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Chapitre 1

Maîtriser le cercle
trigonométrique

1.1 Lemme

Soit un cercle de centre O et de rayon R.
On admet qu’un arc de ce cercle d’angle α a pour longueur R α.
Donc le périmètre d’un cercle de rayon R est P = 2π R.

1.2 Cercle trigonométrique

1. On appelle cercle trigonométrique un cercle de rayon 1.
2. Le périmètre d’un cercle trigonométrique mesure donc 2π

3. Un tour de cercle trigonométrique mesure 2π radians.
4. Un demi-tour de cercle trigonométrique mesure π radians.

5. Un quart de tour de cercle trigonométrique mesure
π

2
radians.

Le sens de parcours direct ou positif sur ce cercle trigonométrique est le sens
inverse des aiguilles d’une montre.
L’autre sens est dit indirect ou rétrograde.

7
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1.3 De l’angle géométrique à l’angle orienté

Comment passe-t-on d’un angle géométrique de demi-droites à un angle
orienté de demi-droites ?
A partir de deux demi-droites de même origine O, on peut créer un angle
géométrique de demi-droites.
Dorénavant, nous orienterons un angle de demi-droites :

• de façon positive ou directe si on parcourt dans le sens inverse des
aiguilles d’une montre.

• de façon négative ou indirecte ou rétrograde sinon.

1.4 3 notions équivalentes

L’angle orienté des demi-droites [DD1) et [DD2) est l’angle orienté des vec-
teurs non nuls

−−→
OU et

−−→
OV .

C’est aussi l’angle orienté des vecteurs unitaires(c’est-à-dire de norme 1) :

vecteur
−→
OA =

1

∥OU∥
−−→
OU et vecteur

−−→
OM =

1

∥OV ∥
−−→
OV .

On écrira (DD1, DD2) = (
−−→
OU,

−−→
OV ) = (

−→
OA,

−−→
OM)
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1.5 Mesures d’un angle orienté de vecteurs
Voici le cercle trigonométrique et un fil représentant l’axe des réels :
Colorions ce fil avec 2 couleurs : l’une pour R+ et l’autre pour R−.

Posons le zéro du fil en A et enroulons ce fil qui représente R autour du cercle
trigonométrique :

• les réels positifs dans le sens direct
• les réels négatifs dans l’autre sens

Alors
• en A vont se poser les points du fil correspondants aux réels :· · · ,−4 π;−2 π; 0; 2 π; 4 π; · · ·
• en M vont se poser les les points du fil correspondants aux réels :
· · · , , x− 4 π;x− 2 π;x;x+ 2 π;x+ 4 π; · · ·
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Chapitre 2

Rapports trigonométriques

2.1 Définition

Si l’angle (
−→
OA,

−−→
OM) mesure x, si C est le projeté orthogonal de M sur la

droite (OA) et si S est le projeté orthogonal de M sur la droite (OB) alors

cosinus(x) = cos(x) = OC
sinus(x) = sin(x) = OS

tangente(x) = tan(x) =
sin(x)

cos(x)
= AT

cotangente(x) = cotan(x) =
1

tan(x)
=

cos(x)

sin(x)
= BT ′

11
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2.2 Propriétés

2.2.1 Conditions d’existence

♡ ♡ ♡
1. sin(x) existe pour tout réel x donc Dsin = R.
2. cos(x) existe pour tout réel x donc Dcos = R.

3. tan(x) existe pour tout réel x ̸= π

2
+ kπ où k ∈ Z donc

Dtan = R−
{
π

2
+ 2kπ ;

−π

2
+ 2kπ/ k ∈ Z

}
= R−

{π
2
+ kπ / k ∈ Z

}
.

4. cotan(x) existe pour tout réel x ̸= kπ où k ∈ Z
donc Dcotan = R− {kπ / k ∈ Z}.

2.2.2 Formule Fondamentale de la Trigonométrie

♡ ♡ ♡ 3 formes équivalentes :

∀x ∈ R

 sin2(x) + cos2(x) = 1
sin2(x) = 1− cos2(x)
cos2(x) = 1− sin2(x)

2.2.3 Valeurs prises par les fonctions circulaires

♡ ♡ ♡


∀x ∈ R − 1 ≤ sin(x) ≤ 1
∀x ∈ R − 1 ≤ cos(x) ≤ 1
∀x ∈ Dtan −∞ < tan(x) < +∞
∀x ∈ Dcotan −∞ < cotan(x) < +∞

2.2.4 Périodicité

♡ ♡ ♡

1. ∀x ∈ R sin(x + 2 kπ) = sin(x) donc sin est périodique de période
T = 2π

2. ∀x ∈ R cos(x + 2 kπ) = cos(x) donc cos est périodique de période
T = 2π

3. ∀x ∈ R −
{π
2
+ kπ / k ∈ Z

}
tan(x + kπ) = tan(x) donc tan est

périodique de période T = π

4. ∀x ∈ R− {kπ/k ∈ Z} cotan(x+ kπ) = cotan(x)
donc cotan est périodique de période T = π

Exemples

1. Si a ̸= 0 alors x 7→ sin(ax + b) et x 7→ cos(ax + b) sont périodiques de

période T =
2π

a
.

2. Si a ̸= 0 alors x 7→ tan(ax+ b) et x 7→ cotan(ax+ b) sont périodiques de
période T =

π

a
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2.2.5 Angles opposés de mesures x et −x

♡ ♡ ♡

1. ∀x ∈ R l’on a : −x ∈ R et sin(−x) = −sin(x) donc sin est impaire.
Par conséquent, Csin admet O comme centre de symétrie.

2. ∀x ∈ R l’on a : −x ∈ R et cos(−x) = cos(x) donc cos est paire.
Par conséquent, Ccos admet l’axe des ordonnées (Oy) comme axe de
symétrie.

3. ∀x ∈ Dtan l’on a : −x ∈ Dtan et tan(−x) = −tan(x) donc tan est
impaire.
Par conséquent, Ctan admet O comme centre de symétrie.

4. ∀x ∈ Dcotan l’on a : −x ∈ Dcotan et cotan(−x) = −cotan(x) donc
cotan est impaire.
Par conséquent, Ccotan admet O comme centre de symétrie.

2.2.6 Angles complémentaires de mesures x et
π

2
− x
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♡ ♡ ♡

∀x ∈ R sin
(π
2
− x
)
= cos(x)

∀x ∈ R cos
(π
2
− x
)
= sin(x)

∀x ∈ Dtan tan
(π
2
− x
)
= cotan(x)

∀x ∈ Dcotan cotan
(π
2
− x
)
= tan(x)

Les angles de mesure x et
π

2
− x sont dits complémentaires.

Des angles complémentaires échangent donc leurs sinus et cosinus, leurs tan-
gente et leur cotangente.

2.2.7 Angles de mesures x et
π

2
+ x

♡ ♡ ♡

∀x ∈ R sin
(π
2
+ x
)
= cos(x)

∀x ∈ R cos
(π
2
+ x
)
) = −sin(x)

∀x ∈ Dtan tan
(π
2
+ x
)
= −cotan(x)

∀x ∈ Dcotan cotan
(π
2
+ x
)
= −tan(x)
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2.2.8 Angles supplémentaires de mesures x et π − x

♡ ♡ ♡

∀x ∈ R sin(π − x) = sin(x)

∀x ∈ R cos(π − x) = −cos(x)

∀x ∈ Dtan tan(π − x) = −tan(x)

∀x ∈ Dcotan cotan(π − x) = −cotan(x)
Les angles de mesure x et π − x sont dits supplémentaires.

2.2.9 Angles de mesures x et π + x

♡ ♡ ♡

∀x ∈ R sin(π + x) = −sin(x)

∀x ∈ R cos(π + x) = −cos(x)

∀x ∈ Dtan tan(π + x) = tan(x)

∀x ∈ Dcotan cotan(π + x) = cotan(x)
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2.3 Multiplication des arcs

2.3.1 Formules

♡ ♡ ♡
Si a ∈ R, b ∈ R 

cos(a+ b) = cos(a)cos(b)− sin(a)sin(b)
cos(a− b) = cos(a)cos(b) + sin(a)sin(b)
sin(a+ b) = sin(a)cos(b) + sin(b)cos(a)
sin(a− b) = sin(a)cos(b)− sin(b)cos(a)

Si a ∈ Dtan, b ∈ Dtan, a+ b ∈ Dtan tan(a+ b) =
tan(a) + tan(b)

1− tan(a)tan(b)

Si a ∈ Dtan, b ∈ Dtan, a− b ∈ Dtan tan(a− b) =
tan(a)− tan(b)

1 + tan(a)tan(b)
Si a ∈ R,

cos(2a) = cos2(a)− sin2(a) = 2cos2(a)− 1 = 1− 2sin2(a)
sin(2a) = 2 sin(a)cos(a)

cos2(a) =
1 + cos(2a)

2
; sin2(a) =

1− cos(2a)

2

cos2
(a
2

)
=

1 + cos(a)

2
; sin2

(a
2

)
=

1− cos(a)

2

cos2
(a
4

)
=

1 + cos
(a
2

)
2

; sin2
(a
4

)
=

1− cos
(a
2

)
2

2.3.2 Exercices

1. Démontrer que tan

(
3π

8

)
= 1 +

√
2

2. Démontrer que tan
(π
8

)
=

√
2− 1

1. • On sait que tan(2θ) =
2 tan(θ)

1− tan2(θ)

• Or −1 = tan

(
3π

4

)
= tan

(
2
3π

8

)
=

2 tan

(
3π

8

)
1− tan2

(
3π

8

) d’où tan2

(
3π

8

)
−

1 = 2 tan

(
3π

8

)
.
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On en déduit que tan2

(
3π

8

)
− 2 tan

(
3π

8

)
− 1 = 0

• Résolvons l’équation X2 − 2X − 1 = 0. on a ∆ = 4 + 4 = 8

donc il y a deux racines X ′ =
2− 2

√
2

2
= 1−

√
2 et X” =

2 + 2
√
2

2
=

1 +
√
2.

• Or tan

(
3π

8

)
> 0 donc tan

(
3π

8

)
= 1 +

√
2

2. • On sait que tan(2θ) =
2 tan(θ)

1− tan2(θ)

• Or 1 = tan
(π
4

)
= tan

(
2
π

8

)
=

2 tan
(π
8

)
1− tan2

(π
8

) d’où 1 − tan2
(π
8

)
=

2 tan
(π
8

)
.

On en déduit que −tan2
(π
8

)
− 2 tan

(π
8

)
+ 1 = 0

• Résolvons l’équation −X2 − 2X + 1 = 0. on a ∆ = 4 + 4 = 8

deux racines X ′ =
2− 2

√
2

−2
= −1+

√
2 et X” =

2 + 2
√
2

−2
= −1−

√
2.

• Or tan
(π
8

)
> 0 donc tan

(π
8

)
=

√
2− 1
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2.4 Transformations de sommes en produits

2.4.1 Formules

1. cos(a)cos(b) =
cos(a− b) + cos(a+ b)

2

sin(a)sin(b) =
cos(a− b)− cos(a+ b)

2

sin(a)cos(b) =
sin(a+ b) + sin(a− b)

2

En posant
{

a+ b = p
a− b = q

on a alors

 a =
p+ q

2

b =
p− q

2

d’où :

cos(p) + cos(q) = 2 cos

(
p+ q

2

)
cos

(
p− q

2

)
cos(p)− cos(q) = −2 sin

(
p+ q

2

)
sin

(
p− q

2

)
sin(p) + sin(q) = 2 sin

(
p+ q

2

)
cos

(
p− q

2

)
puis sin(p) − sin(q) = 2 sin

(
p− q

2

)
cos

(
p+ q

2

)
(en changeant q

en −q)

2. On peut alors calculer cos(p) + sin(q) de 2 façons :
• cos(p) + sin(q) = cos(p) + cos

(π
2
− q
)
= · · ·

• cos(p) + sin(q) = sin
(π
2
− p
)
+ sin(q) = · · ·

3. ∀p, q ∈ R−
{π
2
+ kπ

}
• tan(p) + tan(q) =

sin(p)

cos(p)
+

sin(q)

cos(q)
=

sin(p)cos(q) + sin(q)cos(p)

cos(p)cos(q)

tan(p) + tan(q) =
sin(p+ q)

sin(p)sin(q)

• tan(p)− tan(q) =
−

sin(p− q)
cos(p)cos(q) en changeant q en −q

4. ∀p, q ∈ R− {+kπ}

• cotan(p) + cotan(q) =
sin(p+ q)

cos(p)cos(q)

• cotan(p) − cotan(q) =
sin(p− q)

sin(p)sin(q)
en changeant p en

π

2
− p et q

en
π

2
− q

2.4.2 Exercices

Ex 1



2.4. TRANSFORMATIONS DE SOMMES EN PRODUITS 19

Soit a ∈ R tel que cos(a) + cos(3a) + cos(5a) ̸= 0.

Simplifier l’expression F =
sin(a) + sin(3a) + sin(5a)

cos(a) + cos(3a) + cos(5a)

F =
sin(a) + sin(5a) + sin(3a)

cos(a) + cos(5a) + cos(3a)

F =

2sin

(
a+ 5a

2

)
cos

(
a− 5a

2

)
+ sin(3a)

2cos

(
a+ 5a

2

)
cos

(
a− 5a

2

)
+ cos(3a)

=
2sin(3a)cos(−2a) + sin(3a)

2cos(3a)cos(−2a) + cos(3a)

F =
sin(3a)[2cos(2a) + 1]]

cos(3a)[2cos(2a) + 1)
Donc

F = tan(3a)
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Ex 2

résoudre l’équation suivante d’inconnue x ∈ R :

(E) : sin(2x) + sin(4x) + sin(6x) + sin(8x) = 0

1. L’ensemble de définition de cette équation est : R.
2. ∀x ∈ R (E) ⇐⇒ sin(2x) + sin(8x) + sin(4x) + sin(6x) = 0

⇐⇒ 2sin

(
10x

2

)
cos

(
−6x

2

)
+ 2sin

(
10x

2

)
cos

(
−2x

2

)
= 0

⇐⇒ 2[sin(5x)cos(−3x) + sin(5x)cos(−x) = 0
⇐⇒ sin(5x)[cos(3x) + cos(x)] = 0

⇐⇒ sin(5x) 2 cos

(
4x

2

)
cos

(
2x

2

)
= 0

⇐⇒ 2sin(5x)cos(2x)cos(x) = 0 ⇐⇒ sin(5x)cos(2x)cos(x) = 0
⇐⇒ sin(5x) = 0 ou cos(2x) = 0 ou cos(x) = 0

⇐⇒ ∃k1 ∈ Z 5x = k1π ou ∃k2 ∈ Z 2x =
π

2
+ k2π

ou ∃k3 ∈ Z x =
π

2
+ k3π

⇐⇒ ∃k1 ∈ Z x = k1
π

5
ou ∃k2 ∈ Z x =

π

4
+ k2

π

2
ou ∃k3 ∈ Z x =

π

2
+ k3π

3. Par conséquent, l’ensemble des solutions de cette équation est

S =
{
k
π

5
; Fπ4 + k

π

2
;
π

2
+ k3π tels que k ∈ Z

}
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2.5 3 équations trigonométriques fondamentales

♡ ♡ ♡
1. cos(x) = cos(x0) ⇐⇒ ∃k ∈ Z x = x0 + 2kπ ou x = −x0 + 2kπ

2. sin(x) = sin(x0) ⇐⇒ ∃k ∈ Z x = x0 + 2kπ ou x = π − x0 + 2kπ

3. tan(x) = tan(x0) ⇐⇒ ∃k ∈ Z x = x0 + kπ

2.5.1 Exemples

Résoudre les équations suivantes d’inconnue x ∈ R
1. cos(x) = 0

2. sin(x) =

√
2

2

3. tan(x) =
√
3

1. cos(x) = 0 ⇐⇒ cos(x) = cos(
π

2
)

⇐⇒ ∃k ∈ Z x =
π

2
+ 2kπ ou x = −π

2
+ 2kπ ⇐⇒ ∃k ∈ Z x =

π

2
+2kπ ou x =

π

2
−π+2kπ =

π

2
+(2k−1)π ⇐⇒ ∃k ∈ Z x =

π

2
+kπ

2. sin(x) =

√
2

2
⇐⇒ sin(x) = sin(

π

4
) ⇐⇒ ∃k ∈ Z x =

π

4
+2kπ ou x =

π − π

4
+ 2kπ = 3

π

4
+ 2kπ

3. tan(x) =
√
3 ⇐⇒ tan(x) = tan(

π

3
) ⇐⇒ ∃k ∈ Z x =

π

3
+ kπ
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2.6 Les 3 fonctions trigonométriques de base :sin, cos
et tan

2.6.1 Tableaux de variations

2.6.2 Tableaux de valeurs

2.6.3 Courbes



Chapitre 3

Forme trigonométriques des
nombres complexes

3.1 Affixe d’un point, affixe d’un vecteur

3.1.1 Théorème

Soit P le plan affine euclidien associé au plan vectoriel
−→
P .

P est muni du repère orthonormé (O,−→e1 ,−→e2)
Alors

• l’application f de C dans
−→
P qui à tout nombre complexe z = a + ib

associe le vecteur −→v = a−→e1 + b−→e2 est une bijection.
On dit alors que le vecteur −→v est le vecteur-image de z ou encore que
z est l’affixe de −→v . Ceci se note −→v (z)

• l’application g de C dans P qui à tout nombre complexe z = a + ib
associe le point M de coordonnées (a, b) dans la base (−→e1 ,−→e2) est une
bijection.
On dit alors que le point M est le point-image de z ou encore que z
est l’affixe de M . Ceci se note M(z)

23
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6

-

�

O

M(z)

−−→
v(z)

a

b

-−→e1

6−→e2

3.1.2 Théorème

Soient z = a+ ib et z′ = a′ + ib′.
Soit M(z) et M ′(z′) alors z′ − z est l’affixe du vecteur

−−−→
MM ′

3.1.3 Démonstration
−−−→
MM ′ =

−−→
MO +

−−−→
OM ′ =

−−−→
OM ′ −

−−→
OM = a′−→e1 + b′−→e2 − a−→e1 − b−→e2

= (a′ − a)−→e1 + (b′ − b)−→e2
Or z′ − z = (a′ − a) + i(b′ − b) donc

−−−→
MM ′(z’ - z). CQFD

-

6

:

7

j M(z)

M’(z’)

O

−−−→
MM ′(z − z′)
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3.2 Module d’un nombre complexe

3.2.1 Définition

Si z = a + ib, on appelle module de z nombre réel positif suivant noté
| z | =

√
zz =

√
a2 + b2

3.2.2 Interprétation géométrique de la notion de module

| z |= OM ; | z |2 = OM2 ;

- -

6

6

1

i

3

M(z)iR

R

OM =| z |

O

| zA − zB | =| z−−→
AB

| = ∥
−−→
AB∥ = AB
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- -

6

6

3

O

I

A(zA)

B(zB)

−−→
AB

xAxB

yA

yB

−→e1

−→e2

3.2.3 Exemples

| 0 |= 0 | i |= 1 | −i |= 1 | −2 |= 2 | 1+i
√
3 |= 2 | 1+i |=

√
2

3.2.4 Propriétés

Soient les nombres complexes z et z’
1. | z |=| z |=| −z |=| −z |
2. | z |≥ 0

3. z = 0 ⇔ z = 0

4. | zz′ |=| z || z′ |

5. si z′ ̸= 0 alors | ( 1
z′
) |= 1

| z′ |

6. si z′ ̸= 0 alors | ( z
z′
) |= | z |

| z′ |
7. Re(z) ≤| z |
8. Im(z) ≤| z |
9. | z + z′ |≤| z | + | z′ | (Inégalité triangulaire de Minkowski)

10. || z | − | z′ ||≤| z − z′ |≤| z | + | z′ |

3.2.5 Démonstrations

1. évident

2. évident
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3. évident

4. | zz′ |=
√
zz′zz′ =

√
zz′zz′ =

√
zz

√
z′z′ =| z || z′ |

5. | 1

z′
|=
√

1

z′
(
1

z′
) =

√
1

z′
1

z′
=

1√
z′z′

=
1

| z′ |

6. évident en utilisant les 2 propriétés précédentes.

7. Re(z) = a ≤| a |=
√
a2 ≤

√
a2 + b2 =| z |

8. Im(z) = b ≤| b |=
√
b2 ≤

√
a2 + b2 =| z |

9. Comme les 2 membres de l’inégalité sont tous deux positifs, il suffit de
comparer leurs carrés
(| z + z′ |)2 = (z + z′)(z + z′) = (z + z′)(z + z′) = zz + zz′ + z′z + z′z′

=| z |2 + zz′ + z′z︸ ︷︷ ︸
zz′+zz′

+ | z′ |2=| z |2 +2Re(zz′)+ | z′ |2

≤| z |2 +2 | zz′ | + | z′ |2 car Re(z) ≤| z |
≤ (| z | + | z′ |)2 CQFD

10. l’inégalité de droite | z − z′ |≤| z | + | z′ | est l’expression de l’inégalité
triangulaire de Minkowski car | −z′ |=| z′ |
Reste à démontrer l’inégalité de gauche :
| z′ |=| z + (z′ − z) |≤| z | + | z′ − z | donc α =| z′ | − | z |≤| z′ − z |= β
De même, en permutant les rôles de z et de z’,
l’on a : −α =| z | − | z′ |≤| z − z′ |= β
De ces deux inégalités, α ≤ β et −α ≤ β on en déduit que | α |≤ β
c’est-à–dire que || z | − | z′ ||≤| z − z′ |

3.2.6 C est un espace vectoriel euclidien réel

Théorème

L’application f de C∗ dans R+∗ qui à tout nombre complexe z associe | z | est
un homomorphisme non injectif de (C∗,×) dans (R+∗,×)

Théorème

L’application ϕ de C × C dans R qui à tout couple de nombres complexes
(z,z’) associe le nombre réel ϕ(z,z’) = 1

2 (zz
′ + zz′) est un produit scalaire sur

C c’est-à-dire une forme bilinéaire définie positive.
De plus, ∥z∥ =

√
ϕ(z, z) = 1

2 (zz + zz) =
√
zz =| z |

Proposition

(1, i) est une base orthonormée de C
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- -

6

6

1

i

3

M(z)

iR

R

OM =| z |

O

3.3 Argument d’un nombre complexe non nul

3.3.1 Rappels sur les angles de vecteurs

1. (−→u ,−→v ) existe lorsque −→u ̸= −→
0 et −→v ̸= −→

0

2. (
−−→
MA,

−−→
MB) existe lorsque M ̸= A et M ̸= B

3. si α est une mesure en radians de l’angle (−→u ,−→v ) alors ∀k ∈ Z
α+ 2kπ est aussi une mesure de (−→u ,−→v )

4. (−→u ,−→v ) + (−→v ,−→w ) = (−→u ,−→w ) . C’est la relation de Michel CHASLES
pour les angles de vecteurs

3.3.2 Argument d’un nombre complexe de module 1

On appelle U = { z ∈ C/ | z |= 1}.
Alors (U ,×) est un sous-groupe du groupe ((C*,×)

Démonstration :

• U ⊂ C∗
• soit z ∈ U soit z’ ∈ U alors | zz′ | = | z || z′ | = 1 × 1 = 1 donc z z’ ∈ U
• soit z ∈ U alors | 1

z |= 1
|z| =

1
1 = 1 donc 1

z ∈ U
Remarque : soit z ∈ U alors 1

z = zz
z = z



3.3. ARGUMENT D’UN NOMBRE COMPLEXE NON NUL 29

3.3.3 Argument d’un nombre complexe non nul

- -

6

6

−→e1

−→e2

3

M(z = reiθ)

�

(−→e1 ,
−−→
OM) = arg(z) = θ

OM =| z |= r

O

Si z ̸= 0 alors on peut considérer l’angle (−→e1 ,
−−→
OM) de mesure θ en radians

Si l’on note r le module de z , on obtient : z = x + i y = r cos(θ) + i r sin(θ)
= r (cos(θ) + i sin(θ)) = r exp(iθ) = r eiθ (Notation d’Euler)
Cette écriture s’appelle la forme trigonométrique de z.
θ = une mesure de l’angle(−→e1 ,

−−→
OM)s’appelle un petit argument de z et se note

arg(z)
z a une infinité d’arguments qui diffèrent de 2k π

L’angle (−→e1 ,
−−→
OM) s’appelle grand argument de z et se note Arg(z)

1

3.3.4 Relations entre forme trigonométrique et forme al-
gébrique

3 démarches pour trouver cette forme trigonométrique :
1. utiliser la position géométrique de z lorsqu’elle est évidente :

Par exemple :
1 = 1[cos(0) + sin(0)] = ei0 = e2iπ

−1 = 1[cos(π) + sin(π)] = eiπ d’où la formule divine d’Euler :
eiπ + 1 = 0

i = 1[cos(π2 ) + i sin(π2 ] = ei
π
2

−i = 1[cos( 3π2 ) + i sin( 3π2 ] = ei
3π
2

1. 0 est le seul nombre complexe qui a un module 0 mais qui n’a pas d’argument !
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2. Bien observer l’écriture de z et la mettre sous la forme
z = nombre positif [ cos(mesure d’un angle) + i sin(cette même mesure
d’angle] :
Exemples :
1 + i =

√
2( 1√

2
+ i 1√

2
) =

√
2(cos(π4 ) + i sin(π4 )) =

√
2ei

π
4

sin(θ) + i cos(θ) = cos(π2 − θ) + i sin(π2 − θ) = ei
π
2 −θ

(1−
√
2)ei

π
4 n’a pas pour module (1−

√
2) qui est un réel négatif !

2 En réalité,(1−
√
2)ei

π
4 = (

√
2− 1)(−1)ei

π
4 = (

√
2− 1)eiπei

π
4

= (
√
2− 1)e5i

π
4 donc a pour module

√
2 et pour argument 5π

4

3. utiliser les formules de passage de la forme algébrique à la forme trigo-
nométrique (ou vice-versa) :
si z = x + iy alors  x = r cos(θ)

y = r sin(θ)

⇐⇒ 
r =

√
x2 + y2

cos(θ) = x
r

sin(θ) = y
r

3.3.5 Propriétés

1. r eiθ r’ eiθ
′
= r r’ ei(θ+θ′)

2.
1

reiθ
=

1

r
e−iθ

3.
reiθ

r′eiθ′ =
r

r′
ei(θ−θ′)

4. Formule d’Abraham Moivre (Vitry le François 1667-Londres
1754) :
∀k ∈ Z (cos(θ) + i sin(θ))k = cos(kθ) + i sin(kθ)
Démonstration :
Par récurrence sur N puis extension à Z



3.3. ARGUMENT D’UN NOMBRE COMPLEXE NON NUL 31

3.3.6 Module et argument de
zB − zC
zA − zC

- -

6

6

6

O

A

B

e1

e2

1

�

-
C

e1

M

�

Soit A(zA) et B(zB) alors
−−→
AB a pour affixe zB − zA

| zA − zB |=| z−−→
AB

|= ∥
−−→
AB∥ = AB

(−→e1 ,
−−→
AB) = arg(z−−→

AB
) = arg(zB − zA)

donc pour tout C(zC) on a :

CB

CA
=

| zB − zC |
| zA − zC |

=| zB − zC
zA − zC

|

(
−→
CA,

−−→
CB) = (−→e1 ,

−−→
CB)−(−→e1 ,

−→
CA) = arg(z−−→

CB
)−arg(z−→

CA
) = arg(

z−−→
CB

z−→
CA

) = arg(
zB − zC
zA − zC

)

Théorème

Dans un repère orthonormé direct. Soit A,B et C d’affixes respectives zA,
zB et zC . Soit un réel r > 0 et un réel θ alors on a l’équivalence logique
suivante :

CB

CA
= r et (

−→
CA,

−−→
CB) = θ ⇔ zB − zC

zA − zC
= reiθ

Conditions nécessaires et suffisantes d’appartenance à R, R+, R−

z ∈ R ⇔ Im(z) = 0 ⇔ z = z ⇔ z = 0 ou ∃k ∈ Z arg(z) = kπ

z ∈ R+ ⇔ Im(z) = 0 et Re(z) ≥ 0 ⇔ z = 0 ou ∃k ∈ Z arg(z) = 2kπ

z ∈ R− ⇔ Im(z) = 0 et Re(z) ≤ 0 ⇔ z = 0 ou ∃k ∈ Z arg(z) = π + 2kπ
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Conditions nécessaires et suffisantes d’appartenance à iR,iR+,iR−

z ∈ iR ⇔ Re(z) = 0 ⇔ z = −z ⇔ z = 0 ou ∃k ∈ Z arg(z) =
π

2
+ kπ

z ∈ iR+ ⇔ Re(z) = 0 et Im(z) ≥ 0 ⇔ z = 0 ou ∃k ∈ Z arg(z) =
π

2
+ 2kπ

z ∈ iR− ⇔ Re(z) = 0 et Im(z) ≤ 0 ⇔ z = 0 ou ∃k ∈ Z arg(z) =
π

2
+π+2kπ

Applications géométriques

Dans un repère orthonormé direct. Soit A,B et M d’affixes respectives zA,
zB et z. Soit un réel r > 0 et un réel θ alors on a l’équivalence logique suivante :

zB − z

zA − z
= reiθ ⇔ MB

MA
= r et (

−−→
MA,

−−→
MB) = θ (modulo2π)

Si r = 1

MB

MA
= 1 ⇔ M ∈ la médiatrice de [AB]

Si r ̸= 1

MB

MA
= r ⇔ M ∈ au cercle d’APPOLONIUS associe à A, B et r .

Ce cercle est le cercle de diamètre [IJ] où I est le barycentre de {(A, 1), (B, r)}
et J est le barycentre de {(A, 1), (B,−r)}

Si θ = 0 + 2kπ alors :

(
−−→
MA,

−−→
MB) = 0 (modulo 2 π) ⇔ M ∈ la droite (AB) privée du seg-

ment [AB]

Si θ = π + 2kπ alors :

(
−−→
MA,

−−→
MB) = π (modulo 2 π) ⇔ M ∈ le segment ouvert ]AB[

Si θ ̸= kπ alors :

(
−−→
MA,

−−→
MB) = θ (modulo 2 π) ⇔ M ∈ l’arc de cercle capable associé à

A,B et θ
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3.3.7 Racines n-ièmes complexes d’un nombre complexe
non nul

1. Lemme :

∀x > 0 ∀y > 0 ∀n ∈ N− {0; 1} y = xn ⇔ x = n
√
y

2. Etude
Soit Z ̸= 0. Posons Z = Reiα. Soit n ∈ N− {0; 1}.
zn = Z ⇔ (reiθ)n = Reiα ⇔ rneinθ = Reiα

⇔ rn = R et ∃k ∈ Z nθ = α+ 2kπ

⇔ r = n
√
R et ∃k ∈ Z θ =

α

n
+

2kπ

n
.

Lorsque k décrit Z, les
2kπ

n
ne prennent que n valeurs distinctes : ce sont

celles qui correspondent aux n cas suivants :
k = 0, k = 1, ...., k = n-1

3. Théorème

Soit n ∈ N− {0; 1}. Soit Z ̸= 0 avec Z = R ei:α

L’équation zn = Z d’inconnue complexe z admet n solutions com-
plexes :
Ce sont les nombres zk = n

√
R ei(

α
n+ 2kπ

n ) où k ∈ {0, 1, 2, ..., n− 1}.
Ces n solutions s’appellent les racines-nièmes complexes de Z
.

4. Corollaire : Racines n-ièmes de l’unité

Soit n ∈ N− {0; 1}. Soit Z ̸= 0
L’équation zn = 1 d’inconnue complexe z admet n solutions complexes :
Ce sont les nombres zk = ei

2kπ
n où k ∈ {0, 1, 2, ..., n− 1}.

Ces n solutions s’appellent les racines-nièmes complexes de l’Unité .
Leur ensemble s’appelle Un et Un est un groupe cyclique d’ordre

n engendré par z1 = e
i
2π

n

5. Racines carrées complexes de 1

L’équation z2 = 1 d’inconnue complexe z admet 2 solutions complexes :
Ce sont les nombres zk = ei

2kπ
2 où k ∈ {0, 1} c’est-à-dire 1 et - 1.

6. Racines carrées cubiques complexes de 1

L’équation z3 = 1 d’inconnue complexe z admet 3 solutions complexes :
Ce sont les nombres zk = ei

2kπ
3 où k ∈ {0, 1, 2}

c’est-à-dire 1, j = cos( 2π3 ) + i sin( 2π3 ) et j2 = cos( 4π3 ) + i sin( 4π3 )

7. Racines carrées quatrièmes complexes de 1

L’équation z4 = 1 d’inconnue complexe z admet 4 solutions complexes :
Ce sont les nombres zk = ei

2kπ
4 où k ∈ {0, 1, 2, 3}

c’et-à-dire 1, i, -1, -i
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8. Images des racines carrées n-ièmes complexes de 1

Les racines n-ièmes de l’unité ont des images sur le cercle trigonomé-
trique qui forment un polygône régulier convexe dont un des sommets
est 1.

-

6

6 1-1

i

-i

j

j2

De plus leur somme S est nulle. En effet, en posant w = e
i
2π

n

S = 1 + w1 + w2
1 + · · ·+ wn−1

1 =
1− wn

1

1− w1
= 0

pour n = 3, on a 1 + j + j2 = 0 pour n = 4, on a 1 + i+ (−1) + (−i) = 0

Autre propriété :

wn−k
1 a pour conjugué et pour inverse wk

1

9. Relations entre les racines carrées n-ièmes complexes de Z et
celles de 1
Soit n ∈ N− {0; 1}. Soit Z ̸= 0. Soit v une racine n-ième de Z
zn = Z ⇔ zn = vn ⇔ (

z

v
)n = 1 ⇔ z

v
est une racine n-ième del’unité

Théorème :

Si on connaît une racine n-ième v de Z ̸= 0, pour trouver toutes les
racines n-ièmes de Z, il suffit de multiplier v par toutes les racines
n-ièmes de l’unité.

Par exemple, si l’on cherche les solutions de Z3 = 27, on peut vérifier
que 33 = 27 donc 3 est une racine-troisième de 27 donc toutes les racines
troisièmes de 27 sont 3, 3j et 3j2
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3.3.8 Applications trigonométriques
Formules de multiplication des arcs

Il s’agit de calculer cos(nθ) et sin(nθ) pour n = 2, 3, 4 à l’aide des formules du
binôme de Newton et de Moivre.

1. soit θ ∈ R
alors (cos(θ) + i sin(θ))2 = cos2(θ)− sin2(θ) + 2i cos(θ) sin(θ)
Or (cos(θ) + i sin(θ))2 = cos(2θ) + i sin(2θ)
donc cos(2θ) = cos2(θ)− sin2(θ) et sin(2θ) = 2 cos(θ) sin(θ)

2. soit θ ∈ R
alors (cos(θ)+i sin(θ))3 = cos3(θ)+3 cos2(θ)i sin(θ)+3 cos(θ)(i sin(θ))2+
(i sin(θ))3 = cos3(θ) + 3 cos2(θ)i sin(θ)− 3 cos(θ)(sin(θ))2 − i(sin(θ))3

Or (cos(θ) + i sin(θ))2 = cos(3θ) + i sin(3θ)
donc
cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ) = 4 cos3(θ)− 3 cos(θ)
sin(3θ) = 3 cos2(θ) sin(θ)− sin3(θ) = 3 sin(θ)− 4 sin3(θ)

3. De même,
cos(4θ) = cos4(θ)− 6 cos2(θ) sin2(θ) + sin4(θ)
sin(4θ) = 4 cos3(θ) sin(θ)− 4 cos(θ) sin3(θ)
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Linéarisation d’un polynôme trigonométrique

Il s’agit de transformer un polynôme en sin(x) et en cos(x) en une somme de
cosinus et de sinus d’un multiple de x.
Procédé :
Si z = eiθ = cos(θ) + i sin(θ) ∈ U alors

1

z
∈ U.

Comme z ∈ U alors z = eiθ = cos(θ) + i sin(θ)
alors z = cos(θ)− i sin(θ) et zz =| z |= 1 donc{

z = cos(θ) + i sin(θ)
z = cos(θ)− i sin(θ)

d’où 
cos(θ) =

1

2
(z + z)

sin(θ) =
1

2i
(z − z)

D’après la formule de Moivre{
zn = cos(nθ) + i sin(nθ)
zn = cos(nθ)− i sin(nθ)

d’où 
cos(nθ) =

1

2
(zn + zn)

sin(nθ) =
1

2i
(z − zn)
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Exemples :

1. Linéariser sin5(x)
On utilisera les formules d’Euler-Moivre.{

einx = cos(nx) + i sin(nx)
e−inx = cos(nx)− i sin(nx)

donc 
cos(nx) =

1

2
(einx + e−inx)

sin(nx) =
1

2i
(einx − e−inx)

Alors sin5(x) = (sin(x))5 = (
1

2i
(eix − e−ix))5

=
e5ix − 5e4ixe−ix + 10e3ixe−2ix − 10e2ixe−3ix + 5eixe−4ix − e−5ix

25i5

=
e5ix − e−5ix − 5(e3ix − e−3ix) + 10(eix − e−ix)

32i

=
2i sin(5x)− 5(2i sin(3x)) + 10(2i sin(x))

32i

=
1

16
sin(5x)− 5

16
sin(3x) +

5

8
sin(x)

2. Linéariser cos3(θ).

cos3(θ) = [
1

2
(z3−z3)] =

1

8
(z3+3z2z+3zz2+z3) =

1

8
(z3+z3+3zz(z+z))

=
1

8
(2 cos(3θ) + 3.2 cos(θ)) =

1

4
cos(3θ) +

3

4
cos(θ))

3. Linéariser sin3(θ).

sin3(θ) = [
1

2i
(z3+z3)] =

i

8
(z3−3z2z+3zz2−z3) =

i

8
(z3−z3−3zz(z−z))

=
i

8
(2i sin(3θ)− 3.2i sin(θ)) =

−1

4
sin(3θ) +

3

4
sin(θ))

4. Linéariser cos4(θ). On démontre que :

cos4(θ) =
1

8
cos(4θ) +

1

2
cos(2θ) +

3

8

5. Linéariser sin4(θ).
On démontre que :

sin4(θ) =
1

8
cos(4θ) +

−1

2
cos(2θ) +

3

8

6. Linéariser sin3(θ) cos4(θ).

cos4(θ) sin3(θ) = (sin(θ) cos(θ))3 cos(θ) = (
sin(2θ)

2
)3 cos(θ)

=
1

8
(
−1

4
sin(6θ) +

3

4
sin(2θ)) cos(θ)
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3.3.9 Résolution de l’équation du second degré
az2 + bz + c = 0 d’inconnue z ∈ C

Soit l’équation az2 + bz + c = 0 .

1. a ∈ C∗, b ∈ C, c ∈ C .
Soit le discriminant ∆ = b2 − 4ac

(a) ou bien ∆ = 0 alors l’équation a une seule solution z =
−b

2a
(b) ou bien ∆ ̸= 0 alors l’équation a 2 solutions :

z′ =
−b− δ

2a
et z” =

−b+ δ

2a
où δ est une racine carrée complexe de ∆

2. a ∈ R∗, b ∈ R, c ∈ R
Soit le discriminant ∆ = b2 − 4ac

(a) ou bien ∆ = 0 alors l’équation a une seule solution z =
−b

2a
(b) ou bien ∆ > 0 alors l’équation a 2 solutions réelles distinctes :

z′ =
−b−

√
∆

2a
et z” =

−b+
√
∆

2a
(c) ou bien ∆ < 0 alors l’équation a 2 solutions complexes conjuguées

z′ =
−b− i

√
−∆

2a
et z” =

−b+ i
√
−∆

2a



Chapitre 4

Exercices

4.1 Problèmes classiques

4.1.1 Mesures des angles d’un triangle

1. Démontrer que la somme des mesures des trois angles d’un triangle
propre mesure π radians ou 180

2. En déduire la valeur des trois angles d’un triangle équilatéral.
3. En déduire aussi la valeur des trois angles d’un triangle rectangle iso-

cèle.

4.1.2 Construction à la règle et au compasde
√
2

1. Soit un carré ABCD de côté de longueur a > 0. Déterminer la valeur
exacte de la diagonale AC

2. En déduire une construction à la règle et au compas de
√
2

4.1.3 Constructions à la règle et au compas de
√
3

2
et

√
3

1. Soit un triangle équilatéral ABC de côté de longueur a > 0. Soit H le
pied de la hauteur issue de A.
Déterminer la valeur exacte de la hauteur AH

2. En déduire une construction à la règle et au compas de
√
3

2
puis de

√
3.

4.1.4 Exercice

Un triangle ABC est rectangle en A.

39
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4.2 Calculs approchés de rapports trigonométriques

4.2.1 Calculatrice

A l’aide d’une calculatrice, donner une valeur approchée à 10−2 près de :
• sin(34) ; cos(48) ; cos(2530”15”) ; tan(5442′15”)
• cotan(16 gr)

• tan(−3, 5 rd) ; sin

(
3π

7
rd

)

4.2.2 Calculatrice

A l’aide d’une calculatrice, exprimer d’abord en degrés décimaux puis en de-
grés, minutes et secondes , une valeur approché de la mesure x d’un angle
ayant pour :

• sinus 0, 6428
• sinus 0, 8746
• tangente 0, 2729
• cotangente 0, 4723
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4.3 Représentations d’arcs sur le cercle trigono-
métrique

Colorier sur un cercle trigonométrique l’arc de cercle correspondant aux
points M tels que (

−→
OA,

−−→
OM) mesure x dans les cas suivants :

•
3π

2
≤ x ≤ 5π

2

•
7π

6
≤ x ≤ 3π

2

• −3π

2
≤ x ≤ −π

• −11π

3
≤ x ≤ −10π

3
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4.4 Expressions trigonométriques

4.4.1 Exercice

Simplifier les expressions suivantes :
1. cos(π − x)− cos(−x)

2. sin(π + x) + cos(
π

2
− x)

3. sin(π − x) + cos(x+
π

2
)

4. cos(π − x) + sin(x+ 3π)

5. sin(x− 3π) + sin(x+ 3π)

6. cos(
5π

2
+ x)

7. (sin(x) + cos(x))2 + (sin(x)− cos(x))2

8. cos(x) + cos(π + x) + cos(2π + x) + cos(3π + x)

9. cos(
π

8
) + cos(3

π

8
) + cos(5

π

8
) + cos(7

π

8
)

10. sin(x+
π

2
) + sin(x+ π) + sin(x+

3π

2
) + sin(x+ 2π)

11. cos(
π

2
− x)− sin(x+

π

2
) + cos(

7π

2
− x)− sin(x+

7π

2
)

12. sin(x+ π) + cos(π − x)− sin(x− 2π) + cos(x+ 7π)

13. cos3(x) + cos2(x) sin(x) + cos(x) sin2(x) + sin3(x)

Corrigé

Simplifier les expressions suivantes :

1. cos(π − x)− cos(−x) = −cos(x)− cos(x) = −2 cos(x)

2. sin(π + x) + cos(
π

2
− x) = −sin(x) + sin(x) = 0

3. sin(π − x) + cos(x+
π

2
) = sin(x)− sin(x) = 0

4. cos(π−x)+sin(x+3π) = −cos(x)+sin(x+π+2π) = −cos(x)+sin(x+π)

= −cos(x)− sin(x)

5. sin(x− 3π) + sin(x+ 3π) = sin(x− π − 2π) + sin(x+ π + 2π)
= sin(x−π)+sin(x+π) = −sin(π−x)+sin(x+π) = −sin(x)−sin(x) =

−2 sin(x)

6. cos(
5π

2
+ x) = cos(2π +

π

2
+ x) = cos(

π

2
+ x) = −sin(x)

7. (sin(x) + cos(x))2 + (sin(x)− cos(x))2

= sin2(x)+2 sin(x) cos(x)+cos2(x)+sin2(x)−2 sin(x) cos(x)+cos2(x)

= 2(sin2(x) + cos2(x)) = 2

8. cos(x) + cos(π + x) + cos(2π + x) + cos(3π + x)
= cos(x) + cos(π + x) + cos(+x) + cos(π + x) = 2cos(x) + 2cos(π + x)

= 2cos(x)− 2cos(x) = 0
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9. cos(
π

8
) + cos(

3π

8
) + cos(

5π

8
) + cos(

7π

8
)

= cos(
π

8
) + cos(π − 5π

8
) + cos(

5π

8
) + cos(π − π

8
)

= cos(
π

8
)− cos(

5π

8
) + cos(

5π

8
)− cos(

π

8
) = 0

10. sin(x+
π

2
) + sin(x+ π) + sin(x+

3π

2
) + sin(x+ 2π)

= cos(x) + sin(x) + sin(x+
3π

2
− 2π) + sin(x)

= cos(x)+sin(x)+sin(x−π

2
)+sin(x) = cos(x)+sin(x)−sin(

π

2
−x)+sin(x)

= cos(x) + sin(x)− cos(x) + sin(x) = 2 sin(x)

11. cos(
π

2
− x)− sin(x+

π

2
) + cos(

7π

2
− x)− sin(x+

7π

2
)

sin(x)− cos(x) + cos(
8π

2
− π

2
− x)− sin(x− 7π

2
+

8π

2
)

= sin(x)− cos(x) + cos(4π − π

2
− x)− sin(x− 7π

2
+ 4π)

= sin(x)− cos(x) + cos(−π

2
− x)− sin(x− π

2
)

= sin(x)− cos(x) + cos(
π

2
+ x) + sin(

π

2
− x)

= sin(x)− cos(x)− sin(x) + cos(x) = 0

12. sin(x+ π) + cos(π − x)− sin(x− 2π) + cos(x+ 7π)
= − sin(x)− cos(x)− sin(x) + cos(x− π + 8π)
= − sin(x)− cos(x)− sin(x) + cos(x− π)
= − sin(x)− cos(x)− sin(x) + cos(π − x)

= − sin(x)− cos(x)− sin(x)− cos(x) = −2 sin(x)− 2 cos(x)

13. cos3(x) + cos2(x) sin(x) + cos(x) sin2(x) + sin3(x)
= cos3(x) + cos(x) sin2(x) + cos2(x) sin(x) + + sin3(x)
= cos(x)

(
cos2(x) + sin2(x)

)
+ sin(x)

(
cos2(x) + sin2(x)

)
= (cos(x) + sin(x))

(
cos2(x) + sin2(x)

)
= cos(x) + sin(x) car cos2(x) + sin2(x) = 1.
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4.5 Equations trigonométriques

4.5.1 Exercice

Résoudre les équations suivantes d’inconnue x et où a est un paramètre réel.
1. cos(x) = a

2. sin(x) = a

3. tan(x) = a

Corrigé

1. • si a /∈ [−1; 1] alors cos(x) = a n’a pas de solution.
• si a ∈ [−1; 1] il existe une seule valeur x0 ∈ [0;π] telle que cos(x0) = a

c’est x0 = Arccos(a)
Alors cos(x) = a ⇐⇒ cos(x) = cos(x0) ⇐⇒ ∃k ∈ Z tel que x =
x0 + 2kπ ou x = −x0 + 2kπ

2. • si a /∈ [−1; 1] alors sin(x) = a n’a pas de solution.
• si a ∈ [−1; 1] il existe une seule valeur x0 ∈ [−π

2
;
π

2
] telle que sin(x0) =

a c’est x0 = Arcsin(a)
Alors sin(x) = a ⇐⇒ sin(x) = sin(x0) ⇐⇒ ∃k ∈ Z tel que x =
x0 + 2kπ ou x = π − x0 + 2kπ

3. il existe une seule valeur x0 ∈] − π

2
;
π

2
[ telle que tan(x0) = a c’est x0 =

Arctan(a)
Alors tan(x) = a ⇐⇒ tan(x) = tan(x0) ⇐⇒ ∃k ∈ Z tel que x = x0+2kπ
ou x = π + x0 + 2kπ
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4.5.2 Exercice

Résoudre les équations suivantes d’inconnue réelle x.
1. (a) cos(x) = 1

(b) cos(x) = 0

(c) cos(x) =
1

2

(d) cos(2x) =

√
3

2
2. (a) sin(x) = 1

(b) sin(x) = 0

(c) sin(x) =

√
2

2

(d) sin(2x) =

√
3

2
3. (a) tan(x) = 1

(b) tan(x) = 0

(c) tan(x) =
√
3

(d) tan(2x) =

√
3

3

Corrigé

Toutes les équations suivantes ont pour ensemble de définition : R :

1. (a) cos(x) = 1 ⇐⇒ cos(x) = cos(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou
x = −0 + 2kπ donc S = {2kπ/k ∈ Z}

(b) cos(x) = 0 ⇐⇒ cos(x) = cos(
π

2
) ⇐⇒ ∃k ∈ Z tel que x =

π

2
+ 2kπ ou

x = −π

2
+ 2kπ .

Or −π

2
+2kπ =

π

2
−π+2kπ =

π

2
+(2k−1)π donc S =

{π
2
+ kπ/k ∈ Z

}
(c) cos(x) =

1

2
⇐⇒ cos(x) = cos(

π

3
) ⇐⇒ ∃k ∈ Z tel que x =

π

3
+ 2kπ

ou x = −π

3
+ 2kπ

donc S =
{π
3
+ 2kπ;−π

3
+ 2kπ/k ∈ Z

}
(d) cos(2x) =

√
3

2
⇐⇒ cos(2x) = cos(

π

6
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

6
+ 2kπ ou 2x = −π

6
+ 2kπ ⇐⇒ x =

π

12
+ kπ ou x = − π

12
+ kπ

donc S =
{ π

12
+ kπ;− π

12
+ kπ/k ∈ Z

}
2. (a) sin(x) = 1 ⇐⇒ sin(x) = sin(

π

2
) ⇐⇒ ∃k ∈ Z tel que x =

π

2
+ 2kπ ou

x = π − π

2
+ 2kπ

donc S =
{π
2
+ 2kπ/k ∈ Z

}
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(b) sin(x) = 0 ⇐⇒ sin(x) = sin(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou
x = π − 0 + 2kπ = (2k + 1)/pi
donc S = {kπ/k ∈ Z}

(c) sin(x) =

√
2

2
⇐⇒ sin(x) = sin(

π

4
) ⇐⇒ ∃k ∈ Z tel que x =

π

4
+ 2kπ

ou x = π − π

4
+ 2kπ

donc S =

{
π

4
+ 2kπ;

3π

4
+ 2kπ/k ∈ Z

}
(d) sin(2x) =

√
3

2
⇐⇒ sin(2x) = sin(

π

3
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

3
+ 2kπ ou 2x = π − π

3
+ 2kπ =

2π

3
+ 2kπ c’est-à-dire x =

π

6
+ kπ

ou x =
2π

6
+ kπ

donc S =
{π
6
+ kπ;

π

3
+ kπ/k ∈ Z

}
3. (a) tan(x) = 1 ⇐⇒ tan(x) = tan(

π

4
) ⇐⇒ ∃k ∈ Z tel que x =

π

4
+ 2kπ

ou x = π +
π

4
+ 2kπ

donc S =

{
π

4
+ 2kπ;

5π

4
+ 2kπ/k ∈ Z

}
(b) tan(x) = 0 ⇐⇒ tan(x) = tan(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou

x = π + 0 + 2kπ = (2k + 1)π
donc S = {kπ/k ∈ Z}

(c) tan(x) =
√
3 ⇐⇒ tan(x) = tan(

π

3
) ⇐⇒ ∃k ∈ Z tel que x =

π

3
+ 2kπ

ou x = π +
π

3
+ 2kπ

donc S =

{
π

3
+ 2kπ;

4π

3
+ 2kπ/k ∈ Z

}
(d) tan(2x) =

√
3

3
⇐⇒ tan(2x) = tan(

π

6
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

6
+ 2kπ ou x =

π

12
+ kπ

donc S =
{ π

12
+ kπ/k ∈ Z

}
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4.5.3 Exercice

tan(a+ b) =
tan(a) + tan(b)

1− tan(a)tan(b)
.

Les 4 conditions d’existence sur a et b de cette formule sont :
1. tan(a+ b) existe c’est-à-dire ∀k ∈ Z a+ b ̸= π

2
+ kπ

2. tan(a) existe c’est-à-dire ∀k ∈ Z a ̸= π

2
+ kπ

3. tan(b) existe c’est-à-dire ∀k ∈ Z b ̸= π

2
+ kπ

4. 1− tan(a)tan(b) ̸= 0

Démontrer que les 3 premières conditions suffisent car elles entraînent auto-
matiquement la 4-ième.

Corrigé

En effet,
• ou bien tan(b) ̸= 0 c’est-à-dire ∀k ∈ Z b ̸= kπ

Alors 1−tan(a)tan(b) = 0 ⇐⇒ tan(a) =
1

tan(b)
⇐⇒ tan(a) = cotan(b) ⇐⇒

tan(a) = tan(
π

2
− b) ⇐⇒ ∃k ∈ Z tel que a =

π

2
− b + 2kπ ou a =

π +
π

2
− b+ 2kπ ⇐⇒ a+ b =

π

2
+ kπ.

Or ceci n’est pas possible à cause de la condition 1.
• ou bien tan(b) = 0 c’est-à-dire ∃k ∈ Z b = kπ mais alors 1−tan(a)tan(b) =
1 ̸= 0

4.5.4 Exercice

Résoudre dans R l’équation suivante d’inconnue réelle x :

2 cos2(x)− sin(5x)− 1 = 0

Corrigé

2 cos2(x)− sin(5x)− 1 = 0
• L’ensemble de définition de cette équation est D = R
• ∀x ∈ D 2 cos2(x)− sin(5x)− 1 = 0 ⇐⇒ 2 cos2(x)− 1 = sin(5x)

⇐⇒ cos(2x) = sin(5x) ⇐⇒ cos(2x) = cos(
π

2
− 5x)

⇐⇒ ∃k ∈ Z 2x =
π

2
− 5x+ 2kπ ou ∃k ∈ Z 2x = −π

2
+ 5x+ 2kπ

⇐⇒ ∃k ∈ Z 7x =
π

2
+ 2kπ ou ∃k ∈ Z − 3x = −π

2
+

2kπ

7

⇐⇒ ∃k ∈ Z x =
π

14
+ 2kπ ou ∃k ∈ Z x =

π

6
− 2kπ

3

• Alors l’ensemble des solutions est S =
⋃

k∈Z

{
π

14
+ 2kπ ;

π

6
− 2kπ

3

}
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4.5.5 Exercice

Résoudre dans R l’équation suivante (E) d’inconnue réelle x puis représenter
l’ensemble des solutions sur le cercle trigonométrique :

(E) : 4 sin(x) sin(3x)− 2 cos(2x) + 1 = 0

Corrigé

• L’ensemble de définition de cette équation est D = R
• ∀x ∈ D
4 sin(x) sin(3x)− 2 cos(2x) + 1 = 0

⇐⇒ 4

[
1

2
(cos(x− 3x)− cos(x+ 3x))

]
− 2 cos(2x) + 1 = 0

car sin(a) sin(b) =
1

2
(cos(a− b)− cos(a+ b)))

Donc (E) ⇐⇒ 2(cos(−2x) − cos(4x)) − 2 cos(2x) + 1 = 0 ⇐⇒
2 cos(2x)− 2 cos(4x)− 2 cos(2x) + 1 = 0

⇐⇒ −2 cos(4x) + 1 = 0 ⇐⇒ cos(4x) =
1

2
⇐⇒ cos(4x) = cos(

π

3
)

⇐⇒ ∃k ∈ Z

 4x =
π

3
+ 2kπ

ou 4x = −π

3
+ 2kπ

⇐⇒


x =

π

12
+ k

π

2

ou x = − π

12
+ k

π

2
• Alors l’ensemble des solutions est :

S =
{ π

12
+ k

π

2
;

π

12
+ k

π

2
/ k ∈ Z

}
=
⋃

k∈Z { π

12
+k

π

2
;

π

12
+

k
π

2
}

Ces solutions sont représentées par les points suivants sur le cercle trigo-
nométrique :



4.5. EQUATIONS TRIGONOMÉTRIQUES 49

4.5.6 Bac C Paris

Résoudre dans R l’équation suivante d’inconnue réelle x puis représenter l’en-
semble des solutions sur le cercle trigonométrique :

(E) :
√

sin(x) +
√
cos(x) = 0

Corrigé

1. Def = {x ∈ R/

 sin(x) ≥ 0

cos(x) ≥ 0
} =

⋃
k∈Z

[0 + 2kπ ;
π

2
+ 2kπ]

2. Comme la somme de deux réels positifs est nulle si et seulement si ces
deux réels sont nuls alors :

Alors
√
sin(x) +

√
cos(x) = 0 ⇐⇒

 sin(x) = 0

cos(x) = 0

Or ce système n’a pas de solutions car ∀x ∈ R sin2(x) + cos2(x) = 1

3. On en conclut que l’ensemble des solutions S = ∅
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4.5.7 Bac C Paris (suite)

Résoudre dans R l’équation suivante d’inconnue réelle x puis représenter l’en-
semble des solutions sur le cercle trigonométrique :

(E) :
√

sin(x) +
√
cos(x) = 1

v 1 : Catherine FILIOLE, TC Lycée Schoelcher√
sin(x) +

√
cos(x) = 1

• Def = {x ∈ R/

 sin(x) ≥ 0

cos(x) ≥ 0
} =

⋃
k∈Z

[0 + 2kπ ;
π

2
+ 2kπ]

• 2kπ ∈ S car
√

sin(2kπ) +
√

cos(2kπ) = 0 + 1 = 1

•
π

2
+ 2kπ ∈ S car

√
sin(

π

2
+ 2kπ) +

√
cos(

π

2
+ 2kπ) = 1 + 0 = 1

• Par conséquent, {2kπ; π
2
+ 2kπ} ⊂ S

• Ce sont les seules solutions car si 0 < x <
π

2
alors

{
0 < sin(x) < 1
0 < cos(x) < 1

donc
{ √

sin(x) > sin2(x)√
cos(x) > cos2(x)

donc
√

sin(x) +
√

cos(x) > 1

• On en conclut que l’ensemble des solutions S = {2kπ; π
2
+ 2kπ}

L’idée de Catherine FILIOLE est basé sur le résultat suivant : Si 0 < X < 1
alors

√
X < X2

ce qui s’illustre aisément :

Corrigé 2

Toujours sur cette même idée :√
sin(x) +

√
cos(x) = 1 ⇐⇒

√
sin(x) +

√
cos(x) = sin2(x) + cos2(x)

⇐⇒
√
sin(x)− sin2(x) +

√
cos(x)− cos2(x) = 0

⇐⇒
√
X −X2 +

√
Y − Y 2 = 0 en posant X = sin(x) et Y = cos(x)
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⇐⇒
√
X − X2 =

√
Y − Y 2 = 0 puisque

√
X − X2 ≥ 0 et

√
Y − Y 2 ≥ 0 car

0 ≤ X ≤ 1 et 0 ≤ Y ≤ 1
Donc (E) ⇐⇒

√
X = X2 et

√
Y = Y 2

⇐⇒
{

X = 0
Y = 0

ou
{

X = 0
Y = 1

ou
{

X = 1
Y = 0

ou
{

X = 1
Y = 1

⇐⇒
{

sin(x) = 0
cos(x) = 0

impossible car sin2(x) + cos2(x) = 1

ou
{

sin(x) = 0
cos(x) = 1

ou
{

sin(x) = 1
cos(x) = 0

ou
{

sin(x) = 1
cos(x) = 1

impossible car sin2(x) + cos2(x) = 1

⇐⇒
{

sin(x) = 0
cos(x) = 1

ou
{

sin(x) = 1
cos(x) = 0

⇐⇒ x = 2kπ ou x =
π

2
+ 2kπ

Corrigé 3 : Sonia FILIOLE, TC Lycée Schoelcher
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4.5.8 Equations de la forme a cos(x) + b sin(x) = c

1. Démontrer que pour tout réel x l’on a :

cos(x) + sin(x) =
√
2 cos

(
x− π

4

)
=

√
2 sin

(
x+

π

4

)
2. Quels sont les valeurs minimale et maximale de cos(x) + sin(x)

3. Résoudre dans R l’équation suivante : cos(x) + sin(x) = 2

4. Résoudre dans R l’équation suivante : cos(x) + sin(x) = 1

Corrigé

1. (a)
√
2 cos

(
x− π

4

)
=

√
2
(
cos
(π
4

)
cos(x) + sin

(π
4

)
sin(x)

)
=

√
2

(√
2

2
cos(x) +

√
2

2
sin(x)

)
= cos(x) + sin(x)

(b)
√
2 sin

(
x− π

4

)
=

√
2
(
sin(x)cos

(π
4

)
+ sin

(π
4

)
cos(x)

)
=

√
2

(
sin(x)

√
2

2
+

√
2

2
cos(x)

)
= sin(x) + cos(x)

(c) Donc l’on a :

cos(x) + sin(x) =
√
2 cos

(
x− π

4

)
=

√
2 sin

(
x+

π

4

)
2. On a

{
−1 ≤ cos(x) ≤ 1
−1 ≤ sin(x) ≤ 1

donc 2 ≤ cos(x) + sin(x) ≤ 2.

Mais −2 et 2 ne sont pas les valeurs minimale et maximale de cos(x) +
sin(x). Les valeurs minimale et maximale sont −

√
2 et

√
2 car

−1 ≤ cos
(
x− π

4

)
≤ 1 donc −

√
2 ≤ cos

(
x− π

4

)
≤

√
2

3. Résolvons dans R l’équation suivante : cos(x) + sin(x) = 2
• Méthode 1 :
−1 ≤ cos(x) ≤ 1 et −1 ≤ sin(x) ≤ 1 donc −2 ≤ cos(x) + sin(x) ≤ 2
Par conséquent cos(x) + sin(x) = 2 ⇔ cos(x) = 1 et sin(x) = 1
Donc cos2(x) + sin2(x) = 2. Impossible car cos2(x) + sin2(x) = 1
Par conséquent , l’ensemble des solutions de cette équation est S = ∅

• Méthode 2 :
cos(x) + sin(x) = 2 ⇔

√
2 cos

(
x− π

4

)
= 2 ⇔ cos

(
x− π

4

)
=

√
2

Impossible à résoudre car
√
2 ≈ 1, 414 et −1 ≤ cos(X) ≤ 1

4. cos(x)+ sin(x) = 1 ⇐⇒
√
2 cos

(
x− π

4

)
= 1 ⇐⇒ cos

(
x− π

4

)
=

√
2

2

⇐⇒ cos
(
x− π

4

)
= cos

(π
4

)
⇐⇒ ∃k ∈ Z


x− π

4
=

π

4
+ 2kπ

ou
x− π

4
= −π

4
+ 2kπ

⇐⇒


x =

π

2
+ 2kπ

ou
x = 2kπ

Par conséquent, S =
⋃
k∈Z

{π
2
+ 2kπ ; 2kπ

}
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4.6 Inéquations trigonométriques

4.6.1 Ensembles de définition

Déterminer les ensembles de définition des fonctions f suivantes :
1. f(x) =

√
1 + cos(x)

2. f(x) =
√
1− sin(x)

3. f(x) = tan(x)

4. f(x) =
1 + tan(x)

1− tan(x)

Corrigé

1. f(x) =
√
1 + cos(x) existe à condition que

{
1 + cos(x) existe
1 + cos(x) ≥ 0

• 1 + cos(x) existe pour tout réel car cos(x) existe pour tout réel.

• 1 + cos(x) ≥ 0 est vrai pour tout réel car ∀x ∈ R − 1 ≤ cos(x) ≤ 1
donc 0 ≤ 1 + cos(x) ≤ 2.

• Par conséquent, Df = R

2. f(x) =
√
1− sin(x) existe à condition que

{
1− sin(x) existe
1− sin(x) ≥ 0

• 1− sin(x) existe pour tout réel car sin(x) existe pour tout réel.

• 1− sin(x) ≥ 0 est vrai pour tout réel :
En effet, ∀x ∈ R − 1 ≤ sin(x) ≤ 1
donc 1 ≥ − sin(x) ≥ −1 d’où −1 ≤ − sin(x) ≤ 1.
On en déduit que 0 ≤ 1− sin(x) ≤ 2.

• Par conséquent, Df = R

3. f(x) = tan(x) =
sin(x)

cos(x)
existe existe à condition que

 sin(x) existe
cos(x) existe
cos(x) ≥ 0

• sin(x) existe pour tout réel.

• cos(x) existe pour tout réel.

• cos(x) = 0 ⇐⇒ cos(x) = cos(
π

2
)

⇐⇒ ∃k ∈ Z


x =

π

2
+ 2kπ

ou
x = −π

2
+ 2kπ

⇐⇒ ∃k ∈ Z x =
π

2
+ kπ

• Par conséquent, Df = R−
{π
2
+ kπ / k ∈ Z

}
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4. f(x) =
1 + tan(x)

1− tan(x)
existe si et seulement si tan(x) existe et 1+tan(x) ̸= 1.

Par conséquent,
f(x) existe si et seulement si ∀k ∈ Z x ̸= π

2
+ kπ et x ̸= π

4
+ kπ

Df = R−
{π
2
+ kπ; ;

π

4
+ kπ/ k ∈ Z

}
∀x ∈ Df f(x) = tan

(
x+

π

4

)
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4.6.2 Inéquations

Résoudre dans [−π;π] l’inéquation suivantes d’inconnue réelle x puis repré-
senter l’ensemble des solutions sur le cercle trigonométrique :

(I) :
√
2 sin(2x)− 1 < 0

Corrigé

• L’ensemble de définition de cette inéquation est :D = [−π;π]

• ∀x ∈ D (I) ⇐⇒
√
2 sin(2x) < 1 ⇐⇒ sin(2x) <

1√
2

⇐⇒ sin(2x) <
√
2

2

(I) ⇐⇒ sin(2x) < sin(
π

4
) ⇐⇒


−π ≤ 2x <

π

4
ou
3π

4
< 2x ≤ π

⇐⇒


−π

2
≤ x <

π

8
ou
3π

8
< x ≤ π

2

• L’ensemble des solutions est S =
[
−π

2
;
π

8

[
∪
]
3π

8
;
π

2

]
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Corrigé Fernand ODONNAT du Vauclin

• L’ensemble de définition de cette inéquation est :D = [−π;π]

• ou bien x =
π

2
ou x = −π

2
alors

√
2 sin(2x) − 1 = −1 < 0 donc

{π
2
;−π

2
} ⊂ S

• ou bien x ̸= π

2
et x ̸= π

2
alors on peut poser t = tan(x) alors sin(2x) =

2t

1 + t2
.

Donc (I) ⇐⇒ 2t

1 + t2
<

√
2

2
⇐⇒ 4t <

√
2 +

√
2t2 ⇐⇒

√
2t2 − 4t +

√
2 > 0

∆ = (−2)2 −
√
2
√
2 = 4− 2 = 2 > 0

L’équation
√
2t2 − 4t+

√
2 = 0 a deux solutions :

t1 =
2−

√
2

2
=

√
2− 1 = tan(

π

8
) et t2 =

√
2 + 1 = tan(

3π

8
)

Donc (I) ⇐⇒ t < t1 ou t > t2 ⇐⇒ tan(x) < tan(
π

8
) ou tan(x) >

tan(
3π

8
)

•
• L’ensemble des solutions est S =

[
−π

2
;
π

8

[
∪
]
3π

8
;
π

2

]
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4.6.3 Inéquations

Résoudre dans R les inéquations suivantes d’inconnue réelle x puis représenter
l’ensemble des solutions sur le cercle trigonométrique :

1. 2 cos2(x) > 1

2. tan2(x)− (
√
3− 1) tan(x)−

√
3 < 0
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4.7 Limites

4.7.1 Les 4 limites de base

Soit x un réel de l’intervalle
]
0;

π

2

[
Soit M le point du cercle trigonométrique

tel que l’angle (
−→
OI,

−−→
OM) mesure x en radians.

On rappelle que l’aire d’un secteur angulaire de mesure x en radians dans un

cercle de rayon R est
xR2

2

1. Que vaut OI ?
2. Exprimer , en fonction de x, les distances OC, OS et IT puis les aires

des triangles OIM et OITainsi que l’aire du secteur angulaire IOM .

3. Prouver alors que si 0 < x <
π

2
alors sin(x) < x < tan(x)

4. En déduire que si 0 < x <
π

2
alors cos(x) <

sin(x)

x
< 1

5. Déterminer lim
x 7→0

cos(x) puis lim
x 7→0

sin(x)

x
et lim

x 7→0

tan(x)

x

6. Vérifier que si 0 < x <
π

2
alors

1

1 + cos(x)

(
sin(x)

x

)2

=
1− cos(x)

x2

7. En déduire que lim
x 7→0

1− cos(x)

x2
=

1

2
et que lim

x7→0

1− cos(x)

x
= 0

1. OI = 1 car I est sur le cercle trigonométrique.

2. • OC = cos(x)
• OS = sin(x)
• IT = tan(x)

• Aire(OIM) =
OI × CM

2
=

1× sin(x)

2
=

sin(x)

2

• Aire(OIT ) =
OI × IT

2
=

1× tan(x)

2
=

tan(x)

2
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• l’aire du secteur angulaire IOM .est
x

2

3. Soit 0 < x <
π

2
Par construction, l’aire du secteur angulaire est comprise entre l’aire du
triangle OIM et l’aire du triangle OIT

donc
sin(x)

2
<

x

2
<

tan(x)

2
. En multipliant les membres des deux inéga-

lités par 2 qui est un nombre positif on obtient

sin(x) < x < tan(x)

4. Soit 0 < x <
π

2
alors

• Comme sin(x) < x et comme x > 0 alors
sin(x)

x
< 1.

• Comme x < tan(x) alors x <
sin(x)

cos(x)
donc

cos(x)

x
<

1

x
.

Or sin(x) > 0 car x > 0 donc sin(x)
cos(x)

x
< sin(x)

1

x
d’où cos(x) <

sin(x)

x

• En conclusion, cos(x) <
sin(x)

x
< 1

5. • lim
x 7→0

cos(x) = 1 et lim
x 7→0

1 = 1 donc d’après le théorème d’encadrement

par des fonctions ayant même limite alors lim
x7→0

sin(x)

x
= 1

• Soit 0 < x <
π

2
alors

tan(x)

x
=

sin(x)

x

1

cos(x)
. D’après les deux

limites précédentes, l’on obtient lim
x 7→0

tan(x)

x
= 1

6. Soit 0 < x <
π

2
alors :

1

1 + cos(x)

(
sin(x)

x

)2

=
1

1 + cos(x)

sin2(x)

x2
=

1

1 + cos(x)

1− cos2(x)

x2

=
1

1 + cos(x)

(1− cos(x))(1 + cos(x))

x2
=

1− cos(x)

x2

7. • Comme lim
x 7→0

cos(x) = 1 et lim
x7→0

1 = 1 alors lim
x 7→0

1− cos(x)

x2
=

1

2

• Comme
1− cos(x)

x
= x

1

1 + cos(x)

(
sin(x)

x

)2

alors lim
x7→0

1− cos(x)

x
= 0
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En résumé les 4 limites de base et les 6 qui s’en déduisent à connaître
♡ ♡ ♡ :

⋄
lim
x7→0

sin(x)

x
= 1

d’où
⋆

lim
x 7→0

sin(ax)

ax
= 1

lorsque a ̸= 0
⋆

lim
x 7→0

sin(ax)

bx
=

a

b

lorsque a ̸= 0 et b ̸= 0
⋆

lim
x 7→0

sin(ax)

sin(bx)
=

a

b

lorsque a ̸= 0 et b ̸= 0
⋄

lim
x 7→0

tan(x)

x
= 1

d’où
⋆

lim
x7→0

tan(ax)

ax
= 1

lorsque a ̸= 0
⋆

lim
x7→0

tan(ax)

bx
=

a

b

lorsque a ̸= 0 et b ̸= 0
⋆

lim
x7→0

tan(ax)

tan(bx)
=

a

b

lorsque a ̸= 0 et b ̸= 0
⋄

lim
x 7→0

1− cos(x)

x2
=

1

2
⋄

lim
x 7→0

1− cos(x)

x
= 0
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Remarque : Obtention de 3 de ces limites par une autre méthode
1. En utilisant la dérivation :

• En admettant que sin est dérivable sur R donc dérivable en 0 alors

lim
x→0

sin(x)

x
= lim

x→0

sin(x)− sin(0)

x− 0
= (sin)′(0) = cos(0) = 1

• En admettant que cos est dérivable sur R donc dérivable en 0 alors

lim
x→0

cos(x)− 1

x
= lim

x→0

cos(x)− cos(0)

x− 0
= (cos)′(0) = −sin(0) = 0

• En admettant que tan est dérivable sur R−
{π
2
+ kπ tels que k ∈ Z

}
donc dérivable en 0 alors

lim
x→0

tan(x)

x
= lim

x→0

tan(x)− tan(0)

x− 0
= (tan)′(0) =

1

cos2(0)
= 1

2. En utilisant les formules de trigonométrie :
Comme

cos(2θ) = cos2(θ)− sin2(θ) = 2cos2(θ)− 1 = 1− 2sin2(θ)

alors
cos(2θ) = 1− 2sin2(θ)

donc
cos(θ) = 1− 2sin2

(
θ

2

)

lim
x→0

cos(x)− 1

x2
= lim

x→0

1− 2sin2
(x
2

)
− 1

x
= lim

x→0

−2sin2
(x
2

)
4
[x
2

]2 = lim
x→0

−1

2

sin
(x
2

)
x

2

2

= −1

2
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4.7.2 Pour s’entraîner : Calcul de limites

Déterminer les limites éventuelles suivantes :
1. lim

x 7→+∞
sin(x)

2. lim
x 7→+∞

cos(x)

3. lim
x 7→+∞

sin(x)

x

4. lim
x 7→+∞

x+ sin(x)

5. lim
x 7→0

x sin

(
1

x

)
6. lim

x 7→−∞
x2 − cos(x)

7. lim
x 7→0

x2(sin(x) + cos(x))

8. lim
x 7→π

2

cotan(x)

x− π

2

9. lim
x 7→π

3

√
3 cos(x)− sin(x)

x− π

3

10. lim
x 7→0

tan(x)− sin(x)

x3

11. lim
x 7→0

sin2(x)

1− cos(x)

12. lim
x 7→0

sin(2x)√
1− cos(x)

13. lim
x 7→0

1− cos(x)

sin2(5x)

14. lim
x 7→0

x sin(x)

1− cos(x)

15. lim
x 7→π

6

sin(6x)

2 cos(x)−
√
3

Corrigé

1. lim
x 7→+∞

sin(x) n’existe pas car sin(x) oscille entre −1 et 1

2. lim
x 7→+∞

cos(x) n’existe pas car cos(x) oscille entre −1 et 1

3. lim
x 7→+∞

sin(x)

x
?

• L’ensemble de définition Df = R∗

• Comme il existe au moins un intervalle du type ]A; +∞[ inclus dans
Df alors on peut rechercher lim

x 7→+∞
f(x)

• −1 ≤ sin(x) ≤ x

• donc si x > 0 alors − 1

x
≤ sin(x)

x
≤ 1

x
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• D’après le théorème d’encadrement par des fonctions ayant même
limite,

comme lim
x 7→+∞

− 1

x
= 0 et lim

x 7→+∞

1

x
= 0

alors lim
x 7→+∞

sin(x)

x
= 0

4. lim
x 7→+∞

x+ sin(x)

• L’ensemble de définition Df = R
• Comme il existe au moins un intervalle du type ]A; +∞[ inclus dans
Df alors on peut rechercher lim

x 7→+∞
f(x)

• ∀x ∈ R − 1 ≤ sin(x) ≤ 1 donc x− 1 ≤ x+ sin(x) ≤ x+ 1
Or lim

x7→+∞
x− 1 = +∞ ; lim

x7→+∞
x+ 1 = +∞ donc lim

x7→+∞
x+ sin(x) = +∞

5. lim
x 7→0

x sin

(
1

x

)
• L’ensemble de définition Df = R∗

• Comme il existe au moins un intervalle épointé de centre 0 inclus dans
Df alors on peut rechercher lim

x 7→0
f(x)

• Si x > 0 comme −1 ≤ sin

(
1

x

)
≤ 1 alors −x ≤ x sin(

1

x
) ≤ x

• D’après le théorème d’encadrement par des fonctions ayant même li-

mite, comme lim
x 7→0+

−x = 0 ; lim
x 7→0+

x = 0 alors lim
x 7→0+

x sin

(
1

x

)
= 0

• Si x < 0 comme −1 ≤ sin

(
1

x

)
≤ 1 alors −x ≥ x sin(

1

x
) ≥ x

• D’après le théorème d’encadrement par des fonctions ayant même li-

mite, comme lim
x 7→0−

−x = 0 ; lim
x 7→0−

x = 0 alors lim
x 7→0−

x sin

(
1

x

)
= 0

• Comme lim
x 7→0−

x sin(
1

x
) = 0 et lim

x 7→0+
x sin

(
1

x

)
= 0 alors lim

x 7→0
x sin

(
1

x

)
= 0

6. lim
x 7→−∞

x2 − cos(x)

• L’ensemble de définition Df = R
• Comme il existe au moins un intervalle du type ]−∞;B[ inclus dans
Df alors on peut rechercher lim

x 7→−∞
f(x)

• Comme −1 ≤ cos(x) ≤ 1 alors 1 ≥ −cos(x) ≥ −1 donc −1 ≤
−cos(x) ≤ 1 d’où x2 − 1 ≤ x2 − cos(x) ≤ x2 + 1

• D’après le théorème d’encadrement par des fonctions ayant même li-
mite, comme lim

x 7→−∞
x2 − 1 = +∞ ; lim

x 7→−∞
x2 + 1 = +∞ alors lim

x 7→−∞
x2 − cos(x) = +∞

7. lim
x 7→0

x2(sin(x) + cos(x))

• L’ensemble de définition Df = R
• Comme il existe au moins un intervalle épointé de centre 0 inclus dans
Df alors on peut rechercher lim

x 7→0
f(x)

• Comme −1 ≤ sin(x) ≤ 1 et −1 ≤ cos(x) ≤ 1 alors −2 ≤ sin(x) +
cos(x) ≤ 2

• Or x2 ≥ 0 donc −2x2 ≤ x2(sin(x) + cos(x)) ≤ 2x2

• D’après le théorème d’encadrement par des fonctions ayant même li-
mite, comme lim

x 7→0
−2x2 = 0 ; lim

x 7→0
2x2 = 0 alors lim

x 7→0
x2(sin(x) + cos(x)) = 0
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8. lim

x 7→
π

2

cotan(x)

x− π

2

9. lim

x 7→
π

3

√
3 cos(x)− sin(x)

x− π

3

10. lim
x 7→0

tan(x)− sin(x)

x3

11. lim
x 7→0

sin2(x)

1− cos(x)

12. lim
x 7→0

sin(2x)√
1− cos(x)

13. lim
x 7→0

1− cos(x)

sin2(5x)
• L’ensemble de définition est
Df = {x / sin2(5x) ̸= 0} = {x / sin(5x) ̸= 0}

Donc Df = R−
{
kπ

5
/ k ∈ Z

}
car sin(5x) = 0 ⇐⇒ ∃k ∈ Z 5x = kπ ⇐⇒ ∃k ∈ Z x =

kπ

5
• Comme il existe au moins un intervalle de centre 0 inclus dans D{

alors on peut rechercher lim
x 7→0

f(x)

• Par la méthode directe, il y a indétermination du type ”
0

0
” car

lim
x 7→0

1− cos(x) = 0 et lim
x7→0

sin2(5x) = 0

• Levons cette indétermination :

f(x) =
1− cos(x)

sin2(5x)
=

1− cos(x)

x2
x2(

sin(5x)

5x

)2

25x2

Or lim
x 7→0

x2

25x2
=

1

25
; lim

x7→0

1− cos(x)

x2
=

1

2
; lim

x 7→0

sin(x)

x
= 1

donc lim
x 7→0

f(x) =
1

50

14. lim

x 7→
π

6

sin(6x)

2 cos(x)−
√
3

• L’ensemble de définition est :

Df = {x /2 cos(x)−
√
3 ̸= 0} = {x / cos(x) ̸=

√
3

2
}

Donc Df = R−
{π
6
+ 2kπ;−π

6
+ 2kπ / k ∈ Z

}
car cos(x) =

√
3

2
⇐⇒ cos(x) =

π

6
⇐⇒ ∃k ∈ Z x =

π

6
+

2kπ ou x = −π

6
+ 2kπ

• Comme il existe au moins un intervalle de centre
π

6
inclus dans D{

alors on peut rechercher lim

x 7→
π

6

f(x)
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• Par la méthode directe, il y a indétermination du type ”
0

0
” car

lim

x 7→
π

6

sin(6x) = 0 et lim

x 7→
π

6

2 cos(x)−
√
3 = 0

• Levons cette indétermination :

Posons h = x− π

6
alors

sin(6x)

2 cos(x)−
√
3
=

sin(6(h+
π

6
)

2 cos(h+
π

6
)−

√
3
=

sin(6h+ π)

2
[
cos(h) cos(

π

6
)− sin(h) sin(

π

6

]
−
√
3

=
sin(6h+ π)√

3 cos(h)− sin(h)−
√
3
=

− sin(6h)√
3(cos(h)− 1)− sin(h)

=
6
− sin(6h)

6h√
3(cos(h)− 1)

h
− sin(h)

h

Donc lim

x 7→
π

6

sin(6x)

2 cos(x)−
√
3
= lim

h 7→0

6
− sin(6h)

6h√
3(cos(h)− 1)

h
− sin(h)

h

= 6

car lim
h 7→0

sin(h)

h
= 1 ; lim

h 7→0

sin(6h)

6h
= 1 ; lim

h7→0

1− cos(h)

h
= 0
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4.7.3 Autre démonstration de lim
x→0

sin(x)

x
= 1

1. Démontrer que ∀x ≥ 0 sin(x) ≤ x.

2. Démontrer que ∀x ≥ 0 cos(x) ≥ 1− x2

2
.

3. Démontrer que ∀x ≥ 0 x− x3

6
≤ sin(x) ≤ x.

4. En déduire un encadrement de sin(x) pour x ≥ 0.

5. Déduire du 3°) lim
x→0+

sin(x)

x

6. Déduire du 4°) lim
x→0−

sin(x)

x

7. En déduire que lim
x→0

sin(x)

x
= 1

8. Démontrer que la fonction f définie par f(x) =

{
1 si x = 0
sin(x)

x
si x ̸= 0

est continue sur R.

4.7.4 Une fonction spéciale

Etudier la continuité puis la dérivabilité sur R de la fonction suivante f définie
par

f(x) =

 0 si x = 0

x2 sin

(
1

x

)
si x ̸= 0

f est-elle de classe C1 sur R ?
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4.7.5 Prolongement par continuité

Pouvez-vous prolonger par continuité en 0 la fonction f définie par

f(x) =
2x

sin(x)

•
2x

sin(x)
existe à condition que 2x existe et sin(x) existe et sin(x) ̸= 0,

c’est-à-dire que ∀k ∈ Z x ̸= kπ

car

 ∀x ∈ R 2x existe
∀x ∈ R sin(x) existe
sin(x) = 0 ⇐⇒ ∃k ∈ Z x = kπ

• Par conséquent, Df = R− {kπ/k ∈ Z}
f est continue sur Df car

• x 7→ 2x est continue sur R donc sur Df

• x 7→ sin(x) est continue sur R donc sur Df

• x 7→ sin(x) ne s’annule jamais sur Df

Or on sait que lim
x 7→0

sin(x)

x
= 1 donc lim

x 7→0

2x

sin(x)
= 2

On peut donc créer g prolongement par continuité de f en 0 en posant :{
g(0) = 2
g(x) = f(x)si x ∈ Df



68 CHAPITRE 4. EXERCICES

4.8 Applications trigonométriques de la Formule
de Moivre et du binôme de Newton

4.8.1 Formules de multiplication des arcs

Exprimer en fonction de cos(θ) et de sin(θ) les nombres réels suivants :

cos(2θ); sin(2θ), cos(3θ); sin(3θ); cos(4θ); sin(4θ)
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Résolution de l’équation 3x− 4x3 = 1

Le but est de résoudre cette équation par 2 méthodes dont l’une est trigono-
métrique

1. Méthode 1 :
(a) Déterminer une solution évidente de cette équation.
(b) Résoudre alors cette équation

2. Méthode 2 :
(a) Soit a ∈ R. Exprimer cos(3a) en fonction de cos(a)

(b) Résoudre alors l’équation 3x− 4x3 = 1

L’ensemble de définition de cette équation est D = R
1. Méthode 1 :

(a) Une solution évidente de cette équation est x = −1.
(b) 3x − 4x3 = 1 ⇐⇒ 4x3 − 3x + 1 = 0 ⇐⇒ (x + 1)(4x2 − 4x + 1) =

0 ⇐⇒ (x+ 1)(2x− 1)2 = 0

⇐⇒ x = −1 ou x =
1

2
(solution double)

(c) Donc S =

{
−1 ;

1

2

}
2. Méthode 2 :

(a) Soit a ∈ R.
cos(3a) = cos(2a+a) = cos(2a) cos(a)−sin(2a) sin(a) = (2cos2(a)−
1)cos(a)− 2sin(a) cos(a) sin(a)
cos(3a) = 2 cos3(a)−cos(a)−2 sin2(a) cos(a) = 2 cos3(a)−cos(a)−
2(1− cos2(a)) cos(a)

cos(3a) = 4 cos3(a)− 3 cos(a)

(b) 3x−4x3 = 1 ⇐⇒
{

x = cos(a)
3 cos(a)− 4 cos3(a) = 1

⇐⇒
{

x = cos(a)
cos(3a) = −1

Or cos(3a) = 1 ⇐⇒ cos(3a) = cos(π) ⇐⇒ ∃k ∈ Z 3a =
π + 2kπ

⇐⇒ ∃k ∈ Z a =
π

3
+

2kπ

3
⇐⇒ a =

π

3
ou a = π ou a = −π

3
en donnant à k les 3 valeurs k = 0 ; k = 1 ; k = 2
Par conséquent,

x = cos
(π
3

)
=

1

2
ou x = cos (π) = −1 ou x = cos

(
−π

3

)
=

1

2
.

Donc S =

{
−1 ;

1

2

}
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Résolution de l’équation de Francois VIETE

François VIETE (1540 - 1603) sur la demande d’Henri IV roi de France, répon-
dit en un jour au défi suivant du mathématicien néerlandais Adrien ROMAIN
à savoir résoudre l’équation suivante : 45 x−3795 x3+95634 x5−1138500 x7+
7811375 x9−34512075 x11+105306075 x13−232676280 x15+384942375 x17−
488494125 x19 + 4838418000 x21 − 3786588000 x23 + 236030652 x25 −
17679100 x27 + 46955700 x29 − 14945040 x31 + 3764565 x33 − 740259 x35 +
111150 x37 − 12300 x39 + 945 x41 − 45 x43 + x45 = 1
(Source : "Degré 45 : François Viète relève le défi !" - article d’André DELE-
DICQ - Tangente n° 193 - Avril Mai 2020)

VIETE l’a résolu en pensant à la trigonométrie :
En posant x = cos(t), cette équation se ramène à la résolution de

cos(45t) = 1

Par conséquent, l’ensemble des 45 solutions est

S =

{
cos

(
2kπ

45

)
/ k ∈ [|0; 44|]

}
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4.8.2 Linéarisation de polynômes trigonométriques

Linéariser (c’est-à-dire transformer les polynômes suivants en une combinaison
linéaire de cosinus et de sinus de multiples de θ :

cos2(θ); sin2(θ); cos3(θ); sin3(θ); cos4(θ); sin4(θ); cos5(θ); sin5(θ); sin3(θ)cos4(θ)
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4.9 Intégration et trigonométrie

4.9.1 Exercice - Bac Rennes C 77

Soit I1 =

∫ π
2

0

cos(x)

1 + 2 sin(x)
dx ; I =

∫ π
2

0

sin(2x)

1 + 2 sin(x)
dx et I2 = I1 + I

1. Calculer I2

2. Calculer I1

3. En déduire I
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4.9.2 Intégration et trigonométrie

On pose I(x) =

∫ x

0

cos2(t) dt ; J(x) =
∫ x

0

sin2(t) dt

1. Calculer I(x) + J(x)

2. Calculer I(x)− J(x)

3. En déduire la valeur de I(x) puis celle de J(x)

Corrigé

I(x) existe car la fonction t 7→ cos2(t) est continue sur l’intervalle de bornes 0
et x car elle est continue sur R
J(x) existe car la fonction t 7→ sin2(t) est continue sur l’intervalle de bornes 0
et x car elle est continue sur R

1. I(x) + J(x) =

∫ x

0

cos2(t) dt+

∫ x

0

sin2(t) dt =

∫ x

0

(cos2(t) + sin2(t)) dt =

∫ x

0

1 dt = [t]x0 = x

2. I(x)− J(x) =

∫ x

0

cos2(t) dt−
∫ x

0

sin2(t) dt =

∫ x

0

(cos2(t)− sin2(t)) dt

=

∫ x

0

cos(2t) dt = [
1

2
sin(2t)]x0 =

1

2
sin(2x)

3. Comme I(x) + J(x) = x et que I(x)− J(x) =
1

2
sin(2x) alors

⋄ I(x) =
1

2

[
x+

1

2
sin(2x)

]
=

1

2
x+

1

4
sin(2x)

⋄ J(x) =
1

2

[
x− 1

2
sin(2x)

]
=

1

2
x− 1

4
sin(2x)
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4.10 La trigonométrie et C
4.10.1 Exercice

Déterminer le module et un argument de z =
cos(θ) + i sin(θ)

cos(θ)− i sin(θ)

4.10.2 Exercice

Soit θ un réel tel que ∀k ∈ Z α ̸= π

2
+ kπ.

Déterminer, en fonction de θ , le module et un argument de

1. z1 =
1

1 + i tan(θ)

2. z2 =
1

1− i tan(θ)

3. z3 =
1

i+ tan(θ)
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4.10.3 Exercice

Soient a et b des réels.

1. Démontrer que eia + eib = ei
a+b
2 2 cos

(
a− b

2

)
2. Démontrer que eia − eib = ei

a+b
2 2 i sin

(
a− b

2

)
3. En déduire que

eia + eib

eia − eib
= −i cotan

(
a− b

2

)
4. En déduire que

eia − eib

eia + eib
= i tan

(
a− b

2

)
5. Résoudre dans C, l’équation suivante :

1 +

n−1∑
k=1

(
z − 2i

z + 2i

)k

= 0
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4.10.4 Exercice

Pour tout entier n ≥ 2 on pose Sn =

n−1∑
k=1

sin

(
kπ

n

)
.

1. Posons z = cos
(π
n

)
+ sin

(π
n

)
.

Donner une expression simple de la somme
n−1∑
k=0

zk

2. Calculer la partie réelle et la partie imaginaire de cette somme.
En déduire l’égalité

Sn =
1

tan

(
2π

n

)
3. Déterminer lim

nleft+∞

Sn

n
?
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4.10.5 Exercice

Le plan complexe P est muni du repère orthonormé (O,−→e1 ,−→e2)
Soient les points A d’affixe a ̸= b, B d’affixe b et M d’affixe z.
Soit le nombre complexe z′ =

z − a

z − b
1°) Donner une interprétation géométrique de | z′ | et de arg(z’).
2°) Déterminer puis construire les ensembles suivants :

1. E1 = {M ∈ P tels que | z′ | = 1}
2. E2 = {M ∈ P tels que | z′ | = k} où k > 0 et k ̸= 1

3. E3 = {M ∈ P tels que z′ ∈ R}
4. E4 = {M ∈ P tels que z′ ∈ R+}
5. E5 = {M ∈ P tels que z′ ∈ iR}
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4.10.6 Exercice (Bac S Antilles-Guyane)

On considère dans le plan complexe, les points O d’affixe 0, A d’affixe 1 et B
d’affixe −1.
A tout point M d’affixe z ̸= 1 , on fait correspondre le point M’ d’affixe

z′ =
z − 1

1− z
1°) Etablir que | z′ | = 1

2°) Etablir que
z′ − 1

z − 1
est réel.

3°) Etablir que
z′ + 1

z − 1
est imaginaire pur.

4°) Interpréter géométriquement à l’aide des points M,M ′, O,A et B les 3
propriétés établies précédemment.
5°) Donner une construction géométrique de M ′ connaissant M .
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4.10.7 Nantes C 83

1. Déterminer les racines cinquièmes complexes de 1.
2. Démontrer que la somme S des solutions est nulle.
3. En décomposant S selon sa partie réelle et sa partie imaginaire et en

remarquant que cos

(
6π

5

)
= cos

(
4π

5

)
et que cos

(
8π

5

)
= cos

(
2π

5

)
démontrer que cos

(
2π

5

)
+ cos

(
4π

5

)
=

−1

2

4. Utiliser le fait que cos(2θ) = 2cos(θ)2 − 1 pour obtenir une équation

du second degré que vérifie cos(
2π

5
).

En déduire que cos

(
2π

5

)
=

−1 +
√
5

4
et que cos

(
4π

5

)
=

−1−
√
5

4

5. Détaillez alors une construction à la règle et au compas d’un pentagone
régulier convexe.

Corrigé

1. Soit l’équation z5 = 1 d’inconnue z ∈ C.
• L’ensemble de définition de cette équation est D = C.
• z = 0 /∈ S.
• On cherche donc des solutions z dans C∗. Posons alors z = r eiθ.
z5 = 1 ⇐⇒ (r eiθ)5 = 1 ⇐⇒ r5 e5iθ = 1 ei0 ⇐⇒

{
r5 = 1
∃k ∈ Z 5θ = 0 + 2kπ

⇐⇒

{
r = 1

∃k ∈ Z θ =
2kπ

5
• Les solutions s’obtiennent en donnant à k cinq valeurs entières consé-

cutives 0, 1, 2, 3, 4

S =

1 e
i
2(0)π

5 ; 1 e
i
2(1)π

5 ; 1 e
i
2(2)π

5 ; 1 e
i
2(3)π

5 ; 1 e
i
2(4)π

5



En posant z1 = e
i
2π

5 alors



1e
i
2(0)π

5 = ei0 = 1 = z01

e
i
2(1)π

5 = z1

e
i
2(2)π

5 = z21

e
i
2(3)π

5 = z31

e
i
2(4)π

5 = z41

donc S =
{
1; z1; z

2
1 ; z

3
1 ; z

4
1

}
.
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2. En posant z1 = e
i
2π

5

S = 1 + z1 + z21 + z31 + z41 = 1
1− z51
1− z1

=
1− 1

1− z1
= 0

en utilisant la formule donnant la somme de termes consécutifs d’une
suite géométrique.

3. 0 = S = cos(0) + i sin(0) + cos

(
2π

5

)
+ i sin

(
2π

5

)
+ cos

(
4π

5

)
+

i sin

(
4π

5

)
+ cos

(
6π

5

)
+ i sin

(
6π

5

)
+ cos

(
8π

5

)
+ i sin

(
8π

5

)
d’où 0 = Re(S) = cos(0)+cos

(
2π

5

)
+cos

(
4π

5

)
+cos

(
6π

5

)
+cos

(
8π

5

)
Or cos

(
6π

5

)
= cos

(
4π

5

)
et cos

(
8π

5

)
= cos

(
2π

5

)
donc 0 = 1+2 cos

(
2π

5

)
+2 cos

(
4π

5

)
d’où −1 = 2

[
cos

(
2π

5

)
+ cos

(
4π

5

)]
Par conséquent, cos

(
2π

5

)
+ cos

(
4π

5

)
=

−1

2

4. Comme cos(2θ) = 2cos(θ)2 − 1 alors
−1

2
= cos

(
2π

5

)
+ cos

(
4π

5

)
= cos

(
2π

5

)
+ 2 cos2

(
2π

5

)
− 1

On constate alors que cos(
2π

5
) vérifie l’ équation du second degré :

2X2 +X − 1

2
= 0 ∆ = (1)2 − 4(2)

(
−1

2

)
= 1 + 4 = 5

2X2 + X − 1

2
= 0 a donc pour solutions X1 =

−1−
√
5

4
< 0 et X2 =

−1 +
√
5

4
> 0 Or cos

(
2π

5

)
> 0 et cos

(
4π

5

)
< 0 donc cos

(
2π

5

)
=

−1 +
√
5

4
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et que cos

(
4π

5

)
=

−1−
√
5

4

5. Détaillez alors une construction à la règle et au compas d’un pentagone
régulier convexe.
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4.10.8 Exercice

Dans le plan complexe, soient les points A, B et C d’affixes respectives a,b et
c.
Démontrer l’équivalence logique suivante :
ABC est équilatéral ⇔ a+ bj + cj2 = 0 ou a+ bj2 + cj = 0
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4.10.9 Exercice (Bac S Antilles-Guyane)

Soit le nombre complexe A =
√
2−

√
3− i

√
2 +

√
3

1°) Démontrer que A2 = −2
√
3− 2i

2°)Déterminer alors le module et un argument de A2.

3°) En déduire le module de A et vérifier qu’un argument de A est bien
19π

12

et non
7π

12
.

4°) Représenter alors sur un même graphique A,−A et A2.
5°) Déduire de ce qui précède que :

cos(
7π

12
) = −

√
2−

√
3

2
et que sin(

7π

12
) =

√
2 +

√
3

2
.

6°) Déterminer les valeurs exactes de cos(
π

12
) et de sin(

π

12
).

7°) Déterminer puis dessiner l’ensemble (D) des nombres complexes z tels que
A2z soit un nombre réel.
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4.10.10 Exercice

Soit z = cos2(ϕ) + i sin(ϕ) cos(ϕ)

1. Déterminer toutes les valeurs de ϕ telles que z = 0.
2. Ces valeurs de Φ étant exclues,

(a) Ecrire alors z−1 sous forme cartésienne.
(b) Ecrire sous forme cartésienne z2, z3, z−2, z−3

(c) Retrouver les résultats des 2 questions précédentes en utilisant la
forme trigonométrique de z
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4.10.11 Exercice

Soit θ ∈ R. Résoudre dans C les équations suivantes d’inconnue z

1. z2 − (3 cos(θ) + i sin(θ)z + 2 = 0

2. z6−z3+1+i = 0 . On donnera les solutions sous forme trigonométrique.
3. cos(2α)z2 − 2i(cos(α)z − 1 + 0.

On appelera z1 et z2 les solutions. Après avoir déterminé z1 et z2 on
cherchera une CNS sur α pour que M1M2 = 2 sachant que M1 et M2

ont pour affixes respectives z1 et z2
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4.11 Etude de fonctions trigonométriques

4.11.1

4.11.2

4.11.3

4.11.4


