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Chapitre 1

Maitriser le cercle
trigonométrique

1.1 Lemme

Soit un cercle de centre O et de rayon R.
On admet qu’un arc de ce cercle d’angle « a pour longueur R «.
Donc le périmétre d’'un cercle de rayon R est P = 27 R.

1.2 Cercle trigonométrique

sgﬁirect

On appelle cercle trigonométrique un cercle de rayon 1.
Le périmétre d’un cercle trigonométrique mesure donc 27
Un tour de cercle trigonométrique mesure 27 radians.

Un demi-tour de cercle trigonométrique mesure 7 radians.

SOl

u .
Un quart de tour de cercle trigonométrique mesure 5 radians.

Le sens de parcours direct ou positif sur ce cercle trigonométrique est le sens
inverse des aiguilles d’une montre.
L’autre sens est dit indirect ou rétrograde.
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1.3 De Pangle géométrique a I’angle orienté

demi-droite
DD2

angle
géomeétrique

demi-droite
DD1

Comment passe-t-on d’un angle géométrique de demi-droites & un angle
orienté de demi-droites ?
A partir de deux demi-droites de méme origine O, on peut créer un angle
géométrique de demi-droites.
Dorénavant, nous orienterons un angle de demi-droites :

e de fagon positive ou directe si on parcourt dans le sens inverse des

aiguilles d’une montre.
e de fagon négative ou indirecte ou rétrograde sinon.

1.4 3 notions équivalentes

L’angle orienté des demi-droites [DD;) et [DDs) est ’angle orienté des vec-
teurs non nuls O—(} et O—V2 .

C’est aussi P’angle orienté des vecteurs unitaires(c’est-a-dire de norme 1) :

— 1
vecteur OA = 7017 et vecteur OM = ——0OV.
|oU|| 4

DDz

cercle trigonométrique
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1.5 Mesures d’un angle orienté de vecteurs

Voici le cercle trigonométrique et un fil représentant ’axe des réels :
Colorions ce fil avec 2 couleurs : I'une pour RT et 'autre pour R~.

=+ 4P

=+ 2 Pi

2Pi

-2 P

- 4P

=-6Pi

Posons le zéro du fil en A et enroulons ce fil qui représente R autour du cercle
trigonométrique :
e les réels positifs dans le sens direct
e les réels négatifs dans l'autre sens
Alors
e en A vont se poser les points du fil correspondants aux réels:--- |, —4 m; =2 7;0;2 m;4 75 - -
e en M vont se poser les les points du fil correspondants aux réels :
cx—4dmr—2mx;e+2mae+4m;--



10 CHAPITRE 1. MAITRISER LE CERCLE TRIGONOMETRIQUE



Chapitre 2

Rapports trigonométriques

2.1 Définition

1.5 axe des tangentes
axe des sinus
axe des cotangentes L [B ;

/

5 \ T

0.5

A axe des cosinus
1s

—
Si 'angle (OA, OM) mesure z, si C est le projeté orthogonal de M sur la
droite (OA) et si S est le projeté orthogonal de M sur la droite (OB) alors

cosinus(z) = cos(x) = OC
sinus(z) = sin(x) = OS

tangente(x) = tan(x) =




12 CHAPITRE 2. RAPPORTS TRIGONOMETRIQUES

2.2 Propriétés
2.2.1 Conditions d’existence

o QO ©
1. sin(x) existe pour tout réel x donc Dg;,, = R.

2. cos(x) existe pour tout réel x donc D.,s = R.

3. tan(z) existe pour tout réel x # g + km ou k € Z donc
™ - 7r
Dtan:R—{2+2k7r ;7+2k7r/ kEZ} :R—{§+k7r/k;€Z}.

4. cotan(z) existe pour tout réel z # kr ou k € Z
donc Deotan =R — {kmw / k € Z}.

2.2.2 Formule Fondamentale de la Trigonométrie

O QO © 3 formes équivalentes :
sin?(x) + cos®(x) = 1

Vz € R { sin’(z) =1 — cos?(x)
cos?(x) =1 — sin?(x)

2.2.3 Valeurs prises par les fonctions circulaires

VeeR —1<sin(z) <
VeeR —1<cos(x)<
Vz € Dign,  — 00 < tan(z) < 400

V& € Deotan  — 00 < cotan(x) < 400

1
1

2.2.4 Périodicité
o © ©

1. Vo € R sin(z + 2 kn) = sin(z) donc sin est périodique de période

T =2m
2. Vz € R cos(x + 2 kmw) = cos(z) donc cos est périodique de période
T=2m

3. Vo € R — {g +kn/ ke Z} tan(z + k) = tan(z) donc tan est
périodique de période T' =7

4. Vz e R—{kn/k € Z} cotan(zx + k) = cotan(z)
donc cotan est périodique de période T'= 7

Exemples

1. Sia # 0 alors  — sin(ax + b) et  — cos(ax + b) sont périodiques de
. 2w
période T' = —.
a
2. Sia # 0 alors z — tan(axz +b) et x — cotan(ax + b) sont périodiques de

™
période T' = —
a
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2.2.5 Angles opposés de mesures = et —x

T B T
T
5

H

_,( C A
-
-
(VERVERVY)
1. Ve € RVon a: —z € R et sin(—x) = —sin(x) donc sin est impaire.

Par conséquent, Cj;,, admet O comme centre de symétrie.

2. Ve €R1Ton a: —x € R et cos(—z) = cos(x) donc cos est paire.
Par conséquent, C,,s admet 'axe des ordonnées (Oy) comme axe de
symétrie.

3. Vz € Digp, Uon a : —x € Dy et tan(—z) = —tan(z) donc tan est
impaire.
Par conséquent, Ciq,, admet O comme centre de symétrie.

4. V& € Deotan I'on a : —x € Deppan et cotan(—z) = —cotan(x) donc
cotan est impaire.

Par conséquent, C.ytq, admet O comme centre de symétrie.

2.2.6 Angles complémentaires de mesures x et g —x
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VARV RV
Vz € R sin (g — x) = cos(x)
Vz € R cos (g — x) = sin(x)

Vo € Dign tan (g — x) = cotan(x)

Vo € Deotan,  cOtan (g — x) = tan(x)

™ . ) .
Les angles de mesure x et — — x sont dits complémentaires.

Des angles complémentaires échangent donc leurs sinus et cosinus, leurs tan-
gente et leur cotangente.

2.2.7 Angles de mesures x et g +x

T
T B T
& M
M' g
pije + xf
x
C C A
™
VRV
vz € R sin (g I x) = cos(x)
7T .
Vo e R cos (5 + :17)) = —sin(x)

Vo € Dign tan (g -+ :c) = —cotan(x)

Vo € Deotan,  cotan (g + x) = —tan(x)




2.2. PROPRIETES

2.2.8 Angles supplémentaires de mesures x et T —

T B T
M ° T
- K
*
C of »
.
VRV
Vo e R sin(m — x) = sin(x)
Vz € R cos(m — x) = —cos(x)

Vo € Digp tan(m — x) = —tan(z)

V& € Deotan  cotan(m — x) = —cotan(z)
Les angles de mesure x et m — x sont dits supplémentaires.

2.2.9 Angles de mesures r et 7+

pi+

(VERVERV]
Vr e R sin(m + x) = —sin(x)
Vz € R cos(m + x) = —cos(x)

Vz € Dign tan(m + x) = tan(z)

V& € Deotan  cotan(m + x) = cotan(x)



16 CHAPITRE 2. RAPPORTS TRIGONOMETRIQUES

2.3 Multiplication des arcs

2.3.1 Formules

VARV RV

SiaeR,beR
cos(a + b) = cos(a)cos(b) — sin(a)sin(b)
cos(a — b) = cos(a)cos(b) + sin(a)sin(b)
sin(a + b) = sin(a)cos(b) + sin(b)cos(a)
sin(a — b) = sin(a)cos(b) — sin(b)cos(a)

tan(a) + tan(b)
1 — tan(a)tan(b)
tan(a) — tan(b)
1+ tan(a)tan(b)

Sia€ Digpy, b€ Dign, a+b€ Digp tan(a +b) =

Sia€ Diyn, b€ Dign, a—b€ Digp tan(a — b) =
Siac€R,

cos(2a) = cos®(a) — sin?(a) = 2cos?(a) — 1 = 1 — 2sin?(a)
sin(2a) = 2 sin(a)cos(a)

1 2 1 — 2
cos?(a) = 1+ cos(2a) . sin?(a) = 1 - cos(2a)
2 2
5 g) _ 1+cos(a) . (c_L) _ 1 — cos(a)
cos (2 — i s (35 —
a a
" (9) _ 1+ cos (§> . sin? (g) _ 1 — cos (§>
4 2 ’ 4 2

2.3.2 Exercices

1. Démontrer que tan (%T) =1++2

2. Démontrer que tan (%) = \/5 -1

2 tan(6)
1 — tan?(0)

9t (37r>
an [ —
e Or—1=tan 31 = tan 23—7T =—8d’01‘1tan2 3—7T —
4 8 3T 8
1—tan? | —
8
1—2tan<37r).
8

1. e On sait que tan(26) =
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3 3
On en déduit que tan? (g) — 2 tan (;T) —-1=0
e Résolvons I'équation X2 —2X —1=0.onaA=4+4=38

2—2v2 2+ 2v2
donc il y a deux racines X’ = T\[ =1-V2et X” = %ﬁ =
1+V2.
3 3
e Or tan (g) > 0 donc | tan (87T> =1++v2
2 tan(6
2. e On sait que tan(20) = 1_;;(2()9)
i
2 tan | —
e Or 1 =tan (I) = tan (21) = (87)T d’ou 1 — tan? (E) =
4 8 1 — tan? (g) 8

T
2 ¢ (f)
- 8 T T
On en déduit que —tan? (g) — 2 tan (g) +1=0

e Résolvons l'équation — X2 —2X +1=0.onaA=4+4=38

2-22 2+ 2v/2
72\[:—1+\f2etX”:i:—1—\/§.

deux racines X’ = 5

e Or tan (%) > 0 donc | tan (g) =v2-1
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2.4 Transformations de sommes en produits

2.4.1 Formules

cos(a — b) + cos(a + b)

1. cos(a)cos(b) = 5
cos(a —b) — cos(a+b)

sin(a)sin(b) = 5
j b in(a—b
sin(a)cos(b) = sirle -5 ; stn(@ =)
+b a="1 s
a =D 9 RN
Enposant{a_b:q on a alors b:p_q d’ou :
2

cos(p) + cos(q) = 2 cos (%) cos (%)
cos(p) — cos(q) = —2 sin (%) sin (7%)
sin(p) + sin(q) = 2 sin (1%) cos (Z%)
puis  sin(p) — sin(q) = 2 sin <p ; q) cos <p ;_ q) (en changeant ¢

en —q)

2. On peut alors calculer cos(p) + sin(q) de 2 fagons :
e cos(p) + sin(q) = cos(p) + cos (g = q) = o000

e cos(p) + sin(q) = sin (g —p) + sin(q) = - - -

3. Vp,qGR—{g+k7r}

o tan(p) + tan(q) = sin(p) | sinlg) _ sin(p)eos(g) + sin(g)cos(p)

cos(p) " cosla)  cos(p)eos(a)
tan(p) + tan(q) = %
o tan(p) — tan(q) = W__q)cos(p)cos(q) en changeant ¢ en —q

4. Vp,q € R — {+kn}

sin(p + q)
t t = cos(p)cos(q)
o cotan(p) + cotan(q) cos(p)cos(q)
R cotan(p) . cotan(q) = M en changeant p en i —petqg
sin(p)sin(q) 2
T
en 5 q

2.4.2 Exercices

Ex 1
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Soit a € R tel que cos(a) + cos(3a) + cos(5a) # 0.
sin(a) + sin(3a) + sin(5a)

implifier 1’ ion F' =
Simplifier I’expression cos(a) + cos(3a) + cos(ba)

_ sin(a) + sin(5a) + sin(3a)

F 2sin (a —;5a> o3 (a _25a> + sin(3a) _ 2sin(3a)cos(—2a) + sin(3a)
2%0s <a Jr25a> cos (a 25(1) + cos(3a) 2cos(3a)cos(—2a) + cos(3a)
F = aEAG 1)

F = tan(3a)
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Ex 2

résoudre 1’équation suivante d’inconnue x € R :

(E) : sin(2z) + sin(4x) + sin(6x) + sin(8z) =0

1. L’ensemble de définition de cette équation est : R.
2. Vz eR (B) < sin(2z) + sin(8x) + sin(4z) + sin(6x) =0
9 10z —6z 4 9 102 —2z\ 0

sin | —= ) cos | —— sin —=) cos| —— | =
2[sin(5x)cos(—3x) + sin(bx cos( z)=0
sin(bx)[cos(3x) + cos(x)] =

4 2

sin(bz) 2 cos (;) cos (;) =0
2sin(bx)cos(2x)cos(x) = 0 <= sin(bx)cos(2x)cos(x) =0
sin(bz) = 0 ou cos(2z) = 0 ou cos(xz) =0

Ik, €Z 5r=kmoudky€Z 2z:g+k27r

(AR A

ou ks € Z x:g—i—kgﬁ
— Tk cZ x:klgouﬂkgeZ x:%%%
ou Jks € Z x:g—f—kgw

3. Par conséquent, ’ensemble des solutions de cette équation est

S:{kg : F7r4+kg; g+k37rtelsquek€Z}
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2.5 3 équations trigonométriques fondamentales

VARV RV
1. cos(z) = cos(xg) <= Ik €Z x=uz¢+2km ou x = —x9+ 2k
2. sin(z) =
3. tan(x)

sin(xg) < Ik €Z x=ux0+ 2km ou x =7 — 209 + 2kT
tan(zg) <= Ik €Z xz=wx0+kn

2.5.1 Exemples

Résoudre les équations suivantes d’inconnue x € R
1. cos(z) =0
2. sin(z) = \/75
3. tan(z) = V3
1. cos(z) =0 < cos(z) = cos(g)
— FeL = +2%rous=—s+2%r > FKeL z=
%—1—2143% ouzx = g—71‘—|—2kﬂ'= g+(2k—1)7r < JkeZ z= g—i—kﬂ
2. sin(z) = g — sin(z) = sm(g) <— JkeZ z= Z+2]€7T ouzx =

7T ™
7r—1+2k'7r—31+2k7r
3. tan(z) = V3 <= tan(z) :tan(g) < dkeZ m:g—i—lm
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2.6 Les 3 fonctions trigonométriques de base :sin, cos

et tan

2.6.1 Tableaux de variations

2.6.2 Tableaux de valeurs

2.6.3 Courbes

/AN

.
NTAN

I
5| |
| lU| Bl
¥—
I
bl gy




Chapitre 3

Forme trigonométriques des
nombres complexes

3.1 Affixe d’un point, affixe d’un vecteur

3.1.1 Théoréme

Soit P le plan affine euclidien associé au plan vectoriel ?
P est muni du repére orthonormé (O, e, e_2>)
Alors

e l'application f de C dans 3 qui & tout nombre complexe z = a + ib
associe le vecteur o = ae_l> + be_g> est une bijection.

On dit alors que le vecteur T est le vecteur-image de z ou encore que
z est laffixe de ¥ . Ceci se note U (2)

e l'application g de C dans P qui & tout nombre complexe z = a + ib
associe le point M de coordonnées (a,b) dans la base (1, e3) est une
bijection.

On dit alors que le point M est le point-image de z ou encore que z
est l'affixe de M. Ceci se note M(z)

23
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3.1.2 Théoréme

Soient z =a +ib et 2/ =a’ +ib'.
Soit M(z) et M'(z") alors 2z’ — z est laffixe du vecteur MM’

3.1.3 Démonstration
— _— —
MM = MO +OM = OM — OM = d'& + Ve, — ag} — b,
—(d —a)e + (b — b
—
Orz —z=(a"—a)+i( —b) donc MM’ (2’ - z). CQFD

y
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3.2 Module d’un nombre complexe

3.2.1 Définition

a + ib, on appelle module de z nombre réel positif suivant noté

V2z =+va2 + b2

Siz
|z |

3.2.2 Interprétation géométrique de la notion de module

|lz1=00; )22 = om?;

AB

24— 25| =| 23 | = |AB]|
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A
YBp p-----m-------- TB(ZB)
/ :
/1 NaB
/ |
/S
ya F-------- y /‘{ 7777 T 777777 £ A(ZA)
/ l
// Py
/ 1
€_2> // - :
/ |
/. l
0) -
€1 rB T A
3.2.3 Exemples
10]=0 li|=1 | —i|=1 | —2|=2 | 14iV/3 |= 2
3.2.4 Propriétés
Soient les nombres complexes z et z’
L |zl=z|=] -z |=| =]
2.1Z21>0
3. 2=0&2=0
4. | z2" =l 2 ]| 2|
1 1
5. 81 2/ # 0 alors | (;) |= ¥
: z K2
6. "#£0 al SA=
si 2/ # aors|(zl)| ¥
7. Re(z) <| z |
8. Im(z) <| z |
9. | z4+ 2 |<| z| + | 2/ | (Inégalité triangulaire de Minkowski)
10. |z =2 [I<]z=2" <[z +]#]
3.2.5 Démonstrations
1. évident

2.

évident

| 14+i |= V2
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3. évident

22 |=Vz2rzd =Vzdzd = VaEVed =z || 7|

EYEY VTS ER G —
R A AN
6. évident en utilisant les 2 propriétés précédentes.
7. Re(z) =a<|al=Va> < Va? + 12 =| 2 |
8. Im(2) =b<|bl= V02 < Va2 + 12 =| 2|

9. Comme les 2 membres de 'inégalité sont tous deux positifs, il suffit de
comparer leurs carrés
(|z4+2 ) 2=G+2)e+2)=(+2)z+7)=22+22 + 272+ 27
=22 +22/ + 22+ | 2 =] 2 | +2Re(22')+ | 2’ |?
—_——

W~

(@31

z?—&-i
<| 224222 |+ ]2 |? car Re(2) <| 2|
<(z|+]2]?CQFD

10. linégalité de droite | z — 2’ |<| z | + | 2’ | est Pexpression de l'inégalité
triangulaire de Minkowski car | —z' |=| 2’ |
Reste & démontrer ’'inégalité de gauche :
|2 =124+ (' —2) I<| 2|+ ]2 —z]domca=|2"|-|z|<][2 —2z|=8
De méme, en permutant les roles de z et de z’,
lona: —a=|z|—|7Z|<|z=-72|=8
De ces deux inégalités, a < 8 et —a < [ on en déduit que | « |< 8
cest-a-dire que || z | — | 2" ||<] 2 — 2/ |

3.2.6 C est un espace vectoriel euclidien réel
Théoréme

L’application f de C* dans R** qui & tout nombre complexe z associe | z | est
un homomorphisme non injectif de (C*, x) dans (R, x)

Théoréme

L’application ¢ de C x C dans R qui & tout couple de nombres complexes

(z,2’) associe le nombre réel ¢(z,2") = $(22” 4+ Zz') est un produit scalaire sur

C c’est-a-dire une forme bilinéaire définie positive.

De plus, ||z|| = v/¢(z,2) = (22 + 22) = V2z =| 2 |
Proposition

I (1,4) est une base orthonormée de C
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A
iR
M(z)
i oM =|z|
0 . R

3.3 Argument d’un nombre complexe non nul

3.3.1 Rappels sur les angles de vecteurs

1. (¥, ) existe lorsque U # T et v # I
2. (W,J\Té) existe lorsque M # A et M # B

3. si « est une mesure en radians de 'angle (7, ¥') alors Vk € Z
o + 2k est aussi une mesure de (7, )

4. (U, V) + (U, W) = (¢, &) . Cest la relation de Michel CHASLES
pour les angles de vecteurs

3.3.2 Argument d’un nombre complexe de module 1

On appelled = { z€ C/ | z |=1}.
Alors (U,x) est un sous-groupe du groupe ((C*,x)

Démonstration :
o U CCx
e soitzeUsoitz €U alors |22/ | =]z]||z|=1x1=1donczz €l
o soit z €U alors | 1 |= ;=1 =1donc ;€U

Remarque : soit z € Y alors £ = 22 =%
q z z
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3.3.3 Argument d’un nombre complexe non nul

A

€2 OM =|z |= T
p \\) (e_f,O—J\)/[) =arg(z) =146
> /’/’/’ >
0 er

=1 (cos(f) + isin(h)) = r exp(if) = r € (Notation d’Euler)
Cette écriture s’appelle la forme trigonométrique de z.

arg(z)
z a une infinité d’arguments qui différent de 2k =
L’angle (ef,0M) s’appelle grand argument de z et se note Arg(z)

—
Si z # 0 alors on peut considérer ’angle (e_f,OM ) de mesure 6 en radians
Si I’on note r le module de z , on obtient : z = x + 1y = r cos(f) + ir sin(6)

29

—
6 = une mesure de l’angle(e—f,OM)s’appelle un petit argument de z et se note

3.3.4 Relations entre forme trigonométrique et forme al-

gébrique

3 démarches pour trouver cette forme trigonométrique :

1. utiliser la position géométrique de z lorsqu’elle est évidente :
Par exemple :
1 = 1[cos(0) + sin(0)] = €© = %™

i = 1[cos(3) +isin(Z] = e’

—i = 1[cos(3L) + isin(3F] = €T

1. 0 est le seul nombre complexe qui a un module 0 mais qui n’a pas d’argument !

—1 = 1[cos(m) + sin(w)] = €™ d’ou la formule divine d’Euler :
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2. Bien observer ’écriture de z et la mettre sous la forme
z = nombre positif [ cos(mesure d'un angle) + i sin(cette méme mesure
d’angle] :
Exemples :
14+i= \/5(\/% +igs) = V2(cos(Z) +isin(Z))
sin(f) + icos(f) = cos(§ — 0) +-isin(§ —0) = ¢’
(1 —v/2)e* n’a pas pour module (1 — v/2) qui est un réel négatif!
2 En réalité, (1 — v2)e'T = (v/2 - 1)(=1)e’T = (/2 — 1)e'™e’

= (v/2 = 1)e”% donc a pour module /2 et pour argument &z

V26t

—0

oA [l

3. utiliser les formules de passage de la forme algébrique a la forme trigo-
nométrique (ou vice-versa) :
si z = x + iy alors
x = rcos(f)

y = rsin(0)
—
r = /12 L y2
cos(f) = £
sin(f) = £
3.3.5 Propriétés
1. r e p ei® = i0+0)
1 1
2. — = Z¢ ¥
ret? r¢
Tew T 2 9_0’
3 et peZ( )
4. Formule d’Abraham Moivre (Vitry le Francois 1667-Londres
1754) :
Vk € Z (cos(6) + isin(6))* = cos(k@) + isin(k#)
Démonstration :
Par récurrence sur N puis extension & Z
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3.3.6 Module et argument de 2B~ %0
ZA — RC
B «
///
/
/
/e Y A
// }L/////
L—F
C
e2 el
A

Soit A(za) et B(zp) alors AB a pour affixe zg — z4
| 24— 25 |=| 233 |= || AB| = AB

(et, B) = arg(zgp) = arg(zp — 24)

donc pour tout C'(z¢) on a :

@7|237,Zc|7 ZB — ZC

CAi‘ZA—Zc|7 ZA — 2C

— — z ZB — %
(CA,CB) = (&, CB)~(@, CA) = arg(zz)~arg(zz3) = arg<g’> =arg(>— ")

Théoréme

Dans un repére orthonormé direct. Soit A, B et C' d’affixes respectives z4,
zp et z¢. Soit un réel » > 0 et un réel 6§ alors on a 1’équivalence logique
suivante :

CB CA D) — ZB—2C 4
CA—ret(C’ ,C )—9@7214720—7“6

Conditions nécessaires et suffisantes d’appartenance 4 R, RT, R~
zeEReIm(z) =0 2=2<2=00u3dke€Zarg(z) =kn

2€RT & Im(z) =0et Re(2) >0 2=0o0u Ik € Z arg(z) = 2kn
ze€RT & Im(z) =0et Re(2) <0< z=0o0u Ik € Z arg(z) = 7w + 2km
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Conditions nécessaires et suffisantes d’appartenance a iR,iRT iR~

zeiR@Re(z):Oﬁz:—iﬁz:Oouﬂkeng(z):g—&—lm

inRJ“(:)Re(z):Oetlm(z)20©z:00u5|k‘€Za7“g(z)=g+2k7r

z€iR™ & Re(z) =0et Im(z) <0< z=00u 3k € Zarg(z) = 72—r+7r—|—2k:7r

Applications géométriques

Dans un repére orthonormé direct. Soit A;B et M d’affixes respectives z4,
zp et z. Soit un réel r > 0 et un réel § alors on a ’équivalence logique suivante :

By =% w0 . MB VA ME
P re” & o =T et (MA, ) = 60 (modulo2r)
Sir=1
MB P
VA" 1 & M € la médiatrice de [AB]|
Sir#1
MB o
UA=T < M € au cercle ’APPOLONIUS associe & A, Bet r .

Ce cercle est le cercle de diamétre [LJ] ot T est le barycentre de {(4,1), (B,r)}
et J est le barycentre de {(4,1),(B,—r)}

Sif =0+ 2km alors :

(m, ]\ﬁ) = 0 (modulo 2 ) <& M € la droite (AB) privée du seg-
ment [AB]

Sif =+ 2k alors :
(m, ]\ﬁ) =7 (modulo 2 ) < M € le segment ouvert |AB|
Si 6 # km alors :

(m, ]\ﬁ) = 6 (modulo 2 m) <& M € l'arc de cercle capable associé a
ABetf
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3.3.7 Racines n-iémes complexes d’un nombre complexe
non nul

1. Lemme :
| Ve>0Vy>0¥neN-{)1}y=a" o x= /7

2. Etude
Soit Z # 0. Posons Z = Re'. Soit n € N — {0;1}.
=7 e (T.eié)n — Reia o rneinO — Reia
Sr"=RetdkeZ nl=a+2kr
" a 2kmw
Sr=+VvVRetdkecZ 0=—+—.
n n

. 2km .
Lorsque k décrit Z, les — ne prennent que n valeurs distinctes : ce sont
n

celles qui correspondent aux n cas suivants :
k=0,k=1,...., k=n-1

3. Théoréme

Soit n € N — {0;1}. Soit Z # 0 avec Z = R e*®

L’équation z™ = Z d’inconnue complexe z admet n solutions com-
plexes :

Ce sont les nombres z, = /R el(5+%%) ou k € {0,1,2,....,mn — 1}.
Ces n solutions s’appellent les racines-niémes complexes de 7

4. Corollaire : Racines n-iémes de 1’unité

Soit n € N —{0;1}. Soit Z # 0

L’équation 2™ = 1 d’inconnue complexe z admet n solutions complexes :
Ce sont les nombres z, = eI ou k € {0,1,2,....,n —1}.

Ces n solutions s’appellent les racines-niémes complexes de 1’Unité .

Leur ensemble s’appelle U,, et U,, est un groupe cyclique d’ordre
2T

i—

n engendré par z; =e 1
5. Racines carrées complexes de 1

L’équation 22 = 1 d’inconnuekcomplexe z admet 2 solutions complexes :
s 2k .
Ce sont les nombres z;, = e'"2 ou k € {0,1} c’est-a-dire 1 et - 1.

6. Racines carrées cubiques complexes de 1

L’équation 2z = 1 d’inconnue complexe z admet 3 solutions complexes :
s 2k
Ce sont les nombres 2z, = e*™3 ou k € {0, 1,2}
c’est-a~dire 1, j = cos(3F) + isin(2F) et j2 = cos(4F) + isin(4F)
7. Racines carrées quatriémes complexes de 1

L’équation z* = 1 d’inconnue complexe z admet 4 solutions complexes :
s 2k

Ce sont les nombres z, = e*"1 ou k € {0,1,2,3}

c’et-a-dire 1, i, -1, -i
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8. Images des racines carrées n-iémes complexes de 1

Les racines n-iémes de I'unité ont des images sur le cercle trigonomé-
trique qui forment un polygone régulier convexe dont un des sommets
est 1.

2m
De plus leur somme S est nulle. En effet, en posant w = e n
1 _ n
S=T4w +wl+ Fup=——""L_g
1-— w1

pourn=3 onall+j+5=0 pourn:4,ona‘1—|—z'—|—(—1)—|—(—i) zO‘
Autre propriété :

I wffk a pour conjugué et pour inverse w’f

9. Relations entre les racines carrées n-iémes complexes de Z et
celles de 1
Soit n € N — {0;1}. Soit Z # 0. Soit v une racine n-iéme de Z
M= e"=0"& (5)" =1ls % est une racine n-iéme del’unité
Théoréme :

Si on connait une racine n-iéme v de Z # 0, pour trouver toutes les
racines n-iémes de Z, il suffit de multiplier v par toutes les racines
n-iémes de 'unité.

Par exemple, si I’'on cherche les solutions de Z3 = 27, on peut vérifier
que 3% = 27 donc 3 est une racine-troisiéme de 27 donc toutes les racines
troisiémes de 27 sont 3,37 et 352
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3.3.8 Applications trigonométriques
Formules de multiplication des arcs

Il s’agit de calculer cos(nf) et sin(nf) pour n = 2,3,4 a l'aide des formules du
binéme de Newton et de Moivre.

1. soit § € R
alors (cos(0) + isin(f))? = cos?(#) — sin?() + 2i cos(f) sin(6)
Or (cos(6) + i 8111(9))2 = cos(260) + isin(20)
donc cos(26) = cos?(6) — sin?(0) et sin(20) = 2 cos(#) sin(#)
2. soit 0 € R
alors (cos(0)+i51n(0))3 = cos?(0) +3 cos?(6)isin(#) +3 cos(f) (i sin(6))? +
(isin(0))3 = cos?(8) + 3 cos?(#)isin(h) — 3 cos(8)(sin(h))? — i(sin(0))3
((i)r (cos(8) + isin(6))? = cos(30) + isin(36)
cos(30) = cos®(0) — 3 cos(0) sin?(#) = 4 cos®(0) — 3 cos()
sin(36) = 3 cos?(#) sin(0) — sin®(#) = 3sin(f) — 4sin®(0)
3. De méme,
cos(40) = cos*(0) — 6 cos?(0) sin?(0) + sm 4(0)
sin(46) = 4 cos®(0) sin() — 4 cos(6) sin®(0)
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Linéarisation d’un polynéme trigonométrique

11 s’agit de transformer un polynome en sin(z) et en cos(z) en une somme de
cosinus et de sinus d’'un multiple de x.
Procédé : 1
Si z = e = cos(f) +isin(f) € U alors S € U.
Comme z € U alors z = €% = cos(f) + isin(6)
alors Z = cos(f) — isin(f) et 2z =| z |= 1 donc

z = cos(f) + isin(0)

Z = cos(f) — isin(0)
d’ou L

cos() = 5(2 +72)

D’aprés la formule de Moivre

{ 2" = cos(nfl) + i sin(nd)

z" = cos(nf) — isin(nd)
d’ou )
cos(nb) = i(z” +z")
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Exemples :

1. Linéariser sin®(z)
On utilisera les formules d’Euler-Moivre.

{ e = cos(nz) + isin(nw)
e

—in% — cos(nx) — isin(nx)

donc

1 . _
cos(nx) = 5(@“m +e7')

1 . )
sin(nz) = %(emx —e ")
1 . .
Alors sin®(z) = (sin(z))® = (?(e"’E —e )5
i
652'1’ _ 5642'93671'1’ + 10637,':66721'&0 _ 10621'1:6731'1 + 561'1’6741'1 _ 6757;1
B 257
B 652'1’ _ 675ix _ 5(63iz _ 6731‘1) + 10(629: _ efi:v)
B 32i
~ 2isin(5x) — 5(2isin(3z)) + 10(2i sin(x))
B . s 32
=1 sin(5x) — T sin(3z) + 3 sin(x)

2. Linéariser cos3(6).
1 1 1
cos?(0) = [§(z3—23)] = g(z3+3z22+3z§2+f3) = g(z3+23+3z§(z+2))
1 1
= §(2 cos(30) + 3.2cos(0)) = 1 cos(30) + %cos(@))
3. Linéariser sin®(f).
1 . . P ]
sin®(9) = [ (°+7°)] = é(f%fﬂszztz?’) = %(237237322(272))
i

= %(21 sin(30) — 3.2isin(0)) = %1 sin(36) + zsin(ﬁ))

4. Linéariser cos*(f). On démontre que :

1 1 3
4 —— s(4 - 5(2 _
cos*(6) S cos(40) + 5 cos(20) + g

5. Linéariser sin*(f).
On démontre que :

1 -1
sin(9) = 3 cos(40) + 5 cos(20) + %
6. Linéariser sin®(f) cos*(6).

cos?(#) sin®(0) = (sin(6) cos(h))? cos(f) = (Sin(QG)

2

)3 cos(6)

1, -1 . 3 .
= g(T sin(60) + 1 sin(20)) cos(6)
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3.3.9 Reésolution de I’équation du second degré
az? + bz +c =0 d’inconnue z € C

Soit I’équation az? + bz +c=0 .

1. aeC*beC,ceC.
Soit le discriminant A = b% — 4ac

=b
(a) ou bien A = 0 alors I’équation a une seule solution z = o
a
(b) ou bien A # 0 alors I’équation a 2 solutions :
, —b—9¢ ¢ —b+4
& = et 27 =
2a . 2a
ol d est une racine carrée complexe de A
2. ae R beR,ceR
Soit le discriminant A = b? — 4ac
—b
(a) ou bien A = 0 alors I’équation a une seule solution z = —
a

(b) ou bien A > 0 alors ’équation a 2 solutions réelles distinctes :
., —b—VvVA b+ VA
=t = ———
2a 2a
(¢) ou bien A < 0 alors I’équation a 2 solutions complexes conjuguées

S —b—ivV/—A o —b+ivV—A

2a 2a




Chapitre 4

Exercices

4.1
4.1.1

4.1.2

4.1.3

Problémes classiques

Mesures des angles d’un triangle

Démontrer que la somme des mesures des trois angles d’'un triangle
propre mesure 7 radians ou 180

2. En déduire la valeur des trois angles d’un triangle équilatéral.

3. En déduire aussi la valeur des trois angles d’un triangle rectangle iso-

céle.

Construction a la régle et au compasde\/§

. Soit un carré ABCD de coté de longueur a > 0. Déterminer la valeur

exacte de la diagonale AC

. En déduire une construction a la régle et au compas de /2

3
Constructions a la régle et au compas de - et V3

Soit un triangle équilatéral ABC de c6té de longueur a > 0. Soit H le
pied de la hauteur issue de A.
Déterminer la valeur exacte de la hauteur AH

3
En déduire une construction a la régle et au compas de - puis de

V3.

4.1.4 Exercice

I Un triangle ABC est rectangle en A.

39
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4.2 Calculs approchés de rapports trigonométriques

4.2.1 Calculatrice

A Taide d’une calculatrice, donner une valeur approchée a 10~2 prés de :
o sin(34) ; cos(48) ; c0s(2530715”) ; tan(5442'15”)
e cotan(16 gr)

3
o tan(—3,5 rd) ; sin (,;T T‘d)

4.2.2 Calculatrice

A l’aide d’une calculatrice, exprimer d’abord en degrés décimaux puis en de-
grés, minutes et secondes , une valeur approché de la mesure x d’un angle
ayant pour :

sinus 0, 6428

sinus 0, 8746

tangente 0, 2729

cotangente 0,4723
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4.3 Représentations d’arcs sur le cercle trigono-
métrique

Colorier sur un ce&lt}e tri%onométrique I’arc de cercle correspondant aux
points M tels que (OA, OM) mesure = dans les cas suivants :
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4.4 Expressions trigonométriques
4.4.1 Exercice
Simplifier les expressions suivantes :
1. cos(m — x) — cos(—x)
2. sin(m +x) + cos(g —x)
3. sin(m — x) + cos(x + g)
4. cos(m — x) + sin(z + 3m)
5. sin(z — 37) + sin(z + 3m)
)
6. 005(7 + )
7. (sin(z) + cos(z))? + (sin(x) — cos(z))?
8. cos(z) + cos(m + x) + cos(2m + ) + cos(3m + x)
9. cos(g) + cos(3%) + 005(5%) + cos(?%)
10. sin(z + g) + sin(z + ) + sin(z + 37) + sin(z + 27)
m 7 . T
11. ¢ (5 x) — sin(z + 2)+cos(7—x)—sm(x+?)
12. sin(x + 7) + cos(m — z) — sin(z — 2m) + cos(z + 7m)
13. cos®(z) + cos?(z) sin(z) + cos(z) sin’(x) + sin®(z)
Corrigé

Simplifier les expressions suivantes :

1.

2.

3.
4.

cos(m —x) — cos(—x) = —cos(x) — cos(x) =| —2 cos(x)

sin(m + x) + cos(g —x) = —sin(z) + sin(x) = @

sin(m — x) + cos(x + g) = sin(x) — sin(z) = @
cos(m—x)+sin(x+3m) = —cos(x)+sin(z+m+2m) = —cos(x)+sin(z+m)

= ‘ —cos(x) — sin(x) ‘

sin(x — 37) + sin(z + 37) = sin(zx — 7 — 27) + sin(z + 7 + 27)
= sin(z—mn)+sin(x+7) = —sin(n—x)+sin(z+7) = —sin(z) —sin(z) =
—2 sin(z)

om T ™
608(7 + ) = cos(2m + 5 +x)= 608(5
(sin(z) + cos(x))? + (sin(x) — cos(x))?
= sin?(x)+2 sin(z) cos(x)+cos®(x) +sin?(x) —2 sin(x) cos(x)+cos®(z)
= 2(sin?(x) + cos*(z)) =
cos(x) + cos(m + x) + cos(2m + x) + cos(3w + x)
= cos(x) + cos(m + ) + cos(+x) + cos(m + ) = 2cos(x) + 2cos(m + x)
= 2cos(x) — 2cos(x) =

+ ) =| —sin(z)
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9.

10. si

11.

12.

13.

T
g)

™
+ cos(m — g)

3 o
é;T)—|—cos( 5

s 5% 5%
Grote e
g) §)+cos(§)—cos(§) :@

cos(g) + cos( ) + cos(—

) + sin(z + ) + sin(z + 37) + sin(z + 27)
= cos(z) + sin(x) + sin(x + 3? — 27) + sin(z)
= cos(ac)Jrsin(:c)Jrsin(xfg)+sin(x) = cos(x)+Sin(a:)fsin(gf:c)+sin(x)

= cos(x) + sin(z) — cos(z) + sin(x) = m

cos(g —x) —sin(z + 2) + cos(%r — ) —sin(z + —)
sin(x) — cos(x) + cos(%r ~ T4 —sine - 77” %“)
= sin(z) — cos(z) + cos(4r — g —2) —sin(z — 2 + 4x)
= sin(z) — cos(z) + cos(—g —z) —sin(z — g)

= sin(z) — cos(x) + cos(g +z)+ sin(g — )

= sin(z) — cos(z) — sin(x) + cos(x) = @

sin(z + ) + cos(m — ) — sin(x — 27) + cos(x + 77)

= —sin(z) — cos(z) — sin(z) + cos(z — 7 + 87)

= —sin(z) — cos(x) — sin(x) + cos(z — )

= —sin(z) — cos(z) — sin(x) + cos(m — x)

= —sin(z) — cos(z) — sin(z) — cos(z) = ‘ —2sin(x) — 2 cos(z) ‘

cos®(x) + cos?(x) sin(x ) + cos(z) sin?(z) + sin®(x)

= cos?(x) + cos(z) sin ( ) + cos? () sin(z) 4 4 sin® ()
cos(w )(cos ( ) + sin?(z )) +51n( ) (cos?(z) + sin®(z))

(cos(z) + sin(x)) (cos?(z) + sin®(z))

2

cos(z) + sin(z) | car cos?(z) + sin®(x) = 1.



44

CHAPITRE 4. EXERCICES

4.5 Equations trigonométriques

4.5.1 Exercice

Résoudre les équations suivantes d’inconnue = et ou a est un paramétre réel.

1. cos(z) =a

2. sin(z) =a

3. tan(z) = a

Corrigé

1.

o sia ¢ [—1;1] alors cos(z) = a n’a pas de solution.

e sia € [—1;1] il existe une seule valeur zg € [0; 7] telle que cos(zp) = a

c’est g = Arccos(a)

Alors cos(z) = a < cos(z) = cos(xg) < Tk € Z tel que z =
xo + 2km ou x = —xg + 2k7

si a ¢ [—1;1] alors sin(z) = a n’a pas de solution.

. o T ,

sia € [—1;1] il existe une seule valeur g € [75; 5} telle que sin(zg) =
a c'est xg = Arcsin(a)

Alors sin(z) = a < sin(z) = sin(zg) < Fk € Z tel que =z =
ro+2kmoux =7 —xg + 2km

T
3. il existe une seule valeur o €] — =; —| telle que tan(z¢) = a c’est zg =
Arctan(a)

Alors tan(z) = a < tan(z) = tan(zy) < Ik € Z tel que z = xo+2kn
ouxr=m+wxg+ 2km

2°2
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4.5.2 Exercice

Résoudre les équations suivantes d’inconnue réelle x.
1. (a) cos(z) =1
(b) cos(z) =0

(c) cos(z) = %

(d) cos(2x) = ?
2. (a) sin(z) =1

(b) sin(z) =0

(c) sin(x) = ?

(d) sin(2z) = ?
3. (a) tan(z) =1

(b) tan(z) =0

(c) tan(z) = /3

(d) tan(2z) = g

Corrigé

Toutes les équations suivantes ont pour ensemble de définition : R :
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1. (a) cos(z) =1 <= cos(z) = cos(0) <= Tk € Z tel que x = 0+ 2k ou

x = —0+ 2kr donc S = {2kn/k € Z}

(b) cos(xz) =0 <= cos(z) = cos(g) <= Jk € Z tel que z = g + 2k ou

x:7g+2k7r.

T T T T
Or —§—|—2k7r = 5—7r+2k7r = §+(2k—1)7r donc S = {5 +kr/k € Z}

™

1
(c) cos(z) = 5 = cos(z) = cos(z) < Tk € Z tel que x = g + 2km

3
ouxz—%—!—?kﬂ'

donc § = {g + 2% —g + 2kn/k € Z}
V3 7

(d) cos(2x) = -5 = cos(2x) = cos(g) <= Jk € Z tel que 2z =
™ ™ ™ ™
6+ kﬂouwar 6+7Tkﬂ'<=>x 12—|—k;7roua: 12+k;7r
donc S = {E—i—lm;—ﬁ—i—lm/kel}

2. (a) sin(z) =1 < sin(x) = szn(g) <= dk € Ztel que x = g+2k7r ou

m:ﬂ—g+2k7r

done S = {g +2kr/k €7}
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(b)

()
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sin(z) = 0 <> sin(x) = sin(0) <= Ik € Z tel que = = 0 + 2k7 ou

r=7m—0+4+2kr = (2k+1)/pi

donc S = {kn/k € Z}

sin(x) = g — sin(x) = sm(%) <= dk € Ztel que x = g + 2km
T

our=m— - + 2k

donc S = {W —|—2k71';%77T +2km/k € Z}

4
sin(2z) = ? < sin(2z) = sm(%) <= dk € Z tel que 2z =
2
T o okmou 2w =7 — = 4 2kn = — + 2kr cest-a-dire z = — + kr
3 3 3 6
T
our=—+km

donc S = {% + km; g +kr/k € Z}
tan(z) = 1 <= tan(x) = tan(%) <= Jk € Z tel que x = Z + 2km

OUZ‘ZTF—‘,—%—I-Z]{ZTF
5
doncS:{Z+2kﬂ';I+2kﬂ'/keZ}

tan(z) = 0 < tan(x) = tan(0) <= Jk € Z tel que z = 0 + 2k~ ou
x=m+0+4+2kr =2k + )7
donc S = {kn/k € Z}

7

tan(z) = V3 <= tan(x) :tan(3) <= Jk € Z tel quex:§+2k7r
T
oux:w+§+2k7r

s

d =
onc S {3

4
+ 2km; ?ﬂ +2kn/k € Z}
tan(2z) = ? < tan(2z) = tan(%) <= Jk € Z tel que 2z =

%—l—Zlmoux:%—I—kﬂr

+kr/k € Z}

™

doncS={12
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4.5.3 Exercice

tan(a) + tan(b)
1 — tan(a)tan(b)’
Les 4 conditions d’existence sur a et b de cette formule sont :

1. tan(a + b) existe c’est-a-dire Vk € Z a + b # g + km

tan(a +b) =

2. tan(a) existe c’est-a-dire Vk € Z a # g + km

3. tan(b) existe c’est-a-dire Vk € Z b # g + km
4. 1 —tan(a)tan(b) # 0

Démontrer que les 3 premiéres conditions suffisent car elles entrainent auto-
matiquement la 4-iéme.

Corrigé

En effet,
e ou bien tan(b) # 0 c’est-a-dire Yk € Z b # kn

Alors 1—tan(a)tan(b) = 0 <= tan(a) =

tai(b) < tan(a) = cotan(b) <

tan(a) :tan(%—b) < 3k € Z tel que a = g—b—l—Qkﬁ oua =

7r+g—b+2k7r<:>a+b:g+k7r.

Or ceci n’est pas possible & cause de la condition 1.
e ou bien tan(b) = 0 c’est-a-dire Ik € Z b = kr mais alors 1—tan(a)tan(b) =
1#£0

4.5.4 Exercice

Résoudre dans R ’équation suivante d’inconnue réelle z :

2 cos?(x) — sin(5z) —1 =0

Corrigé

2cos?(z) — sin(5x) —1=0
e L’ensemble de définition de cette équation est D = R
e Vz €D 2cos?(x) —sin(hbz) —1 =0 < 2cos?(x) — 1 = sin(5z)
cos(2x) = sin(bx) <= cos(2z) = cos(g — 5x)

<
— JkeZ 2:1::%75x+2kﬂ' ou JkeZ 2x:fg+5x+2k7r
<

2
ez 7m=g+2k7r ou 3JkeZ —3x=—g+—];“
T T 2kw
— 7 A = — 42 e VA == - —
ke T 14+ km  ou ke T 5 3

2k
o Alors I’ensemble des solutions est S =  J; <5, {17; + 2km % — ﬂ-}
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4.5.5 Exercice
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Résoudre dans R I’équation suivante (E) d’inconnue réelle  puis représenter
I’ensemble des solutions sur le cercle trigonométrique :

(E) : 4sin(x) sin(3z) — 2cos(2z) + 1 =0

Corrigé

4sin(z)sin(3z) — 2cos(2z) +1 =0

e L’ensemble de définition de cette équation est D =R
e VzeD

1
— 4 5 (cos(z — 3x) — cos(z + 3z))| —2cos(2x) +1=0

car sin(a) sin(b) =

Donc (F) <

%(cos(a —b) —cos(a+b)))
2(cos(—2x) — cos(4x)) — 2cos(2z) +1 = 0 —
2cos(2z) — 2cos(4z) —2cos(2z) +1 =0

1
< —2cos(4x) +1=0 < cos(4z) = 5 = cos(4x) = cos(g)

— JkeZ 3 .

oudr = —— + 2km

3 ouxr = _E + kf
Alors 'ensemble des solutions est :
S = { +I~c— : —+k:— / keZ}—U (T, Iy
12 T2 TVkez Y19 0 12
k=
2}

Ces solutions sont représentées par les points suivants sur le cercle trigo-

nométrique :

p/l2+p/2

pi 2+ 2pil2

pif 12 +pif2

p/l2

pif 12+ 32

pi/12+3pi/2

-pil 12



4.5. EQUATIONS TRIGONOMETRIQUES 49

4.5.6 Bac C Paris

Résoudre dans R 1’équation suivante d’inconnue réelle = puis représenter 1’en-
semble des solutions sur le cercle trigonométrique :

(E) : y/sin(x) 4+ /cos(z) = 0

Corrigé
sin(z) >0
™
1. Def = {z € R/ b= JI0+2k7 5 o + 2kn]
2
cos(x) >0 kEZ

2. Comme la somme de deux réels positifs est nulle si et seulement si ces
deux réels sont nuls alors :

sin(xz) =0
Alors /sin(z) + \/cos(z) =0 <
cos(z) =0
Or ce systéme n’a pas de solutions car Vo € R sin?(x) + cos?(z) = 1

3. On en conclut que I'ensemble des solutions
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4.5.7 Bac C Paris (suite)

Résoudre dans R ’équation suivante d’inconnue réelle = puis représenter 1’en-
semble des solutions sur le cercle trigonométrique :

E) : y/sin(z) 4 \/cos(z) =

v 1 : Catherine FILIOLE, TC Lycée Schoelcher
V/sin(z) + y/cos(z) =
sin(z) >0

o Def = {z € R/ }_ij+2mr;g+2md
cos(xz) >0 kEZ

2km € S car \/sin(2k7) + \/cos(2km) =0+ 1=1

(5 +2

k) + qug+2m0:1+0:1
™

e Par conséquent, {2km; 5 +2kn}CS

~

|| 4

g + 2km € S car 4 /sin

0 <sin(z) <1

e Ce sont les seules solutions car si 0 < z < il alors
2 0 < cos(z) <1

onc sin(z) > sin’(z) onc +/sin(z cos(z
¢ { cos(z) > cos?(x) donc y/sin(z) + /cos(z) > 1

e On en conclut que ensemble des solutions | S = {2km; — + 2km}

L’idée de Catherine FILIOLE est basé sur le résultat suivant : Si 0 < X < 1
alors VX < X2
ce qui s’illustre aisément :

/
y=va

]
y=1'

Corrigé 2

Toujours sur cette méme idée :

Vsin(z) + y/cos(z) = 1 <= +/sin(z) + y/cos(z) = sin’(z) + cos?(z)
= /sin(x) —sin®(z) + cos()—cos()—O

— VX - X?+VY - Y?=0en posant X =sin(z) et Y = cos(x)
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—= VX -X?2=Y -Y?=0puisque VX —X2>0et VY -Y2>0 car
0<X<let0L<Y <1
Donc (E) <= VX =X?et VY =Y?

y=0 “Vv=1 ““VYvy=0 “"Vv=1
) -1

impossible car sin?(z) + cos?(x)

Il
o O

o { 2

o ) =0

ou { 22((?) — | impossible car sin?(z) + cos2(z) = 1
i

MM cos(z) =0

— x:2k:7roux:g+2k;7r

Corrigé 3 : Sonia FILIOLE, TC Lycée Schoelcher
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4.5.8 Equations de la forme a cos(z) + b sin(z) = ¢

1. Démontrer que pour tout réel x 'on a :

cos(z) 4 sin(z) = V2 cos (x — %) — V2 sin (a? n g)

2. Quels sont les valeurs minimale et maximale de cos(z) + sin(x)
3. Résoudre dans R 1'équation suivante : cos(z) + sin(x) = 2
)=1

4. Résoudre dans R I’équation suivante : cos(x) + sin(z

Corrigé

(
(b) V2 sin (aj - %) =2 (sin(m)cos (%) + sin (%) cos(x)) =2 (sm(x) V2 + ?cos(m))
(

= sin(x) + cos(x)

(¢) Donc l'on a :
cos(z) 4 sin(x) = V2 cos (Jc — %) =2 sin (m + g)

—1<cos(z) <1
2. Ona { —1<sin(z) <1
Mais —2 et 2 ne sont pas les valeurs minimale et maximale de cos(x) +
sin(z). Les valeurs minimale et maximale sont —v/2 et /2 car

-1< cos(x—%)gldonc—\/igcos(x—z)S\/i

donc 2 < cos(x) + sin(z) < 2.

4
3. Résolvons dans R I’équation suivante : cos(z) + sin(z) = 2

e Méthode 1 :
—1<cos(z) <1let —1<sin(x) <1donc —2 < cos(z) + sin(z) < 2
Par conséquent cos(x) 4 sin(z) = 2 < cos(x) =1 et sin(x) =1
Donc cos?(x) + sin?(z) = 2. Impossible car cos?(x) + sin?(z) = 1
Par conséquent , I'’ensemble des solutions de cette équation est S = ()

e Méthode 2 :

cos(az)—i—sin(x):2(:)\/5005(35—%):2©cos(x—%) =2

Impossible & résoudre car v2 ~ 1,414 et —1 < cos(X) <1

4. cos(z) +sin(z) =1 <= /2 cos (x—%) =1 < cos (x_i> :Q

- 7r4 2
r— —=—+2k7
T T 4 4
@cos(x—z):cos(z) <— dkeZ ou
T T
——=——+2k
_ x 1 4—|— s
T =—+2km
2 , m
— ou Par conséquent, | S = U {5 + 2k ; ka}
x = 2km keZ
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4.6 Inéquations trigonométriques

4.6.1 Ensembles de définition

Déterminer les ensembles de définition des fonctions f suivantes :

1. f(z) = /14 cos(x)

2. f(x) =+/1 —sin(z)

3. f(z) = tan(z)

10 = T
Corrigé

B ' . o 1+ cos(x) existe
1. f(x) = /1 + cos(x) existe & condition que { 1+ cos(z) > 0

e 1+ cos(x) existe pour tout réel car cos(z) existe pour tout réel.

e 1+ cos(z) > 0 est vrai pour tout réel car Ve € R —1 < cos(z) <1
donc 0 < 1+ cos(z) < 2.

e Par conséquent,

_ - Cs -, 1 —sin(z) existe
2. f(z) = /1 —sin(x) existe a condition que { 1 — sin(z) > 0

e 1 —sin(x) existe pour tout réel car sin(z) existe pour tout réel.

e 1 —sin(x) > 0 est vrai pour tout réel :
En effet, Vo e R —1 <sin(z) <1
donc 1 > —sin(z) > —1 d’ou —1 < —sin(z) < 1.
On en déduit que 0 < 1 —sin(z) < 2.

e Par conséquent,

sin(z) sin(z) existe

existe existe & condition que ¢ cos(z) existe
cos(z) cos(x) >0

e sin(z) existe pour tout réel.

3. f(x) =tan(x) =

e cos(z) existe pour tout réel.

e cos(r) =0 < cos(z) = cos(%)

$=g+2k’ﬂ'
— JkeZ o T
x:—§+2k‘7r

<= dkecZ x:g—l-kﬂ'

e Par conséquent, | Dy =R — {g +kr/ ke Z}
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-

Par conséquent,
f(z) existe si et seulement si Vk € Z

Df:R—{g—Hmr; ;%—Hﬁr/kEZ}

Vx € Dy f(z) = tan (x—&—g)

CHAPITRE 4. EXERCICES

existe si et seulement si tan(z) existe et 1+tan(x) # 1.

x#%—i—k‘wetx#%—i—kﬂ
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4.6.2 Inéquations

Résoudre dans [—m; 7] I'inéquation suivantes d’inconnue réelle x puis repré-
senter I’ensemble des solutions sur le cercle trigonométrique :

(I) : V2 sin(2z) =1 < 0

Corrigé

e L’ensemble de définition de cette inéquation est :D = [—m; 7]

eV eD (I) < V2sin(2z) <1 < sin(2z) < 7 — sin(2z) <

V2

2
‘:7 %

™ ™

- <2z < — -3 <z<
. . ™

(I) <= sin(2z) < sin(—) <= ou — ou

4 3 37
e

SIEY
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Corrigé Fernand ODONNAT du Vauclin

L’ensemble de définition de cette inéquation est :D = [—; 7]

ou bien z = g ou x = —g alors V2 sin(2z) —1 = —1 < 0 donc
T
——=}CS

ou bien z # % et x # g alors on peut poser ¢t = tan(x) alors sin(2z) =
2t
1412

2t 2
Done (I) «= 5 < g = A< V24+ V2 = V21— a4
V2>0
A=(-22-V2y2=4-2=2>0
L’équation V2t2 — 4t + /2 = 0 a deux solutions :

2—4/2

Q\f :ﬂflztcm(g) et to = \/§+1:tan(3§)

Donc (I) < t<tiout >ty < tan(x) < tan(%) ou tan(zx) >

3
t -
an(*)

t1 =

|3
C

_ 1

(J%)

oo §
IE

_ 1

L’ensemble des solutions est S = [—g ;

axe des tangentes

axe sinus
m
8

n axe cosinus 0

SRR

[T




4.6. INEQUATIONS TRIGONOMETRIQUES 57

4.6.3 Inéquations

Résoudre dans R les inéquations suivantes d’inconnue réelle x puis représenter
I’ensemble des solutions sur le cercle trigonométrique :

1. 2cos?(z) > 1

2. tan?(z) — (v3 — 1) tan(z) — /3 <0
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4.7
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Limites

4.7.1 Les 4 limites de base

Soit z un réel de l'intervalle }0; T { Soit M le point du cercle trigonométrique

——
tel que I'angle (07, OM) mesure x en radians.
On rappelle que 'aire d’un secteur angulaire de mesure x en radians dans un

rR?

cercle de rayon R est -

1. Que vaut OI7?

. Exprimer , en fonction de z, les distances OC', OS et IT puis les aires

des triangles OIM et OITainsi que l'aire du secteur angulaire IOM.

s
. Prouver alors que si 0 < z < ) alors sin(x) < z < tan(x)

. En déduire que si 0 < z < g alors cos(x) < sin(z) <1
i t
. Déterminer lim cos(z) puis lim sin(z) et lim an(z)
x+—0 0 x z—0 a5
. 2
1 1-—
. Vérifier que si 0 < z < T alors sin(z) = cos(z)
2 1 + cos(z) 0 a2
1— 1 1—
. En déduire que lim 0728(96) = — et que lim ﬂ =0
0 a8 2 0 T

1. OI =1 car [ est sur le cercle trigonométrique.

2.

e OC = cos(x)

o OS = sin(z)

o IT = tan(x)

o Aire(OIM) = OIxCM _ 1x szm(z) _ sm2(x)
e Aire(OIT) = OI xIT _1x tan(z)  tan(z)

2 2 2
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x
e laire du secteur angulaire TOM .est 5

3. Soit 0 <z < =

Par construction, l'aire du secteur angulaire est comprise entre ’aire du

triangle OIM et laire du triangle OIT
sin(z) x  tan(x)
donc

lités par 2 qui est un nombre positif on obtient

5 . En multipliant les membres des deux inéga-

sin(z) < < tan(x)

4. Soit 0 <z < g alors

e Comme sin(zr) < x et comme x > 0 alors sin(z) 1.
x
) 1
e Comme z < tan(x) alors z < sin(z) donc cos(z) < —.
0s(x) x x
1
Or sin(z) > 0 car > 0 donc sin(m)m < sin(x)— d’ou cos(x) <
x x
sin(x)
x .
e En conclusion, cos(x) < sinlz) <1

5. e lim cos(z) =1 et lim 1 =1 donc d’apreés le théoréme d’encadrement
z—0 0

sin(x
par des fonctions ayant méme limite alors lim # =1
T
T tan(x sin(z 1
e Soit 0 < x < — alors (2) = (z) . D’aprés les deux
2 x x  cos(x)
tan(x
limites précédentes, ’on obtient lim 7() =1
x—0 x

6. Soit 0 < z < g alors :

1 <sm(x) ) 2 1 sin?(z) 1 1-cos?(z)

1+ cos(x) x ~ 1+cos(z) 22 14 cos(x) x?
_ 1 (1 — cos(x))(1 + cos(x)) _1- cos(x)
1+ cos(x) x? x?
1—cos(z) 1

7. e Comme lim cos(z) =1 et lim 1 =1 alors lim ———— = =
x—0 x—0 x—0 x€X 2

‘ 2
e Comme 1 — cos(2) =z 1 <sm(x)) alors lim 1~ cos(z) -0
. () \ =

1+ cos 0 x
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En résumé les 4 limites de base et les 6 qui s’en déduisent a connaitre
(VAVEVEH
S
lim 273 _
x—0 X
d’ou
* .
lim sin(ax) _1
x—0 axr
lorsque a # 0
’ in(az)
sin(ax a
li = -
lorsque a # 0 et b# 0
*
sin(az) a
im — = —
o0 sin(bx) b
lorsque a # 0 et b#0
S
lim 272 _ 4
x—0 as
d’oul
*
lim tan(ax) o
x—0 axr
lorsque a # 0
’ (a)
tan(ax a
lim ——= = —
lorsque a # 0 et b#£ 0
*
tan(axz) a
im ———~ = —
o0 tan(bxr) b
lorsque a # 0 et b# 0
S
lim 1 — cos(x) _1
0 2 2
¢ 1
lim — cos(x) —0
x—0 €T
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Remarque : Obtention de 3 de ces limites par une autre méthode

1. En utilisant la dérivation :
e En admettant que sin est dérivable sur R donc dérivable en 0 alors

. sin(x) . sin(x) —sin(0) B
:l% — = ilg%) ———0 - (sin)'(0) = cos(0) =1

e En admettant que cos est dérivable sur R donc dérivable en 0 alors

. cos(x)—1 . cos(x)—cos(0) Pew B
llcli% — = ili% — 5 - (cos)'(0) = —sin(0) =0

e En admettant que tan est dérivable sur R — {g + km tels que k € Z}

donc dérivable en 0 alors

tan(z) — lim tan(x) — tan(0) — (tan)'(0) = 1 )

I
= cos2(0)

x—0 X x—0 xr — 0

2. En utilisant les formules de trigonométrie :
Comme

c0s(20) = cos?(0) — sin*(0) = 2cos*(0) — 1 = 1 — 2sin*(f)

alors

cos(20) = 1 — 2sin’*(6)
donc )

cos(0) = 1 — 2sin? <2)

1—2sin? (2) —1 2sin? n (E)1°
sy 1 tm2t(3) -1 ae(3) g [en(g)]
lim ——~—— = lim = hm72= lim —= = = ——
—0 x r—0 €T z—0 4 |:£:| z—0 2 it 2
9 2
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4.7.2 Pour s’entrainer :

Déterminer les limites éventuelles suivantes :
1. lim sin(z)
T—>—400
2. lim cos(x)
T——+00
sin(x
3. lim ()

T—>—400 €

4. lim x + sin(z)

T—~+00
1
X

5. lim x sin

z—0

6. lim 22 — cos(z)
TH——00

7. lim 2?(sin(z) + cos(x))
z—0

8. lim cotanﬁx)
Ty T — 5

9. lim V3 cos(z) ; sin(x)
ac»—>% Tr— —

10.

x—0 {133
2
11. lim M
20 1 — cos(x)
19, lim —22)
=0 /1 — cos(x)
1—
13. lim cos(z)

o0 sin?(5x)
14, lim 250@)
a0 1 — cos(x)

15, lim —2P02)

e % 2 cos(z) — V3

Corrigé

1. lim sin(z
T——400

T——400

5 qm S0

T——400

T
e L’ensemble de définition Dy = R*

CHAPITRE 4. EXERCICES

Calcul de limites

‘existe pas car sin(z) oscille entre —1 et 1

)n
2. lim cos(z) n’existe pas car cos(x) oscille entre —1 et 1
),

e Comme il existe au moins un intervalle du type | A4; +o00[ inclus dans
Dy alors on peut rechercher lim f(x)
T —+00

o —1 <gsin(x) <z

1 .
e donc si x > 0 alors —— < sin(z)

<

8
8=

xT
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e D’aprés le théoréme d’encadrement par des fonctions ayant méme

limite,
. 1 . 1
comme lim —— =0et lim — =0
r——+00 X =400 I
sin(x
alors lim L =0

r——+00 xT

4. lim x+ sin(z)
TH—+00

e L’ensemble de définition Dy = R
e Comme il existe au moins un intervalle du type |A; 00| inclus dans
Dy alors on peut rechercher lirf flx)
=100

eVzeR —1<sin(z)<ldoncz—1<z+sin(z)<z+1

Or lim z—1=+4o00 ; lim z+4+1=+4ocodonc lim z+ sin(x)=+o0
TH>—+00 T 00 TH+00
. . 1
5. limx sin | —
z—0 X

e L’ensemble de définition Dy = R*
e Comme il existe au moins un intervalle épointé de centre 0 inclus dans
Dy alors on peut rechercher lim f(x)
z—0
1 1
e Siz >0 comme —1 < sin () <1lalors —z <=z sin(f) <z
x x
e D’aprés le théoréme d’encadrement par des fonctions ayant méme li-
1
mite, comme lim —z =0 ; lim x =0alors lim z sin <) =0
x

—0t —0t z—0t

x
e D’aprés le théoréme d’encadrement par des fonctions ayant méme li-

1 1
e Siz < (0 comme —1 < sin <) <1lalors —x >z sin(—) >z
x

1
mite, comme lim —z =0 ; lim z =0alors lim x sin ( =0
=0~ =0~ =0~ T
. o1 . . (1 . (1
e Comme lim z sin(—)=0et lim = sin| — ) =0alorslimz sin|{ —) =0
0~ x x—0t x z—0 x

. 2 _
6. mg@mx cos(x)

e L’ensemble de définition Dy = R
o Comme il existe au moins un intervalle du type | — oo; B[ inclus dans
Dy alors on peut rechercher lim f(x)
I—>—00

e Comme —1 < cos(z) < 1 alors 1 > —cos(z) > —1 donc —1 <
—cos(z) <1 dott 22 —1 < 2% — cos(x) <22+ 1
e D’apreés le théoréme d’encadrement par des fonctions ayant méme li-

mite, comme lim 2% —1=+4o00 ; lim 2?+41=+ococalors lim =z
T —00 T—>—00 TH——00

2

7. lir% 22 (sin(z) + cos(z))
T
o L’ensemble de définition Dy = R

e Comme il existe au moins un intervalle épointé de centre 0 inclus dans
D¢ alors on peut rechercher 1ir% f(z)
X T

e Comme —1 < sin(z) < 1et —1 < cos(z) < 1 alors —2 < sin(z) +
cos(z) <2

e Or 22 > 0 donc —222 < 2?(sin(x) + cos(x)) < 222

e D’aprés le théoréme d’encadrement par des fonctions ayant méme li-

mite, comme lim —22? =0 ; lim 22? = 0 alors lim 2?(sin(z) + cos(z)) =0
z—0 0 z—0

— cos(x) = 400
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8.

10.

11.

12. lim

13. lim

14.

CHAPITRE 4. EXERCICES

t
lim angrx)
r—
2

V3 cos(x) — sin(x)

= —

hmﬂ T
lim tan(x) —3 sin(x)
x—0 x

;2
i S (@) (x)

20 1 — cos(z)
i sin(2x)
=0 /1 — cos(x)
1 — cos(x)

o0 sin?(5x)
e L’ensemble de définition est

Dy = {z / sin*(5x) # 0} = {z / sin(5z) # 0}
Donch:R—{k;/keZ

km

car sin(br) =0 < Ik €Z br=kr < Jke€Z z=—

e Comme il existe au moins un intervalle de centre 0 inclus dans Dy

alors on peut rechercher lim f(x)
0

e Par la méthode directe, il y a indétermination du type ”

lim 1 — cos(z) = 0 et lim sin*(5z) =0
x—0 x—0
e Levons cette indétermination :
1 —cos(z) ,
1 — cos(x) 2 v

) - . 2
sin?(5z) <Sln(51’)) 05 42
5T
x? 1 1 —cos(xz) 1
T2

fz) =

Or gg}) 2522 25 : alz}g%) 2

donc lim f(z) =
x—0

lim sin(6x)

N % 2 cos(w) — /3

e L’ensemble de définition est :

50

z—0

V3

Dy = {o [2c08(2) = V3 £ 0} = & / cos(x) # "}

Donch:R—{%-i-ka;—%—f—%vr/kEZ}
V3

- sin(x)

X

? car

car cos(r) = — <— cos(z):% — JkeZ z=

2
2km ou x = —% + 2k

s
6

+

. . . . ™ .
e Comme il existe au moins un intervalle de centre s inclus dans Dy

alors on peut rechercher lirn7r f(x)

T —

6
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0
e Par la méthode directe, il y a indétermination du type ” 6” car
lim_ sin(6x) = 0 et lim_2 cos(z) —V3=0
= — T

e Levons cette indétermination :

Posons h =z — % alors

sin(6x) sin(6(h + %) B sin(6h + )

2 cos(z) — /3 - 2 cos(h + %) —V3  2]cos(h) cos(g) —sin(h) Sin(%} -3

sin(6h + ) _ — sin(6h)
V3cos(h) —sin(h) —v3  V/3(cos(h) — 1) — sin(h)

—sin(6h)
- 6h
V/3(cos(h) = 1) sin(h)
h h
—sin(6h)
. sin(6z) ) T
Donc lim ———— = lim : -6
LT 2 cos(r) — 3  h=0 \/3(cos(h) — 1) B sin(h)
6 h A
car lim sin(h) _ 1 ; lim sin(6h) _ 1 . lim 1 —cos(h) 0

h—0 h h—0  Gh hi—0
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4.7.3

4.7.4

par

CHAPITRE 4. EXERCICES

Autre démonstration de hH(l) M =1
r—r T

Démontrer que Vo > 0 sin(z) < z.
2
T
Démontrer que Vo > 0 cos(z) > 1 — =
23
Démontrer que Vo >0 x — 5 < sin(z) < x.

En déduire un encadrement de sin(z) pour z > 0.
Déduire du 3°) lim sin(z)

z—0+ x
Déduire du 4°) lim 2%
z—0~ €T
En déduire que lim ——— =1

z—0 x

lsiz=0

Démontrer que la fonction f définie par f(z) = ¢ sin(z)

si x#0
est continue sur R.

Une fonction spéciale

Etudier la continuité puis la dérivabilité sur R de la fonction suivante f définie

O0sixz=0

fla) = z? sin (é) si x#0

f est-elle de classe C! sur R ?
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4.7.5 Prolongement par continuité

Pouvez-vous prolonger par continuité en 0 la fonction f définie par

2z

fz) =

existe & condition que 2z existe et sin(x) existe et sin(z) # 0,

sin(x)
c’est-a-dire que Vk € Z x # km
Vz € R 2z existe
car { Vax € R sin(x) existe
sin(x) =0 < JkeZ x=knr
e Par conséquent, Dy =R — {kn/k € Z}
f est continue sur D¢ car
e 1z +— 2x est continue sur R donc sur Dy
o = — sin(x) est continue sur R donc sur Dy
e = — sin(x) ne s’annule jamais sur Dy
sin(z) =1 donc lim 27:6 =
0 sin(z)
On peut donc créer g prolongement par continuité de f en 0 en posant :

{ 9(0) =2
9(x) = f()si z € Dy

Or on sait que lim
—0
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4.8 Applications trigonométriques de la Formule
de Moivre et du binéme de Newton

4.8.1 Formules de multiplication des arcs

Exprimer en fonction de cos() et de sin(f) les nombres réels suivants :

cos(20); sin(26), cos(36); sin(30); cos(46); sin(46)
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Résolution de I’équation 3z — 423 =1

Le but est de résoudre cette équation par 2 méthodes dont I'une est trigono-
métrique

1. Méthode 1 :
(a) Déterminer une solution évidente de cette équation.
(b) Résoudre alors cette équation

2. Méthode 2 :

(a) Soit a € R. Exprimer cos(3a) en fonction de cos(a)

(b) Résoudre alors 'équation 3z — 423 = 1

L’ensemble de définition de cette équation est D =R
1. Méthode 1 :
(a) Une solution évidente de cette équation est x = —1.
(b) 3z —423 =1 < 42° -32+1=0 = (v +1)42? -4z +1) =
0 <= (z+1)(2z—-1)2=0
<~ z=-louz= % (solution double)
2. Méthode 2 :

(a) Soit a € R.
cos(3a) = cos(2a+a) = cos(2a) cos(a)—sin(2a) sin(a) = (2cos*(a)—
1)cos(a) — 2sin(a) cos(a) sin(a)
cos(3a) = 2 cos®(a) — cos(a) — 2 sin?(a) cos(a) = 2 cos®(a) — cos(a) —
2(1 — cos?(a)) cos(a)

‘ cos(3a) = 4 cos®(a) — 3 cos(a) ‘

N =

(© Done |5 = {1

s x = cos(a) x = cos(a)
(b) Bz—da” =1 { 3 cos(a) — 4 cos3(a) =1 = { cos(3a) = —1
Or cos(3a) =1 <= cos(3a) = cos(n) <= Tk € Z 3a =
™+ 2km o
— dkecZ azz+l<=>azzoua=7roua:—%

en donnant & kles3valewrs k=0; k=1; k=2

Par conséquent,

x—cos(z)—loux—cos()——1oux—cos(—ﬁ)—f
T P\g) T e N 3) "2

1
D =<-1; =
onc |S { ,2}
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Résolution de I’équation de Francois VIETE

Frangois VIETE (1540 - 1603) sur la demande d’Henri IV roi de France, répon-
dit en un jour au défi suivant du mathématicien néerlandais Adrien ROMAIN
a savoir résoudre 1’équation suivante : 45 2 —3795 x> +95634 25— 1138500 x7 +
7811375 2% — 34512075 211 +105306075 212 — 232676280 215 4384942375 217 —
488494125 x'9 + 4838418000 z*' — 3786588000 x?* + 236030652 z2° —
17679100 227 + 46955700 227 — 14945040 3! + 3764565 232 — 740259 235 +
111150 237 — 12300 239 + 945 2 — 45 243 4+ 215 =1

(Source : "Degré 45 : Francois Viéte reléve le défi!" - article d’André DELE-
DICQ - Tangente n° 193 - Avril Mai 2020)

VIETE l'a résolu en pensant a la trigonomeétrie :
En posant x = cos(t), cette équation se rameéne a la résolution de

cos(45t) =1

Par conséquent, ’ensemble des 45 solutions est

5= {eos (B2) / ke (o211
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4.8.2 Linéarisation de polynémes trigonométriques

Linéariser (c’est-a-dire transformer les polynémes suivants en une combinaison
linéaire de cosinus et de sinus de multiples de 0 :

cos?(0);sin?(); cos®(); sin®(6); cos* (0); sin*(0); cos®(A); sin® (6); sin®(0)cos* (0)
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4.9 Intégration et trigonomeétrie

4.9.1 Exercice - Bac Rennes C 77

jus

. 3 cos(x) 2 sin(2z)
Soit Iy = ——————dz; I = ——————dretlb =1L +1
o /0 1+ 2sin(z) o /0 1 + 2sin(z) A=

1. Calculer I
2. Calculer I3
3. En déduire T
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4.9.2 Intégration et trigonométrie

On pose I(z) = / cos’(t) dt; J(x) = / sin?(t) dt
0 0
1. Calculer I(z) + J(z)
2. Calculer I(x) — J(x)
3. En déduire la valeur de I(z) puis celle de J(z)

Corrigé

I(z) existe car la fonction ¢ — cos?(t) est continue sur l'intervalle de bornes 0
et x car elle est continue sur R

J(z) existe car la fonction t — sin®(t) est continue sur I'intervalle de bornes 0
et x car elle est continue sur R

1. I(x) + J(z) = /Ox cos?(t) dt +

xsm2(t) dt = /x(cos2(t +sin?(t)) dt = /11 dt =[t]" ==
0 0
2. I(z) — J(x) = /w cos?(t) dt — xsin2(t) dt = /I(COSZ(
0 0

@ 1. L1
= /0 cos(2t) dt = [5 sin(2t)]g = 3 sin(2x)

)
t) —sin?(t)) dt

o—

3. Comme I(x) + J(x) =z et que I(z) — J(z) = %sin(?a:) alors

o I(z) = % {x + ;sin(%c)] = %x + isin@x)
o J(z) = % [:E - ;sin(Qx)} = %x - isin(?x)
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4.10 La trigonométrie et C
4.10.1 Exercice

Déterminer le module et un argument de z = M
cos(f) — isin(0)

4.10.2 Exercice

Soit 6 un réel tel que Vk € Z o # g + k.

Déterminer, en fonction de 6 , le module et un argument de

1
P a—
= T ¥ itan(0)
1
R . —
271 tan(d)
1
3. z3 =

i+ tan(0)
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4.10.3 Exercice
Soient a et b des réels.
3 3 atb —b
1. Démontrer que ¢’ + e =¢" 2 2 cos (%)

) ) a+b a—2>b
2. Démontrer que €' —e® =¢' 2 24 sin (T)

ia + eib

—b
3. En déduire que T —1i cotan (%)

eta u etb

5. Résoudre dans C, ’équation suivante :

ia __ b —b
4. En déduire que 2 1 tan <a 5 >

k

n—1 .
z— 21
1 E =0
- — (z+2i>
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4.10.4 Exercice

n—1
k
Pour tout entier n > 2 on pose S, = E sin (—W>
n
k=1
1. Posons z = cos (I) + sin (Z)
n n

n—1
Donner une expression simple de la somme Z 2"
k=0
2. Calculer la partie réelle et la partie imaginaire de cette somme.
En déduire 1’égalité )

tan | —
n

Sp =

. . S
3. Déterminer lim —?
nleft+oo N
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4.10.5 Exercice

Le plan complexe P est muni du repére orthonormé (O, 6_1>,6_2>)

Soient les points A d’affixe a # b, B d’affixe b et M d’affixe z.
z—a

Soit le nombre complexe 2/ =

1°) Donner une interprétation géométrique de | 2’ | et de arg(z’).
2°) Déterminer puis construire les ensembles suivants :

E, ={M € Ptelsque |2 |= 1}
Ey,={MecPtelsque |2/ |= klouk>0etk#1
Es = {M € P tels que 2’ € R}

Eys = {M € P tels que 2’ € RT}

Es = {M € P tels que 2’ € iR}

SO
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4.10.6 Exercice (Bac S Antilles-Guyane)

On considére dans le plan complexe, les points O d’affixe 0, A d’affixe 1 et B
d’affixe —1.

A tout point M d’affixe z # 1 , on fait correspondre le point M’ d’affixe
, z2—1

- 1-z
1°) Etablir que | 2/ | =1
/ j—
2°) Etablir que :

est réel.

Z/
3°) Etablir que +
-
4°) Interpréter géométriquement a ’aide des points M, M’ O, A et B les 3
propriétés établies précédemment.
5°) Donner une construction géométrique de M’ connaissant M.

7 est imaginaire pur.
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4.10.7 Nantes C 83

1. Déterminer les racines cinquiémes complexes de 1.
2. Démontrer que la somme S des solutions est nulle.

3. En décomposant S selon sa partie réelle et sa partie imaginaire et en

6 47 8 2
remarquant que cos - = cos - et que cos - = cos =

¢ ¢ 2 n 47 —1
emontrer que cos — COS — = —
g 5 5 2

4. Utiliser le fait que cos(20) = 2cos(#)? — 1 pour obtenir une équation
du second degré que vérifie cos(g).

. 2 —1++5 47 —1—+/5
En déduire que cos =)= et que cos )= —7

5. Détaillez alors une construction & la régle et au compas d’un pentagone
régulier convexe.

Corrigé

1. Soit I’équation z° = 1 d’inconnue z € C.
e L’ensemble de définition de cette équation est D = C.
e z=0¢S8.
e On cherche donc des solutions z dans C*. Posons alors z= q e,
T =

5 _ i0\5 _ 5 50 _ 1 ,i0
22=1 <= (re¥)P=1 <= rre=1¢" = Ik eZ 50—0+ 2%k

r=1
— { kel 0= 2’%”
e Les solutions s’obtiennent en donnant a k cing valeurs entiéres consé-
cutives 0,1,2,3,4
2(0)m 2(1)m 2(2)w 203)w 27w
s={1¢ 5 ile 5 ;1e 5 ;1e 5 ;1le 5

2(0)m
le 5 =ef0=1=29
2(1)m
SR
2 € 1
Palll 22)7
En posant |z; =e 9 |alors i 5
e 5 =z
2(3)m
K3
e 5 =2z
2(4)m
3
e 5 =z

_ e e 520,30 4
donc S—{l,zl,zl,zl,zl}
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B (z))
c (%)
21
2m
5
9 A(D)
5
2m
, 5
it
D(4
E{:l']
2m
—
2. En posant z; =e 5
1—2 1-1
S=1+2n+22+22+21=1 L — =0

1-— Al 1-— 21
en utilisant la formule donnant la somme de termes consécutifs d’une
suite géométrique.

2 2 4
.0 =5 = cos(0) + i sin(0) + cos g + 1 sin g —&—cos(W)—i—

5
1 sin 41 + cos 6—71- +1 sin G—F + cos 8—77 + 1 sin 8—71-
5 5 5 5 5

2 4
d’ot 0 = Re(S) = cos(0)+cos (;) ~+cos (;) +cos <657T> +cos <8;)

61 47 87 2
Orcos| — ) =cos| — ) etcos| — | =cos | —
(5) = (3) oo (F) = (3)
donc 0 = 142 cos <257T>+2 cos (4;) dou—1=2 { cos <2W> + cos (4;)}

5
i 2w 47 -1
Par conséquent, | cos + + cos =)=

. Comme cos(20) = 2cos(6)? — 1 alors

-1 2 4 2 9 27

— =cos|— | +cos| — ) =cos| — | +2cos"| — ) —1

2 5 5 5 5

On constate alors que cos(%) vérifie I’ équation du second degré :

1 1
2X7 + X — 5 =0 A= (1) ~4(2) <—2>:1+4:5

1
2X2 4+ X — 3 = 0 a donc pour solutions X1 = ——— < 0 et Xy, =

71%\/5 > 0 Or cos <2;) > O et cos (4;) < 0donc|cos <27r) = L\/g
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(47r> ~1-+5
et que|cos| — | = ———

) 4

5. Détaillez alors une construction a la régle et au compas d’un pentagone
régulier convexe.
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4.10.8 Exercice

Dans le plan complexe, soient les points A, B et C d’affixes respectives a,b et
c.

Démontrer 1’équivalence logique suivante :

ABC est équilatéral < a+bj +cj2=0oua+bj2+cj=0
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4.10.9 Exercice (Bac S Antilles-Guyane)

Soit le nombre complexe A = \/2 — 3 - i\/2 +/3
1°) Démontrer que A% = —9/3 — 2
2°)Déterminer alors le module et un argument de A2.

1
3°) En déduire le module de A et vérifier qu’un argument de A est bien %

et non 7—7T
12
4°) Représenter alors sur un méme graphique A, —A et A2
5°) Déduire de ce qui précéde que :
(G V2-+3 T 243
ﬁ) =5 et que Sln(ﬁ) = 5
6°) Déterminer les valeurs exactes de cos(l) et de sin(l%).

cos(

7°) Déterminer puis dessiner I’ensemble (D) des nombres complexes z tels que
A2z soit un nombre réel.
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4.10.10 Exercice

Soit z = cos?(¢) + i sin(e) cos(¢)
1. Déterminer toutes les valeurs de ¢ telles que z = 0.

2. Ces valeurs de ¢ étant exclues,

I sous forme cartésienne.

2 .3 ,—2 -3
7Z 7Z 72

(a) Ecrire alors z~
(b) Ecrire sous forme cartésienne z

(c) Retrouver les résultats des 2 questions précédentes en utilisant la
forme trigonométrique de z
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4.10.11 Exercice

Soit 6 € R. Résoudre dans C les équations suivantes d’inconnue z
1. 22 — (3cos(f) +isin(f)z +2 =0
2. 28—234144 = 0. On donnera les solutions sous forme trigonométrique.
3. cos(2a)z? — 2i(cos(a)z — 1+ 0.
On appelera z; et z5 les solutions. Aprés avoir déterminé z; et zo on

cherchera une CNS sur a pour que M; My = 2 sachant que M et My
ont pour affixes respectives z; et zo
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4.11 Etude de fonctions trigonométriques

4.11.1
1
4.11.2

4.11.3

4.11.4



