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1 Expressions trigonométriques

1.1 Exercice

Simplifier les expressions suivantes :

1. cos(π − x)− cos(−x)

2. sin(π + x) + cos(
π

2
− x)

3. sin(π − x) + cos(x +
π

2
)

4. cos(π − x) + sin(x + 3π)

5. sin(x− 3π) + sin(x + 3π)

6. cos(
5π

2
+ x)

7. (sin(x) + cos(x))2 + (sin(x)− cos(x))2

8. cos(x) + cos(π + x) + cos(2π + x) + cos(3π + x)

9. cos(
π

8
) + cos(3

π

8
) + cos(5

π

8
) + cos(7

π

8
)

10. sin(x +
π

2
) + sin(x + π) + sin(x +

3π

2
) + sin(x + 2π)

11. cos(
π

2
− x)− sin(x +

π

2
) + cos(

7π

2
− x)− sin(x +

7π

2
)

12. sin(x + π) + cos(π − x)− sin(x− 2π) + cos(x + 7π)

13. cos3(x) + cos2(x) sin(x) + cos(x) sin2(x) + sin3(x)

1.1.1 Corrigé

Simplifier les expressions suivantes :

1. cos(π − x)− cos(−x) = −cos(x)− cos(x) = −2 cos(x)

2. sin(π + x) + cos(
π

2
− x) = −sin(x) + sin(x) = 0
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3. sin(π − x) + cos(x +
π

2
) = sin(x)− sin(x) = 0

4. cos(π − x) + sin(x + 3π) = −cos(x) + sin(x + π + 2π) = −cos(x) + sin(x + π)

= −cos(x)− sin(x)

5. sin(x− 3π) + sin(x + 3π) = sin(x− π − 2π) + sin(x + π + 2π)

= sin(x−π)+ sin(x+π) = −sin(π− x)+ sin(x+π) = −sin(x)− sin(x) = −2 sin(x)

6. cos(
5π

2
+ x) = cos(2π +

π

2
+ x) = cos(

π

2
+ x) = −sin(x)

7. (sin(x) + cos(x))2 + (sin(x)− cos(x))2

= sin2(x) + 2 sin(x) cos(x) + cos2(x) + sin2(x)− 2 sin(x) cos(x) + cos2(x)
= 2(sin2(x) + cos2(x)) = 2

8. cos(x) + cos(π + x) + cos(2π + x) + cos(3π + x)
= cos(x) + cos(π + x) + cos(+x) + cos(π + x) = 2cos(x) + 2cos(π + x)
= 2cos(x)− 2cos(x) = 0

9. cos(
π

8
) + cos(

3π

8
) + cos(

5π

8
) + cos(

7π

8
)

= cos(
π

8
) + cos(π − 5π

8
) + cos(

5π

8
) + cos(π − π

8
)

= cos(
π

8
)− cos(

5π

8
) + cos(

5π

8
)− cos(

π

8
) = 0

10. sin(x +
π

2
) + sin(x + π) + sin(x +

3π

2
) + sin(x + 2π)

= cos(x) + sin(x) + sin(x +
3π

2
− 2π) + sin(x)

= cos(x) + sin(x) + sin(x− π

2
) + sin(x) = cos(x) + sin(x)− sin(

π

2
− x) + sin(x)

= cos(x) + sin(x)− cos(x) + sin(x) = 2 sin(x)

11. cos(
π

2
− x)− sin(x +

π

2
) + cos(

7π

2
− x)− sin(x +

7π

2
)

sin(x)− cos(x) + cos(
8π

2
− π

2
− x)− sin(x− 7π

2
+

8π

2
)

= sin(x)− cos(x) + cos(4π − π

2
− x)− sin(x− 7π

2
+ 4π)

= sin(x)− cos(x) + cos(−π

2
− x)− sin(x− π

2
)

= sin(x)− cos(x) + cos(
π

2
+ x) + sin(

π

2
− x)

= sin(x)− cos(x)− sin(x) + cos(x) = 0
12. sin(x + π) + cos(π − x)− sin(x− 2π) + cos(x + 7π)

= − sin(x)− cos(x)− sin(x) + cos(x− π + 8π)
= − sin(x)− cos(x)− sin(x) + cos(x− π)
= − sin(x)− cos(x)− sin(x) + cos(π − x)
= − sin(x)− cos(x)− sin(x)− cos(x) = −2 sin(x)− 2 cos(x)

13. cos3(x) + cos2(x) sin(x) + cos(x) sin2(x) + sin3(x)
= cos3(x) + cos(x) sin2(x) + cos2(x) sin(x) + + sin3(x)
= cos(x)

(
cos2(x) + sin2(x)

)
+ sin(x)

(
cos2(x) + sin2(x)

)
= (cos(x) + sin(x))

(
cos2(x) + sin2(x)

)
= cos(x) + sin(x) car cos2(x) + sin2(x) = 1.
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2 Equations trigonométriques

2.1 Exercice

Résoudre les équations suivantes d’inconnue x et où a est un paramètre réel.

1. cos(x) = a

2. sin(x) = a

3. tan(x) = a

2.1.1 Corrigé

1. • si a /∈ [−1; 1] alors cos(x) = a n’a pas de solution.
• si a ∈ [−1; 1] il existe une seule valeur x0 ∈ [0; π] telle que cos(x0) = a c’est x0 =

Arccos(a)
Alors cos(x) = a ⇐⇒ cos(x) = cos(x0) ⇐⇒ ∃k ∈ Z tel que x = x0 + 2kπ ou
x = −x0 + 2kπ

2. • si a /∈ [−1; 1] alors sin(x) = a n’a pas de solution.

• si a ∈ [−1; 1] il existe une seule valeur x0 ∈ [−π

2
;

π

2
] telle que sin(x0) = a c’est

x0 = Arcsin(a)
Alors sin(x) = a ⇐⇒ sin(x) = sin(x0) ⇐⇒ ∃k ∈ Z tel que x = x0 + 2kπ ou
x = π − x0 + 2kπ

3. il existe une seule valeur x0 ∈]−
π

2
;

π

2
[ telle que tan(x0) = a c’est x0 = Arctan(a)

Alors tan(x) = a ⇐⇒ tan(x) = tan(x0) ⇐⇒ ∃k ∈ Z tel que x = x0 + 2kπ ou x =
π + x0 + 2kπ
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2.2 Exercice

Résoudre les équations suivantes d’inconnue réelle x.

1. (a) cos(x) = 1

(b) cos(x) = 0

(c) cos(x) =
1
2

(d) cos(2x) =
√

3
2

2. (a) sin(x) = 1

(b) sin(x) = 0

(c) sin(x) =
√

2
2

(d) sin(2x) =
√

3
2

3. (a) tan(x) = 1

(b) tan(x) = 0

(c) tan(x) =
√

3

(d) tan(2x) =
√

3
3

2.2.1 Corrigé

Toutes les équations suivantes ont pour ensemble de définition : R :

1. (a) cos(x) = 1 ⇐⇒ cos(x) = cos(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou x = −0 + 2kπ
donc S = {2kπ/k ∈ Z}

(b) cos(x) = 0⇐⇒ cos(x) = cos(
π

2
)⇐⇒ ∃k ∈ Z tel que x =

π

2
+ 2kπ ou x = −π

2
+ 2kπ

.
Or −π

2
+ 2kπ =

π

2
− π + 2kπ =

π

2
+ (2k− 1)π donc S =

{π

2
+ kπ/k ∈ Z

}
(c) cos(x) =

1
2
⇐⇒ cos(x) = cos(

π

3
) ⇐⇒ ∃k ∈ Z tel que x =

π

3
+ 2kπ ou x =

−π

3
+ 2kπ

donc S =
{π

3
+ 2kπ;−π

3
+ 2kπ/k ∈ Z

}
(d) cos(2x) =

√
3

2
⇐⇒ cos(2x) = cos(

π

6
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

6
+ 2kπ ou

2x = −π

6
+ 2kπ ⇐⇒ x =

π

12
+ kπ ou x = − π

12
+ kπ

donc S =
{ π

12
+ kπ;− π

12
+ kπ/k ∈ Z

}
2. (a) sin(x) = 1 ⇐⇒ sin(x) = sin(

π

2
) ⇐⇒ ∃k ∈ Z tel que x =

π

2
+ 2kπ ou x = π − π

2
+

2kπ
donc S =

{π

2
+ 2kπ/k ∈ Z

}
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(b) sin(x) = 0 ⇐⇒ sin(x) = sin(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou x = π − 0 +
2kπ = (2k + 1)/pi
donc S = {kπ/k ∈ Z}

(c) sin(x) =

√
2

2
⇐⇒ sin(x) = sin(

π

4
) ⇐⇒ ∃k ∈ Z tel que x =

π

4
+ 2kπ ou x =

π − π

4
+ 2kπ

donc S =

{
π

4
+ 2kπ;

3π

4
+ 2kπ/k ∈ Z

}
(d) sin(2x) =

√
3

2
⇐⇒ sin(2x) = sin(

π

3
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

3
+ 2kπ ou

2x = π − π

3
+ 2kπ =

2π

3
+ 2kπ c’est-à-dire x =

π

6
+ kπ ou x =

2π

6
+ kπ

donc S =
{π

6
+ kπ;

π

3
+ kπ/k ∈ Z

}
3. (a) tan(x) = 1 ⇐⇒ tan(x) = tan(

π

4
) ⇐⇒ ∃k ∈ Z tel que x =

π

4
+ 2kπ ou x =

π +
π

4
+ 2kπ

donc S =

{
π

4
+ 2kπ;

5π

4
+ 2kπ/k ∈ Z

}
(b) tan(x) = 0 ⇐⇒ tan(x) = tan(0) ⇐⇒ ∃k ∈ Z tel que x = 0 + 2kπ ou x = π + 0 +

2kπ = (2k + 1)π
donc S = {kπ/k ∈ Z}

(c) tan(x) =
√

3 ⇐⇒ tan(x) = tan(
π

3
) ⇐⇒ ∃k ∈ Z tel que x =

π

3
+ 2kπ ou x =

π +
π

3
+ 2kπ

donc S =

{
π

3
+ 2kπ;

4π

3
+ 2kπ/k ∈ Z

}
(d) tan(2x) =

√
3

3
⇐⇒ tan(2x) = tan(

π

6
) ⇐⇒ ∃k ∈ Z tel que 2x =

π

6
+ 2kπ ou

x =
π

12
+ kπ

donc S =
{ π

12
+ kπ/k ∈ Z

}
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2.3 Exercice

tan(a + b) =
tan(a) + tan(b)

1− tan(a)tan(b)
.

Les 4 conditions d’existence sur a et b de cette formule sont :

1. tan(a + b) existe c’est-à-dire ∀k ∈ Z a + b 6= π

2
+ kπ

2. tan(a) existe c’est-à-dire ∀k ∈ Z a 6= π

2
+ kπ

3. tan(b) existe c’est-à-dire ∀k ∈ Z b 6= π

2
+ kπ

4. 1− tan(a)tan(b) 6= 0

Démontrer que les 3 premières conditions suffisent car elles entraînent automatiquement la
4-ième.

2.3.1 Corrigé

En effet,
• ou bien tan(b) 6= 0 c’est-à-dire ∀k ∈ Z b 6= kπ

Alors 1− tan(a)tan(b) = 0 ⇐⇒ tan(a) =
1

tan(b)
⇐⇒ tan(a) = cotan(b) ⇐⇒ tan(a) =

tan(
π

2
− b) ⇐⇒ ∃k ∈ Z tel que a =

π

2
− b + 2kπ ou a = π +

π

2
− b + 2kπ ⇐⇒ a + b =

π

2
+ kπ.

Or ceci n’est pas possible à cause de la condition 1.
• ou bien tan(b) = 0 c’est-à-dire ∃k ∈ Z b = kπ mais alors 1− tan(a)tan(b) = 1 6= 0

2.4 Exercice

Résoudre dans R l’équation suivante d’inconnue réelle x :

2 cos2(x)− sin(5x)− 1 = 0

2.4.1 Corrigé

2 cos2(x)− sin(5x)− 1 = 0
• L’ensemble de définition de cette équation est D = R

• ∀x ∈ D 2 cos2(x)− sin(5x)− 1 = 0 ⇐⇒ 2 cos2(x)− 1 = sin(5x)
⇐⇒ cos(2x) = sin(5x) ⇐⇒ cos(2x) = cos(

π

2
− 5x)

⇐⇒ ∃k ∈ Z 2x =
π

2
− 5x + 2kπ ou ∃k ∈ Z 2x = −π

2
+ 5x + 2kπ

⇐⇒ ∃k ∈ Z 7x =
π

2
+ 2kπ ou ∃k ∈ Z − 3x = −π

2
+

2kπ

7
⇐⇒ ∃k ∈ Z x =

π

14
+ 2kπ ou ∃k ∈ Z x =

π

6
− 2kπ

3

• Alors l’ensemble des solutions est S =
⋃

k∈Z

{
π

14
+ 2kπ ;

π

6
− 2kπ

3

}

6



2.5 Exercice

Résoudre dans R l’équation suivante (E) d’inconnue réelle x puis représenter l’ensemble des
solutions sur le cercle trigonométrique :

(E) : 4 sin(x) sin(3x)− 2 cos(2x) + 1 = 0

2.5.1 Corrigé

• L’ensemble de définition de cette équation est D = R

• ∀x ∈ D
4 sin(x) sin(3x)− 2 cos(2x) + 1 = 0

⇐⇒ 4
[

1
2
(cos(x− 3x)− cos(x + 3x))

]
− 2 cos(2x) + 1 = 0

car sin(a) sin(b) =
1
2
(cos(a− b)− cos(a + b)))

Donc (E) ⇐⇒ 2(cos(−2x)− cos(4x))− 2 cos(2x)+ 1 = 0 ⇐⇒ 2 cos(2x)− 2 cos(4x)−
2 cos(2x) + 1 = 0

⇐⇒ −2 cos(4x) + 1 = 0 ⇐⇒ cos(4x) =
1
2
⇐⇒ cos(4x) = cos(

π

3
)

⇐⇒ ∃k ∈ Z

 4x =
π

3
+ 2kπ

ou 4x = −π

3
+ 2kπ

⇐⇒


x =

π

12
+ k

π

2

ou x = − π

12
+ k

π

2
• Alors l’ensemble des solutions est :

S =
{ π

12
+ k

π

2
;

π

12
+ k

π

2
/ k ∈ Z

}
=
⋃

k∈Z { π

12
+ k

π

2
;

π

12
+ k

π

2
}

Ces solutions sont représentées par les points suivants sur le cercle trigonométrique :
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2.6 Bac C Paris

Résoudre dans R l’équation suivante d’inconnue réelle x puis représenter l’ensemble des so-
lutions sur le cercle trigonométrique : (E) :

√
sin(x) +

√
cos(x) = 0

2.6.1 Corrigé

1. De f = {x ∈ R/

 sin(x) ≥ 0

cos(x) ≥ 0
} =

⋃
k∈Z

[0 + 2kπ ;
π

2
+ 2kπ]

2. Comme la somme de deux réels positifs est nulle si et seulement si ces deux réels sont
nuls alors :

Alors
√

sin(x) +
√

cos(x) = 0 ⇐⇒

 sin(x) = 0

cos(x) = 0
Or ce système n’a pas de solutions car ∀x ∈ R sin2(x) + cos2(x) = 1

3. On en conclut que l’ensemble des solutions S = ∅
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2.7 Bac C Paris (suite)

Résoudre dans R l’équation suivante d’inconnue réelle x puis représenter l’ensemble des so-
lutions sur le cercle trigonométrique : (E) :

√
sin(x) +

√
cos(x) = 1

2.7.1 Version 1 : Catherine FILIOLE, TC Lycée Schoelcher√
sin(x) +

√
cos(x) = 1

• De f = {x ∈ R/

 sin(x) ≥ 0

cos(x) ≥ 0
} =

⋃
k∈Z

[0 + 2kπ ;
π

2
+ 2kπ]

• 2kπ ∈ S car
√

sin(2kπ) +
√

cos(2kπ) = 0 + 1 = 1

• π

2
+ 2kπ ∈ S car

√
sin(

π

2
+ 2kπ) +

√
cos(

π

2
+ 2kπ) = 1 + 0 = 1

• Par conséquent, {2kπ;
π

2
+ 2kπ} ⊂ S

• Ce sont les seules solutions car si 0 < x <
π

2
alors

{
0 < sin(x) < 1
0 < cos(x) < 1 donc

{ √
sin(x) > sin2(x)√
cos(x) > cos2(x)

donc
√

sin(x) +
√

cos(x) > 1

• On en conclut que l’ensemble des solutions S = {2kπ;
π

2
+ 2kπ}

L’idée de Catherine FILIOLE est basé sur le résultat suivant : Si 0 < X < 1 alors
√

X < X2

ce qui s’illustre aisément :

2.7.2 Version 2

Toujours sur cette même idée :√
sin(x) +

√
cos(x) = 1 ⇐⇒

√
sin(x) +

√
cos(x) = sin2(x) + cos2(x)

⇐⇒
√

sin(x)− sin2(x) +
√

cos(x)− cos2(x) = 0
⇐⇒

√
X− X2 +

√
Y−Y2 = 0 en posant X = sin(x) et Y = cos(x)

⇐⇒
√

X − X2 =
√

Y − Y2 = 0 puisque
√

X − X2 ≥ 0 et
√

Y − Y2 ≥ 0 car 0 ≤ X ≤ 1 et
0 ≤ Y ≤ 1
Donc (E) ⇐⇒

√
X = X2 et

√
Y = Y2
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⇐⇒
{

X = 0
Y = 0 ou

{
X = 0
Y = 1 ou

{
X = 1
Y = 0 ou

{
X = 1
Y = 1

⇐⇒
{

sin(x) = 0
cos(x) = 0 impossible car sin2(x) + cos2(x) = 1

ou
{

sin(x) = 0
cos(x) = 1

ou
{

sin(x) = 1
cos(x) = 0

ou
{

sin(x) = 1
cos(x) = 1 impossible car sin2(x) + cos2(x) = 1

⇐⇒
{

sin(x) = 0
cos(x) = 1

ou
{

sin(x) = 1
cos(x) = 0

⇐⇒ x = 2kπ ou x =
π

2
+ 2kπ

2.7.3 Version 3 : Sonia FILIOLE, TC Lycée Schoelcher
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2.8 Equations de la forme a cos(x) + b sin(x) = c

1. Démontrer que pour tout réel x l’on a :

cos(x) + sin(x) =
√

2 cos
(

x− π

4

)
=
√

2 sin
(

x +
π

4

)
2. Quels sont les valeurs minimale et maximale de cos(x) + sin(x)

3. Résoudre dans R l’équation suivante : cos(x) + sin(x) = 2

4. Résoudre dans R l’équation suivante : cos(x) + sin(x) = 1

2.8.1 Corrigé

1. Démontrons que pour tout réel x l’on a :

cos(x) + sin(x) =
√

2 cos(x− π

4
) =
√

2 sin(x +
π

4
)

2. On a
{
−1 ≤ cos(x) ≤ 1
−1 ≤ sin(x) ≤ 1 donc 2 ≤ cos(x) + sin(x) ≤ 2.

Mais −2 et 2 ne sont pas les valeurs minimale et maximale de cos(x) + sin(x).
Les valeurs minimale et maximale sont −

√
2 et
√

2 car
−1 ≤ cos

(
x− π

4

)
≤ 1 donc −

√
2 ≤ cos(x− π

4
) ≤
√

2

3. Résolvons dans R l’équation suivante : cos(x) + sin(x) = 2
• Méthode 1 :
−1 ≤ cos(x) ≤ 1 et −1 ≤ sin(x) ≤ 1 donc −2 ≤ cos(x) + sin(x) ≤ 2
Par conséquent cos(x) + sin(x) = 2⇔ cos(x) = 1 et sin(x) = 1
Donc cos2(x) + sin2(x) = 2. Ceci est impossible car cos2(x) + sin2(x) = 1
Par conséquent , l’ensemble des solutions de cette équation est S = ∅

• Méthode 2 :

cos(x) + sin(x) = 2⇔
√

2(
cos(x)√

2
+

cos(x)√
2

) = 2

⇔
√

2(
1√
2

cos(x) +
1√
2

sin(x)) = 2

⇔
√

2(cos(
π

4
) cos(x) + sin(

π

4
) sin(x)) = 2

⇔
√

2(cos(x− π

4
) = 2⇔ cos(x− π

4
) =
√

2
Cette équation est impossible à résoudre
car
√

2 ≈ 1, 414 et −1 ≤ cos(X) ≤ 1

4. Résoudre dans R l’équation suivante : cos(x) + sin(x) = 1
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3 Inéquations trigonométriques

3.1 Ensembles de définition

Déterminer les ensembles de définition des fonctions f suivantes :

1. f (x) =
√

1 + cos(x)

2. f (x) =
√

1− sin(x)

3. f (x) = tan(x)

3.1.1 Corrigé

1. f (x) =
√

1 + cos(x) existe à condition que
{

1 + cos(x) existe
1 + cos(x) ≥ 0

• 1 + cos(x) existe pour tout réel car cos(x) existe pour tout réel.

• 1 + cos(x) ≥ 0 est vrai pour tout réel car ∀x ∈ R − 1 ≤ cos(x) ≤ 1
donc 0 ≤ 1 + cos(x) ≤ 2.

• Par conséquent, D f = R

2. f (x) =
√

1− sin(x) existe à condition que
{

1− sin(x) existe
1− sin(x) ≥ 0

• 1− sin(x) existe pour tout réel car sin(x) existe pour tout réel.

• 1− sin(x) ≥ 0 est vrai pour tout réel :
En effet, ∀x ∈ R − 1 ≤ sin(x) ≤ 1
donc 1 ≥ − sin(x) ≥ −1 d’où −1 ≤ − sin(x) ≤ 1.
On en déduit que 0 ≤ 1− sin(x) ≤ 2.

• Par conséquent, D f = R

3. f (x) = tan(x) =
sin(x)
cos(x)

existe existe à condition que

 sin(x) existe
cos(x) existe
cos(x) ≥ 0

• sin(x) existe pour tout réel.

• cos(x) existe pour tout réel.

• cos(x) = 0 ⇐⇒ cos(x) = cos(
π

2
)

⇐⇒ ∃k ∈ Z


x =

π

2
+ 2kπ

ou
x = −π

2
+ 2kπ

⇐⇒ ∃k ∈ Z x =
π

2
+ kπ

• Par conséquent, D f = R− {π

2
+ kπ / k ∈ Z}
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3.2 Inéquations

Résoudre dans [−π; π] l’inéquation suivantes d’inconnue réelle x puis représenter l’ensemble
des solutions sur le cercle trigonométrique :

(I) :
√

2 sin(2x)− 1 < 0

3.2.1 Corrigé

• L’ensemble de définition de cette inéquation est :D = [−π; π]

• ∀x ∈ D (I) ⇐⇒
√

2 sin(2x) < 1 ⇐⇒ sin(2x) <
1√
2
⇐⇒ sin(2x) <

√
2

2

(I) ⇐⇒ sin(2x) < sin(
π

4
) ⇐⇒


−π ≤ 2x <

π

4
ou
3π

4
< 2x ≤ π

⇐⇒


−π

2
≤ x <

π

8
ou
3π

8
< x ≤ π

2

• L’ensemble des solutions est S =
[
−π

2
;

π

8

[
∪
]

3π

8
;

π

2

]

13



3.2.2 Corrigé Fernand ODONNAT du Vauclin

• L’ensemble de définition de cette inéquation est :D = [−π; π]

• ou bien x =
π

2
ou x = −π

2
alors

√
2 sin(2x)− 1 = −1 < 0 donc {π

2
;−π

2
} ⊂ S

• ou bien x 6= π

2
et x 6= π

2
alors on peut poser t = tan(x) alors sin(2x) =

2t
1 + t2 .

Donc (I) ⇐⇒ 2t
1 + t2 <

√
2

2
⇐⇒ 4t <

√
2 +
√

2t2 ⇐⇒
√

2t2 − 4t +
√

2 > 0

∆ = (−2)2 −
√

2
√

2 = 4− 2 = 2 > 0
L’équation

√
2t2 − 4t +

√
2 = 0 a deux solutions :

t1 =
2−
√

2
2

=
√

2− 1 = tan(
π

8
) et t2 =

√
2 + 1 = tan(

3π

8
)

Donc (I) ⇐⇒ t < t1 ou t > t2 ⇐⇒ tan(x) < tan(
π

8
) ou tan(x) > tan(

3π

8
)

•
• L’ensemble des solutions est S =

[
−π

2
;

π

8

[
∪
]

3π

8
;

π

2

]
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3.3 Inéquations

Résoudre dans R les inéquations suivantes d’inconnue réelle x puis représenter l’ensemble
des solutions sur le cercle trigonométrique :

1. 2 cos2(x) > 1

2. tan2(x)− (
√

3− 1) tan(x)−
√

3 < 0

15



4 Limites

4.1 Les 4 limites de base

Soit x un réel de l’intervalle ]0;
π

2
[ Soit M le point du cercle trigonométrique tel que l’angle

(
−→
OI,
−−→
OM) mesure x en radians.

On rappelle que l’aire d’un secteur angulaire de mesure x en radians dans un cercle de rayon

R est
xR2

2

1. Que vaut OI ?

2. Exprimer , en fonction de x, les distances OC, OS et IT puis les aires des triangles OIM
et OITainsi que l’aire du secteur angulaire IOM.

3. Prouver alors que si 0 < x <
π

2
alors sin(x) < x < tan(x)

4. En déduire que si 0 < x <
π

2
alors cos(x) <

sin(x)
x

< 1

5. Déterminer lim
x 7→0

cos(x) puis lim
x 7→0

sin(x)
x

et lim
x 7→0

tan(x)
x

6. Vérifier que si 0 < x <
π

2
alors

1
1 + cos(x)

(
sin(x)

x
)2 =

1− cos(x)
x2

7. En déduire que lim
x 7→0

1− cos(x)
x2 =

1
2

et que lim
x 7→0

1− cos(x)
x

= 0

16



4.2 Calcul de limites

Déterminer les limites éventuelles suivantes :

1. lim
x 7→+∞

sin(x)

2. lim
x 7→+∞

sin(x)
x

3. lim
x 7→+∞

x + sin(x)

4. lim
x 7→0

x sin(
1
x
)

5. lim
x 7→−∞

x2 − cos(x)

6. lim
x 7→0

x2(sin(x) + cos(x))

7. lim
x 7→0

sin(2x)√
1− cos(x)

8. lim
x 7→

π

2

cotan(x)

x− π

2

9. lim
x 7→

π

3

√
3 cos(x)− sin(x)

x− π

3

10. lim
x 7→0

tan(x)− sin(x)
x3

11. lim
x 7→0

1− cos(x)
sin2(5x)

12. lim
x 7→

π

6

sin(6x)
2 cos(x)−

√
3

4.2.1 Corrigé

1. lim
x 7→+∞

sin(x) n’existe pas car sin(x) oscille entre −1 et 1

2. lim
x 7→+∞

sin(x)
x

?

• L’ensemble de définition D f = R∗

• Comme il existe au moins un intervalle du type ]A;+∞[ inclus dansD f alors on peut
rechercher lim

x 7→+∞
f (x)

• −1 ≤ sin(x) ≤ x

• donc si x > 0 alors − 1
x
≤ sin(x)

x
≤ 1

x
• D’après le théorème d’encadrement par des fonctions ayant même limite,

comme lim
x 7→+∞

− 1
x
= 0 et lim

x 7→+∞

1
x
= 0

alors lim
x 7→+∞

sin(x)
x

= 0

17



3. lim
x 7→+∞

x + sin(x)

• L’ensemble de définition D f = R

• Comme il existe au moins un intervalle du type ]A;+∞[ inclus dansD f alors on peut
rechercher lim

x 7→+∞
f (x)

• ∀x ∈ R − 1 ≤ sin(x) ≤ 1 donc x− 1 ≤ x + sin(x) ≤ x + 1
Or lim

x 7→+∞
x− 1 = +∞ ; lim

x 7→+∞
x + 1 = +∞ donc lim

x 7→+∞
x + sin(x) = +∞

4. lim
x 7→0

x sin(
1
x
)

• L’ensemble de définition D f = R∗

• Comme il existe au moins un intervalle épointé de centre 0 inclus dans D f alors on
peut rechercher lim

x 7→0
f (x)

• Si x > 0 comme −1 ≤ sin(
1
x
) ≤ 1 alors −x ≤ x sin(

1
x
) ≤ x

• D’après le théorème d’encadrement par des fonctions ayant même limite, comme

lim
x 7→0+

−x = 0 ; lim
x 7→0+

x = 0 alors lim
x 7→0+

x sin(
1
x
) = 0

• Si x < 0 comme −1 ≤ sin(
1
x
) ≤ 1 alors −x ≥ x sin(

1
x
) ≥ x

• D’après le théorème d’encadrement par des fonctions ayant même limite, comme

lim
x 7→0−

−x = 0 ; lim
x 7→0−

x = 0 alors lim
x 7→0−

x sin(
1
x
) = 0

• Comme lim
x 7→0−

x sin(
1
x
) = 0 et lim

x 7→0+
x sin(

1
x
) = 0 alors lim

x 7→0
x sin(

1
x
) = 0

5. lim
x 7→−∞

x2 − cos(x)

• L’ensemble de définition D f = R

• Comme il existe au moins un intervalle du type ]−∞; B[ inclus dansD f alors on peut
rechercher lim

x 7→−∞
f (x)

• Comme −1 ≤ cos(x) ≤ 1 alors 1 ≥ −cos(x) ≥ −1 donc −1 ≤ −cos(x) ≤ 1 d’où
x2 − 1 ≤ x2 − cos(x) ≤ x2 + 1

• D’après le théorème d’encadrement par des fonctions ayant même limite, comme
lim

x 7→−∞
x2 − 1 = +∞ ; lim

x 7→−∞
x2 + 1 = +∞ alors lim

x 7→−∞
x2 − cos(x) = +∞

6. lim
x 7→0

x2(sin(x) + cos(x))

• L’ensemble de définition D f = R

• Comme il existe au moins un intervalle épointé de centre 0 inclus dans D f alors on
peut rechercher lim

x 7→0
f (x)

• Comme −1 ≤ sin(x) ≤ 1 et −1 ≤ cos(x) ≤ 1 alors −2 ≤ sin(x) + cos(x) ≤ 2
• Or x2 ≥ 0 donc −2x2 ≤ x2(sin(x) + cos(x)) ≤ 2x2

• D’après le théorème d’encadrement par des fonctions ayant même limite, comme
lim
x 7→0
−2x2 = 0 ; lim

x 7→0
2x2 = 0 alors lim

x 7→0
x2(sin(x) + cos(x)) = 0

7. lim
x 7→0

sin(2x)√
1− cos(x)

8. lim
x 7→

π

2

cotan(x)

x− π

2
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9. lim
x 7→

π

3

√
3 cos(x)− sin(x)

x− π

3

10. lim
x 7→0

tan(x)− sin(x)
x3

11. lim
x 7→0

1− cos(x)
sin2(5x)

• L’ensemble de définition D f = {x / sin2(5x) 6= 0} = {x / sin(5x) 6= 0}

Donc D f = R−
{

kπ

5
/ k ∈ Z

}
car sin(5x) = 0 ⇐⇒ ∃k ∈ Z 5x = kπ ⇐⇒ ∃k ∈ Z x =

kπ

5
• Comme il existe au moins un intervalle de centre 0 inclus dans D{ alors on peut

rechercher lim
x 7→0

f (x)

• Par la méthode directe, il y a indétermination du type ”
0
0

” car

lim
x 7→0

1− cos(x) = 0 et lim
x 7→0

sin2(5x) = 0

• Levons cette indétermination :

f (x) =
1− cos(x)
sin2(5x)

=

1− cos(x)
x2 x2(

sin(5x)
5x

)2

25x2

Or lim
x 7→0

x2

25x2 =
1

25
; lim

x 7→0

1− cos(x)
x2 =

1
2

; lim
x 7→0

sin(x)
x

= 1

donc lim
x 7→0

f (x) =
1

50

12. lim
x 7→

π

6

sin(6x)
2 cos(x)−

√
3

• L’ensemble de définition D f = {x /2 cos(x)−
√

3 6= 0} = {x / cos(x) 6=
√

3
2
}

Donc D f = R−
{π

6
+ 2kπ;−π

6
+ 2kπ / k ∈ Z

}
car cos(x) =

√
3

2
⇐⇒ cos(x) =

π

6
⇐⇒ ∃k ∈ Z x =

π

6
+ 2kπ ou x = −π

6
+ 2kπ

• Comme il existe au moins un intervalle de centre
π

6
inclus dans D{ alors on peut

rechercher lim
x 7→

π

6

f (x)

• Par la méthode directe, il y a indétermination du type ”
0
0

” car

lim
x 7→

π

6

sin(6x) = 0 et lim
x 7→

π

6

2 cos(x)−
√

3 = 0

• Levons cette indétermination :

Posons h = x− π

6
alors
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sin(6x)
2 cos(x)−

√
3
=

sin(6(h +
π

6
)

2 cos(h +
π

6
)−
√

3
=

sin(6h + π)

2
[
cos(h) cos(

π

6
)− sin(h) sin(

π

6

]
−
√

3

=
sin(6h + π)√

3 cos(h)− sin(h)−
√

3
=

− sin(6h)√
3(cos(h)− 1)− sin(h)

=
6
− sin(6h)

6h√
3(cos(h)− 1)

h
− sin(h)

h

Donc lim
x 7→

π

6

sin(6x)
2 cos(x)−

√
3
= lim

h 7→0

6
− sin(6h)

6h√
3(cos(h)− 1)

h
− sin(h)

h

= 6

car lim
h 7→0

sin(h)
h

= 1 ; lim
h 7→0

sin(6h)
6h

= 1 ; lim
h 7→0

1− cos(h)
h

= 0
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4.3 Une fonction spéciale

Etudier la continuité puis la dérivabilité sur R de la fonction suivante f définie par

f (x) =

{
0 si x = 0

x2 sin(
1
x
) si x 6= 0

f est-elle de classe C1 sur R ?

4.4 Prolongement par continuité

Pouvez-vous prolonger par continuité en 0 la fonction f définie par f (x) =
2x

sin(x)

• 2x
sin(x)

existe à condition que 2x existe et sin(x) existe et sin(x) 6= 0,

c’est-à-dire que ∀k ∈ Z x 6= kπ

car

 ∀x ∈ R 2x existe
∀x ∈ R sin(x) existe
sin(x) = 0 ⇐⇒ ∃k ∈ Z x = kπ

• Par conséquent, D f = R− {kπ/k ∈ Z}
f est continue sur D f car
• x 7→ 2x est continue sur R donc sur D f
• x 7→ sin(x) est continue sur R donc sur D f
• x 7→ sin(x) ne s’annule jamais sur D f

Or on sait que lim
x 7→0

sin(x)
x

= 1 donc lim
x 7→0

2x
sin(x)

= 2

On peut donc créer g prolongement par continuité de f en 0 en posant :
{

g(0) = 2
g(x) = f (x)si x ∈ D f
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5 Applications trigonométriques de la Formule de Moivre et
du binôme de Newton

5.1 Formules de multiplication des arcs

Exprimer en fonction de cos(θ) et de sin(θ) les nombres réels suivants :

cos(2θ); sin(2θ), cos(3θ); sin(3θ); cos(4θ); sin(4θ)
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5.2 Linéarisation de polynômes trigonométriques

Linéariser (c’est-à-dire transformer les polynômes suivants en une combinaison linéaire de
cosinus et de sinus de multiples de θ :

cos2(θ); sin2(θ); cos3(θ); sin3(θ); cos4(θ); sin4(θ); cos5(θ); sin5(θ); sin3(θ)cos4(θ)
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6 Intégration et trigonométrie

6.1 Exercice - Bac Rennes C 77

Soit I1 =
∫ π

2
0

cos(x)
1 + 2 sin(x)

dx ; I =
∫ π

2
0

sin(2x)
1 + 2 sin(x)

dx et I2 = I1 + I

1. Calculer I2

2. Calculer I1

3. En déduire I
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6.2 Intégration et trigonométrie

On pose I(x) =
∫ x

0
cos2(t) dt ; J(x) =

∫ x

0
sin2(t) dt

1. Calculer I(x) + J(x)

2. Calculer I(x)− J(x)

3. En déduire la valeur de I(x) puis celle de J(x)

6.2.1 Corrigé

I(x) existe car la fonction t 7→ cos2(t) est continue sur l’intervalle de bornes 0 et x car elle est
continue sur R

J(x) existe car la fonction t 7→ sin2(t) est continue sur l’intervalle de bornes 0 et x car elle est
continue sur R

1. I(x) + J(x) =
∫ x

0
cos2(t) dt +

∫ x

0
sin2(t) dt =

∫ x

0
(cos2(t) + sin2(t)) dt =

∫ x

0
1 dt = [t]x0 = x

2. I(x)− J(x) =
∫ x

0
cos2(t) dt−

∫ x

0
sin2(t) dt =

∫ x

0
(cos2(t)− sin2(t)) dt

=
∫ x

0
cos(2t) dt = [

1
2

sin(2t)]x0 =
1
2

sin(2x)

3. Comme I(x) + J(x) = x et que I(x)− J(x) =
1
2

sin(2x) alors

I(x) =
1
2
[x +

1
2

sin(2x)] =
1
2

x +
1
4

sin(2x) et J(x) =
1
2
[x− 1

2
sin(2x)] =

1
2

x− 1
4

sin(2x)
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7 La trigonométrie et l’ensemble C

7.1 Exercice

Déterminer le module et un argument de z =
cos(θ) + i sin(θ)
cos(θ)− i sin(θ)

7.2 Exercice

Soit θ un réel tel que ∀k ∈ Z α 6= π

2
+ kπ.

Déterminer, en fonction de θ , le module et un argument de

1. z1 =
1

1 + i tan(θ)

2. z2 =
1

1− i tan(θ)

3. z3 =
1

i + tan(θ)
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7.3 Exercice

Soient a et b des réels.

1. Démontrer que eia + eib = e
i
a + b

2 2 cos(
a− b

2
)

2. Démontrer que eia − eib = e
i
a + b

2 2i sin(
a− b

2
)

3. En déduire que
eia + eib

eia − eib = −i cotan(
a− b

2
)

4. En déduire que
eia − eib

eia + eib = i tan(
a− b

2
)

5. Résoudre dans C, l’équation suivante : 1 +
n−1

∑
k=1

(
z− 2i
z + 2i

)k = 0
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7.4 Exercice

Pour tout entier n ≥ 2 on pose Sn =
n−1

∑
k=1

sin(
kπ

n
).

1. Posons z = cos(
π

n
) + sin(

π

n
).

Donner une expression simple de la somme
n−1

∑
k=0

zk

2. Calculer la partie réelle et la partie imaginaire de cette somme.

En déduire l’égalité Sn =
1

tan(
2π

n
)

3. Quelle est lim
n 7→+∞

Sn

n
?
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7.5 Exercice

Le plan complexe P est muni du repère orthonormé (O,−→e1 ,−→e2 )
Soient les points A d’affixe a 6= b, B d’affixe b et M d’affixe z.

Soit le nombre complexe z′ =
z− a
z− b

1◦) Donner une interprétation géométrique de | z′ | et de arg(z’).
2◦) Déterminer puis construire les ensembles suivants :

1. E1 = {M ∈ P/ | z′ |= 1}
2. E2 = {M ∈ P/ | z′ |= k} où k > 0 et k 6= 1

3. E3 = {M ∈ P/z′ ∈ R}
4. E4 = {M ∈ P/z′ ∈ R+}
5. E5 = {M ∈ P/z′ ∈ iR}
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7.6 Exercice (Bac S Antilles-Guyane)

On considère dans le plan complexe, les points O d’affixe 0, A d’affixe 1 et B d’affixe −1.

A tout point M d’affixe z 6= 1 , on fait correspondre le point M’ d’affixe z′ =
z− 1
1− z

1◦) Etablir que | z′ | = 1

2◦) Etablir que
z′ − 1
z− 1

est réel.

3◦) Etablir que
z′ + 1
z− 1

est imaginaire pur.

4◦) Interpréter géométriquement à l’aide des points M, M′, O, A et B les 3 propriétés établies
précédemment.
5◦) Donner une construction géométrique de M′ connaissant M.
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7.7 Nantes C 83

1. Déterminer les racines cinquièmes complexes de 1.

2. Démontrer que la somme S des solutions est nulle.

3. En décomposant S selon sa partie réelle et sa partie imaginaire et en remarquant que

cos
(

6π

5

)
= cos

(
4π

5

)
et que cos

(
8π

5

)
= cos

(
2π

5

)
démontrer que cos

(
2π

5

)
+ cos

(
4π

5

)
=
−1
2

4. Utiliser le fait que cos(2θ) = 2cos(θ)2 − 1 pour obtenir une équation du second degré

que vérifie cos(
2π

5
).

En déduire que cos
(

2π

5

)
=
−1 +

√
5

4
et que cos

(
4π

5

)
=
−1−

√
5

4
5. Détaillez alors une construction à la règle et au compas d’un pentagone régulier

convexe.

7.7.1 Corrigé

1. Soit l’équation z5 = 1 d’inconnue z ∈ C.
• L’ensemble de définition de cette équation est D = C.
• z = 0 /∈ S .
• On cherche donc des solutions z dans C∗. Posons alors z = r eiθ .

z5 = 1 ⇐⇒ (r eiθ)5 = 1 ⇐⇒ r5 e5iθ = 1 ei0 ⇐⇒
{

r5 = 1
∃k ∈ Z 5θ = 0 + 2kπ

⇐⇒
{

r = 1

∃k ∈ Z θ =
2kπ

5
• Les solutions s’obtiennent en donnant à k cinq valeurs entières consécutives 0, 1, 2, 3, 4

S =

1 e
i
2(0)π

5 ; 1 e
i
2(1)π

5 ; 1 e
i
2(2)π

5 ; 1 e
i
2(3)π

5 ; 1 e
i
2(4)π

5



En posant z1 = e
i
2π

5 alors



1e
i
2(0)π

5 = ei0 = 1 = z0
1

e
i
2(1)π

5 = z1

e
i
2(2)π

5 = z2
1

e
i
2(3)π

5 = z3
1

e
i
2(4)π

5 = z4
1

donc S =
{

1; z1; z2
1; z3

1; z4
1

}
.
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2. En posant z1 = e
i
2π

5

S = 1 + z1 + z2
1 + z3

1 + z4
1 = 1

1− z5
1

1− z1
=

1− 1
1− z1

= 0

en utilisant la formule donnant la somme de termes consécutifs d’une suite géométrique.

3. 0 = S = cos(0)+ i sin(0)+ cos
(

2π

5

)
+ i sin

(
2π

5

)
+ cos

(
4π

5

)
+ i sin

(
4π

5

)
+ cos

(
6π

5

)
+

i sin
(

6π

5

)
+ cos

(
8π

5

)
+ i sin

(
8π

5

)
d’où 0 = Re(S) = cos(0) + cos

(
2π

5

)
+ cos

(
4π

5

)
+ cos

(
6π

5

)
+ cos

(
8π

5

)
Or cos

(
6π

5

)
= cos

(
4π

5

)
et cos

(
8π

5

)
= cos

(
2π

5

)
donc 0 = 1 + 2 cos

(
2π

5

)
+ 2 cos

(
4π

5

)
d’où −1 = 2

[
cos
(

2π

5

)
+ cos

(
4π

5

)]
Par conséquent, cos

(
2π

5

)
+ cos

(
4π

5

)
=
−1
2

4. Comme cos(2θ) = 2cos(θ)2 − 1 alors
−1
2

= cos
(

2π

5

)
+ cos

(
4π

5

)
= cos

(
2π

5

)
+ 2 cos2

(
2π

5

)
− 1

On constate alors que cos(
2π

5
) vérifie l’ équation du second degré : 2X2 + X − 1

2
= 0

∆ = (1)2 − 4(2)
(
−1

2

)
= 1 + 4 = 5

2X2 + X − 1
2
= 0 a donc pour solutions X1 =

−1−
√

5
4

< 0 et X2 =
−1 +

√
5

4
> 0 Or

cos
(

2π

5

)
> 0 et cos

(
4π

5

)
< 0 donc cos

(
2π

5

)
=
−1 +

√
5

4
et que cos

(
4π

5

)
=
−1−

√
5

4
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5. Détaillez alors une construction à la règle et au compas d’un pentagone régulier convexe.
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7.8 Exercice

Dans le plan complexe, soient les points A, B et C d’affixes respectives a,b et c.
Démontrer l’équivalence logique suivante :
ABC est équilatéral⇔ a + bj + cj2 = 0 ou a + bj2 + cj = 0
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7.9 Exercice (Bac S Antilles-Guyane)

Soit le nombre complexe A =
√

2−
√

3− i
√

2 +
√

3
1◦) Démontrer que A2 = −2

√
3− 2i

2◦)Déterminer alors le module et un argument de A2.

3◦) En déduire le module de A et vérifier qu’un argument de A est bien
19π

12
et non

7π

12
.

4◦) Représenter alors sur un même graphique A,−A et A2.
5◦) Déduire de ce qui précède que :

cos(
7π

12
) = −

√
2−
√

3
2

et que sin(
7π

12
) =

√
2 +
√

3
2

.

6◦) Déterminer les valeurs exactes de cos(
π

12
) et de sin(

π

12
).

7◦) Déterminer puis dessiner l’ensemble (D) des nombres complexes z tels que A2z soit un
nombre réel.
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7.10 Exercice

Soit z = cos2(φ) + i sin(φ) cos(φ)

1. Déterminer toutes les valeurs de φ telles que z = 0.

2. Ces valeurs de Φ étant exclues,

(a) Ecrire alors z−1 sous forme cartésienne.

(b) Ecrire sous forme cartésienne z2, z3, z−2, z−3

(c) Retrouver les résultats des 2 questions précédentes en utilisant la forme trigonomé-
trique de z

36



7.11 Exercice

Soit θ ∈ R. Résoudre dans C les équations suivantes d’inconnue z

1. z2 − (3 cos(θ) + i sin(θ)z + 2 = 0

2. z6 − z3 + 1 + i = 0 . On donnera les solutions sous forme trigonométrique.

3. cos(2α)z2 − 2i(cos(α)z− 1 + 0.
On appelera z1 et z2 les solutions. Après avoir déterminé z1 et z2 on cherchera une CNS
sur α pour que M1M2 = 2 sachant que M1 et M2 ont pour affixes respectives z1 et z2
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