est vraie (c’est-a-dire que la
propriété est héréditaire )

Alors pour tout n > ng , Pr(n) est vraie .

7.2.1 Démonstration

. On fait cette démonstration dans le cas ot1 ng = 0.
Soit E = {n € N / Pr(n) est vraie }.

1. 0 € E car Pr(0) est vraie.
2. sin € Ealorsn+1 € E puisque Pr(n) = Pr(n+1)

donc d’apres I'axiome d’induction complete, ona: E = IN.
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7.3 Attention!

Il y a deux étapes dans ce type de démonstration.
* Dans l'étape 1, il faut vérifier que la propriété est vraie uniquement en g
* Dans l'étape 2 , en considérant la table de vérité de I'implication logique

pPl9|pP=1
ViV Vv
VI|F F
F|V Vv
F|F Vv

Comme il faut démontrer que I'implication est vraie, on procédera ainsi :

On supposera que pr(k) est vraie (est ce que I'on appelle I'hypothese de récurrence)
et on raisonnera jusqu’a prouver que pr(k + 1) est vraie.

On aura ainsi démontré que 'implication (Pr(k) = Pr(k+ 1)) est vraie

7.4 Théoréme de récurrence double

Soit Pr une propriété que peut vérifier un entier naturel k (ce que ’on notera Pr(k)). Soit ng
un entier naturel.

1. Si Pr(ng) et Pr(ng + 1) sont vraies

2. Sipour tout k entier > ny, I'implication
[Pr(k)et Pr(k+1)] = Pr(k+2)

est vraie (c’est-a-dire que la propriété est doublement héréditaire )

Alors pour tout n > ngy , Pr(n) est vraie .

7.5 Théoréme de récurrence forte

Soit Pr une propriété que peut vérifier un entier naturel k (ce que 1’on notera Pr(k)). Soit g
un entier naturel.

1. Si Pr(ng) est vraie

2. Sipour tout k entier > ny, I'implication
[Pr(ng) et Pr(ng+1) et --- et Pr(k)] = Pr(k+1)

est vraie

Alors pour tout n > ng , Pr(n) est vraie .
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7.6 Cardinal de P(E)

1. Déterminer 1’ensemble des parties de E noté P(E) dans les cas suivants E; = {a};
E, = {a;b}; Ez = {a;b;c}

2. Démontrer par récurrence que si E est un ensemble fini ayant # éléments alors 1'en-
semble P(E) de ses parties a 2" éléments

3. En déduire P(D); P(P(D)); P(P(P(D))); Card(P(P(P(P(D))))

7.6.1 corrigé

1. Pour créer 'ensemble des parties P(E) d’un ensemble E,
* on place d’abord la seule partie a 0 éléments qui est ’ensemble vide @
puis les parties a 1 élément qu’on appelle les singletons,
les parties a 2 éléments qu’on appelle les paires,
celles a 3 éléments

celles a n — 1 éléments
et enfin la seule partie & n éléments, la partie pleine c’est-a-dire 'ensemble E lui-
meéme.
Par conséquent,
e si E; = {a} alors P(E;) = {@; {a}}
* siEy = {a;b} alors Ey = Ey U {b} et P(Ey) = {@;{a}; {b};{a;b}}
e siEz = {a;b;c}alorsEs = EU{c}etP(E) = {@; {a};{b}; {c};{a;b};{a;c};{b;c};{a;b;c}}

On peut donc remarquer que lorsque l'on ajoute un élément rouge a un ensemble E;
, alors ’ensemble des parties du nouvel ensemble E; U {x} est formé de toutes les an-
ciennes parties de E; auxquelles on ajoute de nouvelles parties qui sont en fait formées
des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Donc il y a autant de nouvelles parties ayant ce nouvel élément rouge x que d’anciennes
parties n’ayant pas x.
2. On pose pr(n) :" le nombre de parties d'un ensemble ayant n éléments est 2""
(a) Etape 1 :initialisation
A-t-on pr(0)?
c’est-a-dire a-t-on le nombre de parties d’un ensemble ayant 0 éléments est 2°?
Oui car si Card(E) = 0 c’est que E = @ donc P(E) = P(®) = {@}. P(E) n’a donc
qu’un seul élément.
Par conséquent pr(0) est vraie.
(b) Etape 2 : hérédité
Soit un certain entier k > 0. A-t-on pr(k) = pr(k+1)?
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(@)
~

c’est-a-dire a-t-on le nombre de parties d"un ensemble ayant k éléments est 2¢ =
que le nombre de parties d’un ensemble ayant k + 1 éléments est 2K+1

Supposons que 'hypothése de récurrence suivante " le nombre de parties d'un en-
semble ayant k éléments est 2F " soit vraie.

Soit un ensemble F ayant k + 1 éléments. Isolons un élément x de F . Par conséquent
F=EU{x} ou E a k éléments.

Alors 'ensemble des parties du nouvel ensemble F = E U {x} est formé de toutes
les anciennes parties de E auxquelles on ajoute de nouvelles parties qui sont en fait
formées des anciennes parties auxquelles on ajoute le nouveau élément rouge {x}.
Or d’apres 'hypothese de récurrence, Card(P(E)) = 2k et de plus il y a autant de
nouvelles parties ayant ce nouvel élément rouge que d’anciennes parties n’ayant pas
{x}

donc Card(P(F)) = 2k + 2K = 2(2F) = 21k CQFD.

Conclusion pr est initialisé en 0 et pr est héréditaire

donc pour tout entier naturel 1, si Card(E) = n alors Card(P(E)) = 2""

P(0) = {2}
P(P(©)) = P({2}
P(P(P(2))) =P(
P(

Comme card(P(

) ={2:{2}}
{2:{0}}) = {0 {2} {{2}}: {@: {2} }}

P(@))) = 4 alors Card(P(P(P(P(®)))) = 2* =16
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7.7 Inégalité de Bernoulli

(VARVERV)

Soit a un réel > 0.

1. Démontrer par récurrence que pour tout entier naturel 7, 'on a :
(14+a)">1+na

2. Redémontrer cette inégalité en utilisant la formule du bindme de Newton ci-dessous :
Si a et b sont des réels alors pour tout entier naturel #

(a+b)" = i (Z) I

k=0

7.7.1 corrigé
1. Onpose pr(n) : (1 4+a)" > 1+ na”

(a) Etape 1 :initialisation
A-t-on pr(0) ? ’est-a-dire a-t-on (14 a)? > 1+ 0a? c’est-a-dire a-t-on 1 > 1? Oui.
Par conséquent pr(0) est vraie.

(b) Etape 2 : hérédité
Soit un certain entier k > 0. A-t-on pr(k) = pr(k+1)?
cest-a-dire a-t-on (1+a)* > 14+ka = (14+a)*' > 1+ (k+1)a
Supposons donc que (1 +a)f > 1+ ka. Or (1 +a)f1 = (1 +a)k(1 +a).
Comme (1 + a)* > (14 ka) comme (1 +a) > O cara > 0 donc (1+a)k(1+4a) >
(1+ka)(1+a)
d’ott (14 a)¥1 > 1+ ka + a + ka® Mais ka? > 0 puisque k > Oeta > 0
donc1+ka+a+ka*>>1+a+ka.
dott (1+a)f1 > 1+ (k+1)a

(c) Conclusion pr est initialisé en 0 et pr est héréditaire donc pr est vraie pour tout entier
naturel n

2. D’apreés la formule du bindéme de Newton,

n n n
(1+a)" =Y (Z)l”_kak = (g)mo + (';)1"—%11 +3 (Z)l”_kak =1+na+ ). (Z)l”_kak

k=0 k=2 k=2

o () 2 (5)

Or(1+a)"= i (Z)l”k k= i (Z)akEOdonc‘(l—i-a)” Zl—i-na‘

k=2 k=2
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7.8 Quelques sommes remarquables

Démontrer par récurrence que :

n
1. 51=Zk:1+2+3+.-.+n:”(”7+1)
k=1 2
: nn+1)2n+1
e 52=¥k2212+22+32+...+n2: ( )6( )
5 n%(n+1)>2

n
4. sz+1 )=14345+---+(2n+1) = (n+1)?

n

5 Z )=1(1)+2(2) +3@3!) +---+n(n!)=(n+1) -1

6. 801t une suite (i, )N+ telle que :

2
n n
Yn>1 u, >0et2ui: <Zk>
k=1 =i
Démontrer avec une récurrence forte que Vi > 1 u, =n

7.8.1 corrigé

n
1
1. Notons pr(n) : ”Zk: 142434+ 4n= @”
k=1
(a) Etape 1: Initialisation
A-t-on pr(1)?
1
Cest-a-direa-t-on ) k=1= 1(12;1) ? Oui car 1a+1) _ 1
k=1

(b) Etape 2: Hérédité
Supposons que pour un certain entier n > 11’on ait pr(n) c’est-a-dire que 1 +2+ 3 +

ppo Ml

2 1
Alors 14243+ fn+ (n+1) = (1+243++n) +(n+1) :@
(n+1)= nn+1)+2(n+1)
— %(”4'2) donc pr(n + 1) est vraie.

(c) Conclusion :
pr est initialisée en 1 X .
{ pr est héreditaire donc Vn € N*  pr(n) est vraie.
n(n+1)

n
Par conséquent, Vn € N* Sy =) k=1+2+3+---+n= 7
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nn+1)2n+1),
6

n
2. Notons pr(n) : ”Zkz =12422432 4+ ... 40 =
k=1

(a) Etape 1: Initialisation
1
A-t-on pr(1)? c’est-a-dire a-t-on 2 K=1=

k=1
1(1+1)(2(1) +1)
6
(b) Etape 2:Hérédité
Supposons que pour un certain entier n > 1 'on ait pr(n) c’est-a-dire que 12 + 22 +

11+ 1)) +1),
. :

Oui car =1

Ry g2 n(n+1)6(2n+1).
Alors 12422432+ 412+ (n+1)2= (124 22+ 32+ +n?)) + (n+1)2
_ n(n+1)6(2n+1) +(n41)?
_n(n+1)@2n+1)+6(m+1)>  (m+1)(n2n+1)+6(n+1) (n+1) (2n* +7n+6) _
(n+1)(n+2)(2?z+3) 6 ¥
6

donc pr(n + 1) est vraie.

(c) Conclusion :

nitialiss 1 .
prest 1n/1t1,a SN done Vn € N* pr(n) est vraie.
pr est héréditaire

Par conséquent, S, = i R=124224+4324...4n2= n(n+ 1)6(2” +1)
k=1
3. Notons pr(n) : ”i B=13+22433 ... 44% = M"
(a) Etape1: Init{:;llisation
A-t-on pr(1)? c’est-a-dire a-t-on t B=1= 12(14;1)2 2 Oui car 2(1T+1)2 1

k=1
(b) Etape 2: Hérédité
Supposons que pour un certain entier n > 1 I'on ait pr(n) c’est-a-dire que 13 + 23 +
3 5 _mP(n+1)
F+-tn’ = — 1
Alors 3423433+ 413+ (n+1)3 = (B+28+3B 4+ +n)) + (n+1)3
n?(n+1)? 5 m2m+1)2+4(n+1)°  (n+1)2 (nP4+4n+1)  (n+1)2(n+2)?

=t 4 - 4 - 4
donc pr(n + 1) est vraie.

(c) Conclusion :
{ pr est initialisée en 1

* .
pr est héréditaire donc Vn € IN*  pr(n) est vraie.

n
Par conséquent, S3 = Zk3 =13422 433 4. 448 =S8=—" _5%
k=1

n
4. Y (2k+1)=1+3+5+ -+ (2n+1) = (n+1)>
k=0
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n
5. % k(kl) =1(11) +2(20) +3(3) + - +n(n!) = (n+1)! — 1
k=1
6. Soit la propriété pr(n) : "u, = n”

(a) Etape 1 Initialisation : Démontrons que pr(1) est vraie c’est-a-dire que u; = 1.

2

1 1

Comme Z up = <Z k) donc u? = u? donc u3 —u? = 0 d’ott u3(u; — 1) = 0. or
k=1 k=1

u? > 0caruy > 0 puisque Vn > 1 u, > 0.

Par conséquent #; — 1 = 0 donc u; = 1. CQFD.

(b) Soit un certain n > 1. Supposons que pour tout entier naturel k < n, I'implication
pr(k) est vraie.
Démontrons qu’alors pr(k + 1) est vraie.

n+1 n+1 2

On sait que Z uz = Z k
k=1 k=1

doncu?—i—u%—i—---%—u%—i—uiﬂ = (ug +up+ - Uy tyq)?

d’ott (uq +uy+ - - ~+un)2+ui+1 = (ug+up 4 Fup)?+2(ug Fuo+ - Fup) () +

Uy
Alors 13 1 =2(uy g+ -+ + ) (uy1) + 12 4

Par conséquent, ud  —u? | —2(1+2+4 - +n)(uyq1) = 0d’ 00wy (U2 4 — Uy —n(n+1)) =
0

Posons X = u,,41.

Nous devons donc résoudre ’équation X> — X —n(n+1) =0

5= (=12 —4(-—nn+1)=1+4n(n+1)=4n’ +4n+1= (2n +1)?

L’équation du second degré admet donc 2 solutions :

X,_l—(Zn—i—l) 2n

2 2
Lt @t _om+2

Comme u,, 1 > 0 alors on rejette X’ donc u,,,1 = X” = n+1 CQFD.

(c) prestinitialisée en 1 et pr est bien héréditaire donc pr est vraie pour tout entier naturel
n>1

31



7.9 Fausse récurrence

Soit la propriété pr(n) : « 5" + 1 est un multiple non nul de 4 »
1. Cette propriété est-elle vraie pour n = 0?
2. Démontrer que pour tout entier naturel k, I'implication pr(k) = pr(k + 1) est vraie.

3. Conclusion?

79.1 corrigé

Soit la propriété pr(n) : « 5" 4+ 1 est un multiple non nul de 4 »

1. pr(0) est fausse car 5% + 1 = 2 n’est pas un multiple non nul de 4

2. Et pourtant, pour tout entier naturel k, l'implication pr(k) = pr(k+ 1) est vraie.
en effet, supposons que pour un certain entier k > 0 ’on ait pr(k) c’est-a-dire que 55 + 1
est un multiple non nul de 4 donc 37 € Z* tel que 5* +1 = 4g d'ot1 5 = 4q — 1
Alors 551 +1 =5(5)+1=5(4g—1)+1 =209 —5+1 =20 — 4 = 4(5¢ — 1) = 5¢’
ouq’ =59 —1 € Z*. Donc pr(k + 1) est vraie CQFD.

3. On est en présence d'une fausse récurrence car pr est bien héréditaire mais n’est pas
initialisée en 0
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7.10 Encore une fausse récurrence

1. Démontrer par récurrence que pour tout entier naturel # la propriété suivante :"10” — 1
est un multiple de 9" est vraie.

2. On s’intéresse maintenant a une autre propriété :"10"” + 1 est divisible par 9"

(a) Démontrer que, pour tout entier naturel n,
l'implication suivante : " 10" + 1 est divisible par 9 = 10"*! + 1 est divisible par 9
" est vraie.

(b) Déduire du 1°) que, pour tout entier naturel n la propriété "10" 4 1 est divisible par
9" n’est jamais vraie.

(c) Conclusion?

7.10.1 Corrigé

1. Démontrons par récurrence que pour tout entier naturel n la propriété suivante :"10" — 1
est un multiple de 9" est vraie. Notons pr(n) : “10" — 1 est un multiple de 9.
(a) Initialisation :
10°—1=1-1=0=9 x 0donc la propriété pr est initialisée en n = 0
(b) Hérédité :
Supposons que pour un certain n € IN* I'on ait pr(n) alors 3k € N 10" — 1 = 9%k
Par conséquent, 10"+ —1 = 10(10") — 1 = 10(9% +1) —1 = 90k +10— 9 = 90k +9 =
9(10k + 1) = 9k’ ot k' € N donc pr(n + 1) est vraie.
(c) Conclusion :
pr est initialisée en 0 et pr est héréditaire donc pr est vraie pour tout entier naturel
nelN
(d) On s’intéresse maintenant & une autre propriété :"10” + 1 est divisible par 9"
i. Supposons que pour un certain n € INl'on ait 3k € N 10" — 1 = 9%k
Par conséquent, 10"*! —1 = 10(10") —1 = 10(% +1) =1 = 90k +10 -1 =
90k+9 = 9(10k+1) = 9k’ ot k' € IN I'implication suivante : " 10" + 1 est divisible
par 9 = 10"*! + 1 est divisible par 9 " est vraie.
ii. Pour tout entier naturel n la propriété "10" + 1 est divisible par 9" n’est jamais

vraie car
10"+1=10"-1+4+2=9k+2

iii. En conclusion, pour la propriété "10” 4 1 est divisible par 9"on a une fausse récur-
rence.
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711 Le nombre de diagonales d’un polygéne convexe

Soit un polygone convexe de n cotés. Démontrer par récurrence que si #n est un entier supé-

(n—3)

. fee| B . n
rieur ou égal a 3 alors le nombre de diagonales est

NB — Un polygone est convexe lorsque quelques soient les points M et N situés dans l'inté-
rieur de ce polygone, le segment [MN] est inclus dans cet intérieur.

7111 corrigé

A K Al
A ﬁ M M
Al A A3 A 3
n=3 n=5
fod
=0 b=1 b=5
. . s 2 " Tl(l’l — 3) "
Notons Dj, le nombre de diagonales. Soit la propriété pr(n) :" D, = 5

36 2_ 3) . Dans un triangle, il n’y a aucune diagonale.

k(k —3)

1. pr(3) est vraie car D3 =0 =

. Considérons alors

2. Supposons que pour un certain entier k > 3 I'on ait Dy =

un polygone R convexe de k + 1 cotés. Donc ce polygone R a k + 1 sommets. Notons
ces sommets A, A, - -+, Ag, Axy1. Soit Q le polygone Aj, Ay, - - -, A. Ce polygdne Q a
donc Dy diagonales. On construit R a partir de Q en ajoutant le sommet Ay 1. On trace
les segments [A1 Ak 1] et [AxAg,1]. Mais alors l’ancien coté [A;Ag] de Q devient alors
une diagonale de R. Le nombre Dy, 1 de Rest Dy +k—2+1 ot

(@) Dy estle nombre de diagonales de Q
(b) k:le nombre de segments partant de Ay vers les k autres sommets Aq, Ay, - -+, Ag.
(c) il faut enlever —2 correspondants aux deux nouveau cotés [A Ay 1] et [AxAgi1]

(d) il faut rajouter +1 correspondant a la nouvelle diagonale [A] Ak]

k(k — k2 —3k+2k—2 K —k+2k—-2 (k+1)(k-2
OrDy k241 =Ky BB K okiako2 (1))
Par conséquent, Dy 1 = (k+ 1)(k2—|— 1-3) . CQFD.
3. La propriété est initialisée en 3 et héréditaire donc elle est vraie pour tout entier naturel

n>3
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712 Multiples de 11

I Démontrer par récurrence que pour tout entier naturel n, 10" — (—1)" est un multiple de 11

7.13 Corrigé
On pose pr(n) : 10" — (—1)" = 114" olg € Z
1. Etape 1 : initialisation
A-t-on pr(0)? c’est-a-dire a-t-on 10° — (=1)° = 11¢? c’est-a-dire a-t-on 1 — 1 = 11g?
c’est-a-dire a-t-on 0 = 11g? Ouicar 0 = 11 x 0
Par conséquent pr(0) est vraie.
2. Etape 2 : hérédité
Soit un certain entier k > 0. A-t-on pr(k) = pr(k+1)?
’est-a-dire a-t-on 3g € Z 10 — (-1)F = 11g = I¢’ € Z 10" — (—1)F*+1 = 11¢/’
Supposons donc que 10F — (—1)F = 114.
Alors 1041 — (=1)¥1 = 10(10%) — (=1)¥(=1) = 10[11g + (=¥ + (=1)F =10 x 11 +
11(=1)F = 11[10g + (=1)¥] = 114’ ot1 ¢ = 109 + (—1)* est un entier car (—1)* est un
entier qui vaut soit 1 soit —1 et 10g est un entier relatif car g est un entier relatif.

3. Conclusion pr est initialisé en 0 et pr est héréditaire donc pr est vraie pour tout entier
naturel n

7.14 Inégalité
I Démontrer par récurrence que pour tout entier naturel n > 3 que n? > 2n + 1

7.14.1 Corrigé

1. Etape 1: initialisation
A-t-on pr(3) ? c’est-a-dire a-t-on 32 > 2(3) + 1? c’est-a-dire a-t-on 9 > 7? Oui, par consé-
quent pr(3) est vraie.
2. Etape 2 : hérédité
Soit un certain entier k > 3. A-t-on pr(k) = pr(k+1)?
cest-a-dire a-t-onn?> > 2n+ 1= (n+1)2 >2(n+1)+1
Supposons donc que n? > 21 + 1.
Alors (n+1)2 =n?+2n+1.
Comme n? >2n+1lalors (n+1)> >2n+1+2n+1.
Orn >3donc2n > 6donc2n >1doncl+2n+1>1+1+1.
Par conséquent 211 + 1+ 2n + 1 > 2n + 3 donc (n + 1)? > 2n + 3 CQFD.

3. Conclusion pr est initialisé en 3 et pr est héréditaire donc pr est vraie pour tout entier
natureln > 3
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7.15 Graphe orienté

Son considere n villes A1, Ay, - -+ ,A,oun > 2.

On suppose qu’entre deux villes quelconques, il y a toujours une route a sens unique.
Démontrer par récurrence que pour tout entier naturel n > 2 il existe toujours au moins une
ville notée C;, parmi ces n villes a laquelle on peut aller en partant de toutes les autres villes ,
soit a I’aide d’un chemin direct, soit en visitant une seule ville intermédiaire.

7151 corrigé

Soit pr la propriété recherchée.

1. Etape 1 : initialisation
A-t-on pr(2)? oui car entre 2 villes A; et A, il y a deux cas possibles :
¢ ou bien le chemin va de A vers A, donc C; = Ap
¢ ou bien le chemin va de A; vers A; donc C; = A
2. Etape 2 : hérédité
Soit un certain entier n > 2. Supposons donc qu'il existe toujours au moins une ville
notée C, parmi n villes a laquelle on peut aller en partant de toutes les autres villes , soit
a l’aide d’un chemin direct, soit en visitant une seule ville intermédiaire.
Considérons une ville supplémentaire A, 11 Il y a un chemin de A, vers C,
e ou bien le chemin va de A, ;1 vers C, donc C,11 = Cy

e ou bien le chemin va de C,, vers A, 11 donc Cp,11 = Ayyq

CQFD.

3. Conclusion pr est initialisé en 2 et pr est héréditaire donc pr est vraie pour tout entier
naturel n > 2
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7.16 Suite de Fibonacci alias Léonard de Pise

Soit une suite (1, ) définie par :
® U = 1
° Uy, =1
e Vnentier >3 u, =u,_1+u,_»
1. Résoudre I'équation d’inconnue x réelle : x> = x + 1.
On note @ la solution positive et ¥ 1’autre solution.

2. Démontrer par une récurrence double que pour tout entier naturel 7 :

Up -9 Formule de BINET

1 n
:%((D

Corrigé :
1. Soit I'équation : x2 — x — 1 = 0 d’inconnue réelle x.
(a) Le discriminant A = b? — 4ac = (—1)%> —4(1)(—1) = 5.
Comme A > 0 alors cette équation a deux solutions réelles :

1 _
&= +\/§etT:1 V5
2 2
1 —

(c) Comme ® est solution de x> — x — 1 = 0 alors > = O + 1.
(d) Comme ¥ est solution de x> — x —1 = 0 alors ¥2 = ¥ + 1.

2. Démontrer par récurrence que pour tout entier naturel 7 :
1

Uy = —=(@" -¢"
n \/g ( )

(a) Initialisation double : La propriété recherchée est vraie pour les deux premieres va-
leurs :
i(qpl —yh = L(qD_\P) = i\@: =y
V5 V5 V5

1, 5 2 1 1

— (P -Y)=—=((P+1)-(¥Y+1)) = —=(P-¥)=1=u
7 )= FlU@+)-F+1) ==l ) 2

(b) Hérédité : supposons que pour un certain entier k > 1l'ona:
1 k k 1 k-+1 k+1
up = O — ¥ etuyp g = QO — it
k ( ) k+1 \/g ( )

V5

Lok _whky o L qph+1 _ gkt
alors upp = up + gy = —= (" -9") + —= (" -¥
k+2 I; k+1 \/g( ) \/g( ) )
donc ugyp = —=((®* + &) — (PF +¥9 1)) = —((@F(1+ @) —¥r(1+Y
k2 = = (( )= ( )= F(@&(1+2) - ¥ (1+7))
1
Or14+®=ad%et1+¥ =¥2donc uy,y, = — (P2 — ¢k+2)
V5
(c) On a démontré par récurrence que pour tout entier naturel n > 11'ona:
1
Uy = —= (" - ¢"
n \/E( )

37



7.17 Puissance d’une matrice

. . 1 1
Soit la matrice A = (0 1).

Démontrer par récurrence que pour tout entier naturel n # 0 l'on a:

n_ (1 n
A_(Ol

7171 corrigé

1 n
AN

Notons pr(n) : "A" = (0 1)
1. Initialisation :

Al=A= (1) 1) donc la propriété pr est initialisée en n = 1

2. Hérédité :

Supposons que pour un certain n € IN* ’on ait pr(n) alors A" = (1) rlz
Par conséquent, A"t = AA" = <(1) }) (é rlz) = (1 n—i—l) donc pr(n+1) est

vraie.

3. Conclusion :
pr est initialisé en 1 et pr est héréditaire donc pr est vraie pour tout entier naturel n € IN*
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7.18 Formule du bindme de Newton(1642-1727)

Soient a et b des nombres réels donc ab = ba. Alors :

n . .
VneN (a+0b)" =) (’:) a !

i=0
Or (n) = ( " )donc
p n—p
vneN (a+b)" =) (7) a" i bl

en effectuant le changement d’indice j = n — i

718.1 Corrigé

n . .
Notons pr(n) : (a+b)" Z ( ) a b

1. Initialisation : elle est vraie en n = 0 car:
(a+b)°0=1= (8) a® p0—0

2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k > 0 c’est-a-dire que :

(a+ b)k = i <Il<> ak pnk

i=0

k
Alors (a +b)"*1 = (a +b)(a + b)* = (a+b)| Z( )a bk

_ K\ ok (K 11 k k—i kN k11 (kY k0
—(a+b)(<0)ab+<1)a A ; al i k_1)® b+ r a<v)

—(a—i-b)(bk—i-(]l()albk1+~~~+<};>aibki+--~+(kkl a*=1p! 4 a)
— (abk + (’1() 21 (’;) gt ki (kk ) ak bl 4 gkt
+pkHL 4 11< al b+ Ilc al pFiHl 4 <kfl a1 b% 4 a*p)

+
k k k k ; ; k k
_ okt k 2 pk—1 i pk—itl
=D +ab[<1)+(0>]+u b [(2)+(1>]+ +a'b [<i)+(i1)]+
. -k k k k
+1 k- e gk pt k+1
aitlp 1[<i>+ <i+1>}+ +ab [(k>+<k_1>]+a
Pkl gk (k—lk1>+a2bk_l (k—zkl>+m+aibk—i+1 (kf1>+ai+1bk—i <1§+1>+
1

i+1
4k ! k?:l

:(kgl PSS <k“1Ll a2 Pl <k+1>+---+aibki+l (k—;l)—f—ai*lbki <k+1>+

2 i+1
k+1 k+1
k31 k+17,0
+ab<k>+<k+1>a b

+ ak+1
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3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n > 0

Cette formule est valable pour tous éléments a et b d'un anneau a condition que ces éléments
soient commutables c’est-a-dire que ab = ba.

C’est le cas pour des matrices carrées d’ordre 11 : A et B a condition d’avoir vérifié que AB =
BA.

Souvent A = I la matrice de I'identité donc IB = B et BI = B donc IB = BI donc

Vne]N(I—i—B)”:Z(n.) I"J’szz(”.)IBf:2<”.> B/
=0\ =0\ j=0 \J

Si en plus, B est nilpotente par exemple, si B3 = O
doncVn >3 B"=B3*B"3=0dou

(I+B)" = (g) B+ (’11) Bl + (;) B2:I+nB+n(%_1)BZ
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7.19 Formule de Leibniz

Soient des fonctions f et g dérivables indéfiniment sur R. Alors leur produit fg est aussi
indéfiniment dérivable sur R et

v e N () = 3 (1) 10 g0

i=0

719.1 Corrigé
Notons ) (5 = . (1) 10500

1. Initialisation : elle est vraieenn = 1 car: )
1 _ 1 _ 1\ ) (1—i
(fg) = f¢'+f'g = (0> FO 10 (1> F 1= = L (1> F gt
2. Hérédité : Supposons que la propriété est vraie pour un entier fixé k > 1 c’est-a-dire que :

(fe)® = i (lf) £ i)

i=0

s 1~ () - g<k) «cw:g(@) o gy
50

i=0

k( l
£
(!

M»

0

0<ll<)f lk=it1)

k
) gkt 4 Z I;) ¢ *171) en effectuant le changement d’indice
=

j =i+ 1dans la premiere somme et j = i dans la deuxiéme somme.

k £k k\; iy (K
Donc (fg)*+) (0> FO) glht) Z[(j1> n <j>]f(]) k1) 4 (k> Flk) o(0)
k

k+1 k+1 k+1
(fg>(k+l):( J(; )f( ) gl+) +2< + >f()g(k+1 ])+<kil> Flk1) o(0)

11]

™=

i=0
k+1

i

nt1 4 ‘

Y <n j_ 1) £ ¢+1=0) done pr(n + 1) est vraie.

i=0

3. Conclusion : pr étant initialisée en 1 et étant héréditaire est donc vraie pour tout entier
naturel n > 1

Applications : On vérifie aisément cette formule sur quelques cas particuliers :
PP quelq p
1. (fg) =f'g+fg
2. (f8)" = (f'g+f8) =f's+f8+fg+fg" =f's+2f'¢+fg"
(fg) ((fg)//)/ — f///g+f//g/ +2 //g/ +2 /g// +f/g// +fg/// — f///g+3f//g/ +3f/g// +
f8"
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7.20 Factorisation de 4" — b"

1. Soient a et b des réels.
Démontrer par récurrence que pour tout entier n > 21'on a:
a' — p" = (ll _ b) (anfl + an72b + an73b2 dhooodt a2bn73 4 abn72 + bnfl)
Indication : pour I'hérédité, on pourra utiliser I'astuce suivante :
gt — Pl = gk — bk 4 bk — pbk

2. En déduire une factorisation de 1 — x” pour tout entier n > 2

3. Soit un entier n > 2, soient la fonction numérique f d’une variable réelle définie par
flx)=1+x+x2+-- +x"
et la fonction numérique g définie par
g(x) =1+2x+3x> + - +nx""1
(@) Quel est I'ensemble de définition de f ? Quel est 'ensemble de définition de g?
(b) Sil’on suppose que x = 1, que vaut f(x) et que vaut g(x)?

(c) Sil'on suppose que x # 1:
e Déterminer une expression simplifiée de f(x) sous forme d'un quotient.
e Déterminer une expression simplifiée de g(x) sous forme d’un quotient.
¢ En utilisant le produit x f (x) retrouver 1'expression simplifiée de f(x)

7.20.1 Corrigé

1. Soient a et b des réels.
Démontrer par récurrence que pour tout entier n > 21’'on a:
a" —b" = (a—b)(a" P+ a" 2 +a" 30+ - 42?3 fab" 2 4 b

e Etape 1: pour n = 2, comme a®> — b*> = (a — b)(a + b) alors la propriété est vraie au
rang n = 2
¢ Etape 2:soit un entier n > 2 tel que 'on a :
a' —b" = (a—b) (@ P +a" 2 +a" 30+ - 4?03 fab" 2 4 b
Alors a" ™! — p"+1 = qg" — ab" + ab" — bb" = a(a" — b") + (a — b)b"
=a(a—b)(a" 1 +a"2b4+a" 37+ +a%" 3 +ab" 2+ 0" 1) + (a — b)b"
— (ﬂ _ b) (an + an—lb + an—ZbZ 4+t uan—C’) + aan—Z + abn—l) + (a _ b)bn
=(a—"b)(a" + a4 a2 4 2303 L a2 2 g 4 b™)
donc la propriété est vraie au rang n + 1
* La propriété étant initialisée en 2 et étant héréditaire est donc vraie pour tout entier
n>2
2. En déduire une factorisation de 1 — x" pour tout entier n > 2
On en déduit en posant a = 1 et b = x et étant tenant compte du fait que Vk 1% = 1
1—x"=1—x)1+x+x2+ - +x" 342124 2171
3. Soit un entier n > 2, soient la fonction numérique f d’une variable réelle définie par
fx)=1+x+x2+- 42"
et la fonction numérique g définie par
g(x) =1+ 2x+3x2+ - +nx"1
(@) Quel est I'ensemble de définition de f? Quel est 'ensemble de définition de g?
f est une fonction polynéme de degré n donc est définie sur R
g est une fonction polyndme de degré n — 1 donc est définie sur R
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(b) Sil’on suppose que x = 1, que vaut f(x) et que vaut g(x)?
f)=14+1"+12+- 41" =141+ --+1=n+1

g(1):1+2+3+~-+n:@

(c) Sil'on suppose que x # 1:
e Déterminer une expression simplifiée de f(x) sous forme d’un quotient.
Commel —x" = (1—x)(1+x+x>+ - +x" 3 +x" 2+ x" 1) alors
1— xntl = (1_x)(1+x+x2+,_'+xn73+xn72+xn71+xn)
1 — xnt1
f(x) = o, carx #1
* Déterminer une expression simplifiée de g(x) sous forme d’un quotient.
Comme f est une fonction polynéme de degré n alors f est dérivable sur R et
n n+1
f'(x) = g(x) donc g(x) = 1) (1 (1x_) x)g Da=x")
x"(—n—1+nx)+1
(1-x)?
e En utilisant le produit x f(x) retrouver 'expression simplifiée de f(x)
fx)=1+x+x2+ 4"
Xf(x) =x+x2+x3+- " ot

donc f(x) —xf(x) = 1—x" d’ott f(x)(1 —x) = 1 —x""! donc f(x) =
carx =1

En simplifiant ¢(x) =

1_xn+1
1—x
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7.21 Exponentielle

Soit un réel x > 0.
Démontrer par récurrence que

X X
vneN ) T Se
k=0 ™"
7211 Corrigé
n xk
i X7
Notons pr(n): "Vvn e N ) g se
k=0 "
1. Etape 1 : Initialisationenn = 0:
0 xk x0
A-t-on pr(0)? c'est-a-direa-tonVn € N ) i < e¥? ('est-a-dire a-t-on o < e* cest-
! !

a-dire a-t-on 1 < ¢*?
oui car comme x > 0 alors exp étant une fonction croissante alors exp(x) > exp(0) donc
eX > 1.
La propriété est vraie au rang n = 0
2. Etape 2 : Hérédité :

Soit un entiern > 0.
no ok
Supposons que pr(n) est vraie c’est-a-dire que 2 i S <et.

n+1 xk

Démontrons que pr(n + 1) est vraie c’est-a-dire que Z o <e'.
k=0
n+1 xk n+1 n+1 xk , n+1 xk—l
Notons P, (x 2 alors Pyiq(x) = ZOE ) (x z k' = Z k'] = k;)kT
nil k 1 nzﬂ (k-1 i i
k—— ——— =) —enposantj=k—1
= (k=1)! = j!
xk

D’apres I'hypotheése de récurrence : Z — <e‘donc P, (x) <e*

Posons f(x) = Pyiq(x) —e* alorsf’( ) Pr’lH—e" <0dou

X 0 +o0
f'(x) —
0
f(x) N

car f(0) = P, 1(0) =’ =1—-1=0.
Par conséquent, f(x) < 0 donc P,+1 < e* donc pr(n + 1) est vraie.

3. Conclusion : pr étant initialisée en 0 et étant héréditaire est donc vraie pour tout entier
naturel n > 0
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7.22 Récurrence forte

n
Soit une suite (1, ) définie sur N parug =1letVn € N u,q = Z 2"y,
i=0
1. Déterminer les valeurs de u7 ; up et us

2. Démontrer par une récurrence forte que Vn € N*  u, = 3n-1

7.22.1 Corrigé

O .
Loug=Lu =uppq =Yy 2" 'u; =2°%uy=1=3""1
i=0
l .
2. ug=upyy =Y 20y =21 Oug 421 My = 2'(1) +2°(1) =3 =32
=0

2 .
3. uz =pq = Y 27wy =22 Oug + 27 tuy + 2720 = 22(1) +21(1) +2°(3) =4+2+3=9=3"
i=0

4. Soit n € IN*. Posons pr(n) : "u, = 3""1”
* Initialisation : Cette propriété est vraie au rang 1 car u; = 1 = 31!
* Hérédité Soit un certain entier n > 1 supposons que pr(i) est vraie pour tout entier
1 <i < n c'est-a-dire que pour tout entier 1 <i <nlona:u; = 31,
n
Alors uy, 1 = Z 2"y,
i=0
Upp1 = 2n—0u0 + Zn—lul + 2n—2u2 4ot Zn—(n—l)un_l_l +onny,
Upy1 = on—0 + on—131-1 + pn—232-1 NS 2717(1171)3717171 + pn—ngn—1
Or 27130  on=231 ... 4 2137=2 | 2037~ egt ]a somme de n_termes consécutifs

d’une suite géométrique de premier terme 2"~ ! et de raison g = 5
n
()
_\2)
3

1-2
2

donc u, 1 = 2" 4 2"~1

Par conséquent, 1,1 = 2" + 2!

3>”
2) -1
+21’l—1 (2

Up1 = 2" 1

3" — 2"2
on

Uy =2"+2" =2"+43" - 2" =3". CQFD

e pr est initialisée en 1 et est héréditaire donc est vraie pour tout n € IN*
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